Algorithms and Data Structures
Strassen's Algorithm

Lecture 4 — slide 1

Tutorials

» Start in week (week 3)

» Tutorial allocations are linked from the course webpage
http://www.inf.ed.ac.uk/teaching/courses/ads/

Lecture 4 — slide 2

http://www.inf.ed.ac.uk/teaching/courses/ads/

The Master Theorem for solving recurrences

Theorem

Let ng € N, k e Ng and a,b € R witha> 0 and b > 1, and let
T : N — R satisfy the following recurrence:

T(n) = O(1) if n < ng,
] a- T(n/b)+0O(n*) if n> ny.

Let ¢ =log,(a); we call ¢ the critical exponent. Then

O(n°) ifk <c (),
T(n)=<¢ O(n°-lg(n)) ifk=c (1),
O(nk) ifk>c ().

Theorem also holds if we replace a- T(n/b) above by
ai- T(|n/b])+ ax- T([n/b]) for any ai,a; > 0 with a1 + a = a.

Lecture 4 — slide 3

The Master Theorem (cont'd)

» We don't have time to prove the Master Theorem in class. You can

find the proof in Section 4.6 of [CLRS]. Section 4.4 of [CLRS], 2nd
ed.

Their version of the M.T. is a bit more general than ours.

» Consider the following examples:

T(n) = 4T(n/2)+ n,

T(n) = 4T([n/2])+r?,

T(n) = 4T(n/2)+ n’.
Could alternatively unfold-and-sum to prove the first and third of
these (and to get an estimate for the second).

CLASS EXERCISE

Lecture 4 — slide 4

Matrix Multiplication

Recall
The product of two (n x n)-matrices

A = (aj)i<ij<n and B = (bj)i<ij<n

is the (n x n)-matrix C = AB where C = (cjj)1<ij<n With

entries
n
Cij = E a,-kbkj.
k=1

The Matrix Multiplication Problem
Input: (n X n)-matrices A and B
Output: the (n x n)-matrix AB

Lecture 4 — slide 5

Matrix Multiplication

P by
N by;
row | :Cij: = ail aiz am
Lo
column j

Lecture 4 — slide 6

Matrix Multiplication

P | by
JR SO Loop-] b2]
row | :Ci': = :ail aiz airl
I
P | by
column j

- n multiplications and n additions for each c;.
- there are n? different cjj entries.

Lecture 4 — slide 6

A straightforward algorithm

Algorithm MATMULT(A, B)

1. n & number of rows of A
2. fori+1tondo

3. for j «— 1 to ndo

4 Cjj «—0

5 for k — 1 to ndo

6. Cij < Cij + ajk - byj
7. return C = (¢j)1<ij<n

Requires
e(n?)

arithmetic operations (additions and multiplications).

Lecture 4 — slide 7

A naive divide-and-conquer algorithm

Observe
If

A A B B
A 11 | A1 and B = 11 | Bi2
A1 | A Bo1 | B

for (n/2 x n/2)-submatrices A;; and Bj; then

AB — A11Bi11 + A12B21 ‘ A11Bi12 + A12B22
A21B11 + A2 B ‘ A21B12 + A2 B2

note: We are assuming n is a power of 2.

Lecture 4 — slide 8

A naive divide-and-conquer algorithm

Co by;
b j
I Ay Ap by;
rowr | G | = A& A Bi B
Do An | Ay B,y |Bx
D By
column j

Lecture 4 — slide 9

A naive divide-and-conquer algorithm

Co by;

b j

N | Ay | Ap by
rowl 1 Cijt = @19 A B [Bi

A | A By, |Bx

column j

Suppose i < n/2 and j > n/2. Then

n n/2
o= S ouby =Ty ¢ 3ty
k=1 k=n/2+1
€ A B € A12Bo»

Lecture 4 — slide 9

A naive divide-and-conquer algorithm (cont'd)

Assume n is a power of 2.

