
Algorithms and Data Structures
Fast Fourier Transform
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Complex numbers

Any polynomial p(x) of of degree d ought to have d roots. (I.e., p(x) = 0
should have d solutions.)

But the equation
x2 + 1 = 0 (∗)

has no solutions at all if we restrict our attention to real numbers.

Introduce a special symbol i to stand for a solution to (∗). Then i2 = −1
and (∗) has the required two solutions, i and −i .

Adding i allows all polynomial equations to be solved! Indeed a polynomial
of degree d has d roots (taking account of multiplicities). This is the
Fundamental Theorem of Algebra.
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Roots of Unity

In particular,
xn = 1

has n solutions in the complex numbers. They may be written

1,ωn,ω
2
n, . . . ,ω

n−1
n

where ωn is the principal nth root of unity:

ωn = cos(2π/n) + i sin(2π/n), (†).

Convention: from now on ωn denotes the principal nth root of unity
given by (†).
Note: e iu = cos u + i sin u so ωn = e2πi/n.
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8th Roots of Unity

8
w0 = 1

2

2pi/8

8w = ei*2pi/88w = i

= (1+i)/sqrt(2)
= (cos (2 pi/8), i*sin(2 pi/8)) 

“Wheel” representation of 8th roots-of-unity (complex plane)).
Same wheel structure for any n (then ωn found at angle 2π/n).
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The Discrete Fourier Transform (DFT)

Instance A sequence of n complex numbers

a0, a1, a2, . . . , an−1,

n is a Power-of-2.

Output The sequence of n complex numbers

A(1),A(ωn),A(ω
2
n), . . . ,A(ω

n−1
n )

obtained by evaluating the polynomial

A(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1

at the nth roots of unity.

The DFT is a fingerprint of size n of a polynomial.
It is not the only fingerprint. Given n distinct points, one obtains n
equations for the n unknown coefficients of a polynomial of degree n − 1.
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Motivation for algorithms for DFT/Inverse DFT

Direct. Signal processing: mapping between time and frequency domains.

Indirect. Subroutine in numerous applications, e.g., multiplying polyno-
mials or large integers, cyclic string matching, etc.

It is important, therefore to find the fastest method. There is an obvious
Θ(n2) algorithm. Can we do better?

YES! Really cool algorithm (Fast Fourier Transform (FFT)) runs in
O(n lg n) time. Published by Cooley & Tukey in 1965 - basics known by
Gauss in 1805!

Used in *every* Digital Signal Processing application. Probably the most
Important algorithm of today. We will show how to apply FFT to do
polynomial multiplication in O(n lg n) (not most common application, but
cute).
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Divide-and-Conquer

We are interested in evaluating:

A(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1,

n a Power-Of-2. Put

Aeven(y) = a0 + a2y + · · ·+ an−2yn/2−1,

Aodd(y) = a1 + a3y + · · ·+ an−1yn/2−1,

so that
A(x) = Aeven(x

2) + x Aodd(x
2). (#)

To evaluate A(x) at the nth roots of unity, we need to evaluate Aeven(y)

and Aodd(y) at the points 1,ω2
n,ω

4
n, . . . ,ω

2(n−1)
n .

We’ll show now that these are DFTs. (wrt n/2)
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Key Facts

Assuming n is even:

I ω2
n = (e

2πi
n )2 = e

2πi
n/2 = ωn/2, and

I ω
n/2
n = (e

2πi
n )n/2 = eπi = −1.

Thus we have the following relationships between ωn and ωn/2:

1 ω2
n . . . ωn−2

n ωn
n ωn+2

n . . . ω
2(n−1)
n

‖ ‖ . . . ‖ ‖ ‖ . . . ‖
1 ωn/2 . . . ω

n/2−1
n/2 1 ωn/2 . . . ω

n/2−1
n/2

So evaluating Aodd(x),Aeven(x) at ω2 for all nth-roots-of-unity (in order
to implement (#)), is TWO “sweeps” of evaluating Aodd(x),Aeven(x) at
the n/2th-roots.
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“Divide”: a warning

In performing the “Divide” part of Divide-and-Conquer to DFT, it was
important that the “Divide” was based on odd/even.

Suppose we had instead partitioned A(x) into small/larger terms:

Asmall(y) = a0 + a1y + · · ·+ an/2−1yn/2−1,

Abig(y) = an/2 + an/2+1y + · · ·+ an−1yn/2−1

Then we would have

A(x) = Asmall(x) + xn/2Abig(x).

However, to evaluate A(x) at the nth roots of unity, we would need to
evaluate Asmall(y) and Abig(y) at all of the nth roots of unity.

So for recursive calls: we would reduce the degree of the polynomial (to
n/2 − 1), but would NOT reduce the “number of roots”. We would lose
the relationship between degree of poly. and number of roots, which is
CRUCIAL.

ADS: lects 5 & 6 – slide 9 –

“Divide”: a warning

In performing the “Divide” part of Divide-and-Conquer to DFT, it was
important that the “Divide” was based on odd/even.

Suppose we had instead partitioned A(x) into small/larger terms:

Asmall(y) = a0 + a1y + · · ·+ an/2−1yn/2−1,

Abig(y) = an/2 + an/2+1y + · · ·+ an−1yn/2−1

Then we would have

A(x) = Asmall(x) + xn/2Abig(x).

However, to evaluate A(x) at the nth roots of unity, we would need to
evaluate Asmall(y) and Abig(y) at all of the nth roots of unity.

So for recursive calls: we would reduce the degree of the polynomial (to
n/2 − 1), but would NOT reduce the “number of roots”. We would lose
the relationship between degree of poly. and number of roots, which is
CRUCIAL.

ADS: lects 5 & 6 – slide 9 –



Key Facts (cont’d)

A(1) = Aeven(1) + 1 · Aodd(1)

A(ωn) = Aeven(ω
2
n) +ωn Aodd(ω

2
n)

= Aeven(ωn/2) +ωn Aodd(ωn/2)

A(ω2
n) = Aeven(ω

2
n/2) +ω

2
n Aodd(ω

2
n/2)

...

A(ω
n/2−1
n ) = Aeven(ω

n/2−1
n/2 ) +ω

n/2−1
n Aodd(ω

n/2−1
n/2 )

The x co-efficient on xAodd(x
2) of (#) stays positive until x = ω

n/2
n .
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Key Facts (cont’d)

A(ω
n/2
n ) = Aeven(1) − 1 · Aodd(1)

A(ω
n/2+1
n ) = Aeven(ωn/2) −ωn Aodd(ωn/2)

...

A(ωn−1
n ) = Aeven(ω

n/2−1
n/2 ) −ω

n/2−1
n Aodd(ω

n/2−1
n/2 )

From ω
n/2
n on, the x co-efficient of xAodd(x

2) of (#) is negative.
We will use this negative relationship (with the j < n/2 case) on lines 8.,
9. of our pseudocode.
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The Fast Fourier Transform (FFT)

A(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1,

assume n is a power of 2. Compute

A(1),A(ωn),A(ω
2
n), . . . ,A(ω

n−1
n ), (∗)

as follows:

1. If n = 1 then A(x) is a constant so task is trivial. Otherwise split A
into Aeven and Aodd.

2. By making two recursive calls compute the values of Aeven(y) and

Aodd(y) at the (n/2) points 1,ωn/2,ω
2
n/2, . . . ,ω

n/2−1
n/2 .

3. Compute the values (∗) by using the equation

A(x) = Aeven(x
2) + xAodd(x

2).
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Implementation

Algorithm FFTn(〈a0, . . . , an−1〉)

1. if n = 1 then return 〈a0〉
2. else

3. ωn ← e2πi/n

4. ω← 1

5. 〈y even
0 , . . . , y even

n/2−1〉← FFTn/2(〈a0, a2, . . . , an−2〉)
6. 〈yodd

0 , . . . , yodd
n/2−1〉← FFTn/2(〈a1, a3, . . . , an−1〉)

7. for k ← 0 to n/2 − 1 do

8. yk ← y even
k +ωyodd

k

9. yk+n/2 ← y even
k −ωyodd

k

10. ω← ωωn

11. return〈y0, . . . , yn−1〉
Algorithm assumes n is a power of 2 for easy divisibility.
Generally, we can use padding to make n a power of 2.
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Analysis

T (n) worst-case running time of FFT.

Lines 1–4: Θ(1)

Lines 5–6: Θ(1) + 2T (n/2)

Loop, 7–10: Θ(n)

Line 11: Θ(1)

Yields the following recurrence:

T (n) = 2T (n/2) +Θ(n).

Solution:
T (n) = Θ(n · lg(n)).
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The Discrete Fourier Transform

Recall

I The DFT maps a tuple 〈a0, . . . , an−1〉 to the tuple 〈y0, . . . , yn−1〉
defined by

yj =
n−1∑

k=0

akω
jk
n ,

where ωn = e2πi/n is the principal nth root of unity.