Algorithm D&C-MATMULT(A, B)

1. n < number of rows of A

2. if n=1 then return (a;1b11)
3. else
4 Let Aj, Bjj (for i,j =1,2) be (n/2 X n/2)-submatrices s.th.
A A B B
A u|Awe \ s 11 | B2
A21 AQQ B21 822
5. Recursively compute A11Bn, A12821, A1l Blz, A12822,
AnBi1, AnBoi, A2 Bz, A2»Bx
6. Compute Ci1 = A B + ABo1, G2 = A11Bio + A12B,
Co1 = A2 Bi1 + A2 Bo1, Goo = AnBio + AnBx
C G
7. return - 2
Gr1 | G

Lecture 4 — slide 10

Analysis of D& C-MATMULT

T (n) is the number of operations done by D& C-MATMULT.
> Lines 1,2,3,4,7 require ©(1) arithmetic operations
» Line 5 requires 8T (n/2) arithmetic operations

» Line 6 requires 4(n/2)?> = ©(n?) arithmetic operations.
Remember! Size of matrices is ®(n?), NOT ©(n)

We get the recurrence
T(n) =8T(n/2) +0O(n?).

Since log,(8) = 3, the Master Theorem yields

Lecture 4 — slide 11

Analysis of D& C-MATMULT

T (n) is the number of operations done by D& C-MATMULT.
> Lines 1,2,3,4,7 require ©(1) arithmetic operations
» Line 5 requires 8T (n/2) arithmetic operations

» Line 6 requires 4(n/2)?> = ©(n?) arithmetic operations.
Remember! Size of matrices is ®(n?), NOT ©(n)

We get the recurrence
T(n) =8T(n/2) +0O(n?).

Since log,(8) = 3, the Master Theorem yields

(No improvement over MATMULT ... why? CLASS? ...)

Lecture 4 — slide 11

Strassen’s algorithm (1969)

Assume n is a power of 2.
Let
A | A Bi1 | B
A— 11 | A2 and B — u |5 |
Aoy | A By | B>
We want to compute

AR — A11B11 + A12Bx1 ‘ A11Bio 4 A12B2»
A21B11 + A2 Boy ‘ A21B12 + A2 B

_ G| Gio
Gr | G

Strassen’s algorithm uses a trick in applying Divide-and-Conquer.

Lecture 4 — slide 12

Strassen’s algorithm (cont'd)
Let
Py = (A11+4 Ax)(Bi1 + Bx)
P> (A21 + A2)B11
Ps = Ai1(Bi2 — B2)

Py = Ax(—Bi1+ Ba) ()
Ps = (A1 + A12)Bx»
Ps = (—A11+ A21)(Bi1 + Bi2)

P; = (A2 — A2) (B + Bx)

Lecture 4 — slide 13

Strassen’s algorithm (cont'd)

Let
Pi = (A1 + Ax)(Bi1+ B)
P> = (A + Ax2)Bn
P3 = Au(Bi2 — Bx)
Py = Axn(—B11+ Bx) (*)
Ps = (A1 + A12)Bx
Ps = (—A1 + A21)(Bi1 + Br2)
Pz = (A2 —Ax)(Bo + B2)
Then
Ci=P1+Ps—Ps+ P7 Ci2=P3+Ps (55)
Cor = Py + Py Cor = P+ Ps— Py + Ps

Lecture 4 — slide 13

Checking Strassen’s algorithm - C11

We will check the equation for Ci; is correct.
Strassen's algorithm computes C;; = P1 + P4 — P5 + P7. We have

P1 = (All+ A22)(B11 + B22)

= AL1B11 + A11B22 + A22B11 + A22B22.
P4 = A22(—Bll1+ B21) = A22B21 — A22B11.
P5 = (All+ Al12)B22 = A11B22 + A12B22.
P7 = (A12— A22)(B21 + B22)

= Al12B21 + A12B22 — A22B21 — A22B22.

Lecture 4 — slide 14

Checking Strassen’s algorithm - C11

We will check the equation for Ci; is correct.
Strassen's algorithm computes C;; = P1 + P4 — P5 + P7. We have

P1 = (All+ A22)(B11 + B22)

= AL1B11 + A11B22 + A22B11 + A22B22.
P4 = A22(—Bll1+ B21) = A22B21 — A22B11.
P5 = (All+ Al12)B22 = A11B22 + A12B22.
P7 = (A12— A22)(B21 + B22)

= Al12B21 + A12B22 — A22B21 — A22B22.

Then P14+ P4 = A11B11 + A11B22 4 A22B22 4+ A22B21.