I Thus for every n (power of 2) we may view DFTn as mapping
Cn → Cn, where C denote the complex numbers.

I FFT (the Fast Fourier Transform) is an algorithm computing DFTn

in time
Θ(n lg(n)).
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The inverse DFT

DFTn : Cn → Cn

〈a0, . . . , an−1〉 7→ 〈y0, . . . , yn−1〉

Question
Can we go back from 〈y0, . . . , yn−1〉 to 〈a0, . . . , an−1〉 ?

More precisely:

1. Is DFTn invertible, that is, is it one-to-one and onto?

2. If the answer to (1) is ‘yes’, can we compute DFT−1
n efficiently?
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An alternative view on the DFT

DFTn is the linear mapping described by the matrix

Vn =




1 1 1 . . . 1

1 ωn ω2
n . . . ωn−1

n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n



.

That is, we have

Vn




a0
...

an−1


 =




y0
...

yn−1




We will NOT actually perform the näive matrix mult.
(we will do much better: O(n lg n))
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Inverse of DFT

Claim: Vn is a van-der-Monde matrix and thus invertible.

Proof: Define the following “Inverse” matrix:

V −1
n =

1

n




1 1 1 . . . 1

1 ω−1
n ω−2

n . . . ω
−(n−1)
n

1 ω−2
n ω−4

n . . . ω
−2(n−1)
n

1 ω−3
n ω−6

n . . . ω
−3(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n . . . ω

−(n−1)(n−1)
n




.
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Inverse of DFT (proof)

Verification: We must check that VnV −1
n = In:

Want ``-th entry = 1 ∀`, and `j-th entry = 0 ∀`, j with ` 6= j .
Expanding . . .

(VnV −1
n )`j =

1

n

n−1∑

k=0

ω`kn ω
−kj
n

=
1

n

n−1∑

k=0

ω
(`−j)k
n ,

=

{
1 if ` = j (because ω`−j

n = 1)

0 otherwise

(VnV −1
n )`j = 0 case uses the fact that for all r 6= 0 (r = (`− j))

we have
n−1∑

k=0

ωrk
n = 0.

ADS: lects 5 & 6 – slide 19 –

Inverse of DFT (proof)

Verification: We must check that VnV −1
n = In:

Want ``-th entry = 1 ∀`, and `j-th entry = 0 ∀`, j with ` 6= j .
Expanding . . .

(VnV −1
n )`j =

1

n

n−1∑

k=0

ω`kn ω
−kj
n

=
1

n

n−1∑

k=0

ω
(`−j)k
n ,

=

{
1 if ` = j (because ω`−j

n = 1)

0 otherwise

(VnV −1
n )`j = 0 case uses the fact that for all r 6= 0 (r = (`− j))

we have
n−1∑

k=0

ωrk
n = 0.

ADS: lects 5 & 6 – slide 19 –

Inverse of DFT (proof)

Verification: We must check that VnV −1
n = In:

Want ``-th entry = 1 ∀`, and `j-th entry = 0 ∀`, j with ` 6= j .
Expanding . . .

(VnV −1
n )`j =

1

n

n−1∑

k=0

ω`kn ω
−kj
n

=
1

n

n−1∑

k=0

ω
(`−j)k
n ,

=

{
1 if ` = j (because ω`−j

n = 1)

0 otherwise

(VnV −1
n )`j = 0 case uses the fact that for all r 6= 0 (r = (`− j))

we have
n−1∑

k=0

ωrk
n = 0.

ADS: lects 5 & 6 – slide 19 –

Inverse of DFT (proof)

Verification: We must check that VnV −1
n = In:

Want ``-th entry = 1 ∀`, and `j-th entry = 0 ∀`, j with ` 6= j .
Expanding . . .

(VnV −1
n )`j =

1

n

n−1∑

k=0

ω`kn ω
−kj
n

=
1

n

n−1∑

k=0

ω
(`−j)k
n ,

=

{
1 if ` = j (because ω`−j

n = 1)

0 otherwise

(VnV −1
n )`j = 0 case uses the fact that for all r 6= 0 (r = (`− j))

we have
n−1∑

k=0

ωrk
n = 0.

ADS: lects 5 & 6 – slide 19 –



Inverse of DFT

We have shown DFTn is invertible with

DFT−1
n :




y0
...

yn−1


 7→ V −1

n




y0
...

yn−1


 =




a0
...

an−1


 .

Problem
If we are were to apply V −1

n 〈y0, . . . , yn−1〉 directly in order
to recover 〈a0, . . . , an−1〉, the evaluation of
V −1
n 〈y0, . . . , yn−1〉 would take Θ(n2) time!!!

Solution
Take another look back at the V −1

n matrix, and see that it
is more-or-less a “flipped-over” DFT.
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Inverse DFT (efficient) Algorithm

ω−1
n is an nth root of unity (though not the principal one). Note that

(ω−1
n )j = 1/ωj

n = ωn
n/ω

j
n = ωn−j

n ,

for every 0 ≤ j < n.

Inverse FFT

I Compute DFTn〈y0, . . . , yn−1〉 (deliberately using
DFTn, not inverse), to obtain the result 〈d0, . . . , dn−1〉.

I Flip the sequence d1, d2, . . . , dn−1 in this result
(keeping d0 fixed), then divide every term by n.

ai =

{
d0
n if i = 0
dn−i

n if 1 ≤ i ≤ n − 1

Worst-case running time is Θ(n lg(n)).
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Our Application! Multiplication of Polynomials

Input: p(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1

q(x) = b0 + b1x + b2x2 + · · ·+ bm−1xm−1.

Required output:

p(x)q(x) = (a0b0)

+(a0b1 + a1b0)x

+(a0b2 + a1b1 + a2b0)x
2

...

+(an−2bm−1 + an−1bm−2)x
n+m−3

+(an−1bm−1)x
n+m−2

Naive method uses Θ(nm) arithmetic operations

CAN WE DO BETTER?
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Interpolation

Theorem
Let α0, . . . , αn−1 ∈ C pairwise distinct and y0, . . . , yn−1 ∈ C.
Then there exists exactly one polynomial p(X ) of degree at most n − 1
such that for 0 ≤ k ≤ n − 1

p(αk) = yk .

I The sequence
〈(α0, y0), . . . , (αn−1, yn−1)〉

is called a point-value representation of the polynomial p.

I The process of computing a polynomial from a point-value
representation is called interpolation.
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Interpolation

Theorem
Let α0, . . . , αn−1 ∈ C pairwise distinct and y0, . . . , yn−1 ∈ C.
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Multiplication of polynomials (cont’d)

Observation
Suppose we have two polynomials p(X ) (of degree n − 1)
and q(X ) (of degree m − 1). Assume max{m, n} = n. If
〈(α0, y0), . . . , (αn+m−2, yn+m−2)〉 and
〈(α0, z0), . . . , (αn+m−2, zn+m−2)〉 are point-value
representations p(X ) and q(X ) respectively (evaluated at
exactly the same points), then

〈(α0, y0z0), . . . , (αn+m−2, yn+m−2zn+m−2)〉

is a point-value representation of p(X )q(X ) (with enough
points to allow us to recover pq(X ) by interpolation) .
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Multiplication of polynomials (cont’d)

standard representation 
of two polynomials

standard representation 
of product

point−value representation point−value representation
of productmultiplication

pointwise

multiplication

interpolationevaluation

we take the solid-arrow route, using 3 steps, to achieve
performance Θ(n lg(n)).
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Multiplication of polynomials (cont’d)

Key idea
Let n ′ be the smallest power of 2 such that n ′ ≥ n + m − 1.
Use the n ′-th roots of unity as the evaluation points:
α0 = 1, α1 = ωn ′ , α2 = ω

2
n ′ , . . . , αn ′−1 = ω

n ′−1
n ′ .

Then

I evaluation ≡ DFT, and
I interpolation ≡ inverse DFT

Overall running time is

Θ(n ′ log n ′) = Θ(n log n) (FFT)

+ Θ(n ′) = Θ(n) (pointwise multiplication)

+ Θ(n ′ log n ′) = Θ(n log n) (inverse FFT)

= Θ(n log n)
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Reading Assignment

[CLRS] (2nd and 3rd ed) Section 30.2 and 30.3.

Problems

1. Exercise 30.2-2 of [CLRS].

2. Let f (x) = 3 cos(2x). For 0 ≤ k ≤ 3, let ak = f (2πk/4). Compute
the DFT of 〈a0, . . . , a3〉.
Do the same for f (x) = 5 sin(x).

3. Exercise 30.2-3 of [CLRS].

4. Exercise 30.2-7 of [CLRS].
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