Lecture 4 — slide 14

Checking Strassen’s algorithm - C11

We will check the equation for Ci; is correct.
Strassen's algorithm computes C;; = P1 + P4 — P5 + P7. We have

P1 = (All+ A22)(B11 + B22)

= AL1B11 + A11B22 + A22B11 + A22B22.
P4 = A22(—Bll1+ B21) = A22B21 — A22B11.
P5 = (All+ Al12)B22 = A11B22 + A12B22.
P7 = (A12— A22)(B21 + B22)

= Al12B21 + A12B22 — A22B21 — A22B22.

Then P14+ P4 = A11B11 + A11B22 4 A22B22 4+ A22B21.
Then P14+ P4 — P5 = A11B11 + A22B22 4 A22B21 — A12B22.

Lecture 4 — slide 14

Checking Strassen’s algorithm - C11

We will check the equation for Ci; is correct.
Strassen's algorithm computes C;; = P1 + P4 — P5 + P7. We have

P1 = (All+ A22)(B11 + B22)

= AL1B11 + A11B22 + A22B11 + A22B22.
P4 = A22(—Bll1+ B21) = A22B21 — A22B11.
P5 = (All+ Al12)B22 = A11B22 + A12B22.
P7 = (A12— A22)(B21 + B22)

= Al12B21 + A12B22 — A22B21 — A22B22.

Then P14+ P4 = A11B11 + A11B22 4 A22B22 4+ A22B21.
Then P14+ P4 — P5 = A11B11 + A22B22 4 A22B21 — A12B22.
Then P1+ P4 — P54 P7 = A11B11 + A12B21, which is C11.

Lecture 4 — slide 14

Checking Strassen’s algorithm - C11

We will check the equation for Ci; is correct.
Strassen's algorithm computes C;; = P1 + P4 — P5 + P7. We have

P1 = (All+ A22)(B11 + B22)

= AL1B11 + A11B22 + A22B11 + A22B22.
P4 = A22(—Bll1+ B21) = A22B21 — A22B11.
P5 = (All+ Al12)B22 = A11B22 + A12B22.
P7 = (A12— A22)(B21 + B22)

= Al12B21 + A12B22 — A22B21 — A22B22.

Then P14+ P4 = A11B11 + A11B22 4 A22B22 4+ A22B21.
Then P14+ P4 — P5 = A11B11 + A22B22 4 A22B21 — A12B22.
Then P1+ P4 — P54+ P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 — slide 14

Strassen’s algorithm (cont'd)

Crucial Observation
Only 7 multiplications of (n/2 x n/2)-matrices are needed
to compute AB.

Algorithm STRASSEN(A, B)

1. n & number of rows of A

2. if n=1 then return (a;1b11)

3. else

4. Determine A;; and Bjj for i,j = 1,2 (as before)
5 Compute Py,...,P7 asin (%)

6 Compute C11, C12, C21, Cyy as in (**)

~

G| Gio
return
G | G

Lecture 4 — slide 15

Analysis of Strassen's algorithm

Let T(n) be the number of arithmetic operations performed by STRASSEN.

» Lines 1 —4 and 7 require ©(1) arithmetic operations
» Line 5 requires 7T (n/2) + ©(n?) arithmetic operations

» Line 6 requires ©®(n?) arithmetic operations. remember.

We get the recurrence
T(n) =7T(n/2) +O(n?).
Since log,(7) ~ 2.807 > 2, the Master Theorem yields

T(n) = @(n'022("),

Lecture 4 — slide 16

Breakthroughs on matrix multiplication

Coppersmith & Winograd (1987) came up with an improved
algorithm with running time of

0 (n2.376) .

. many years of silence ...

Then in his 2010 PhD thesis, Andrew Stothers from the School of
Maths, at the University of Edinburgh got an algorithm with
O(n®) for ¢ < 2.3737 ...

» = Coppersmith/Winograd not optimal.

» But Stothers didn't publish.
In 2011, Virginia Vassilevska Williams of Stanford, came up with a
O(n®) algorithm, for ¢ = 2.3729 (partly, but not only, making use of
some of Stothers’ ideas)

2014, Francois Le Gall, O(n€) algorithm, for ¢ = 2.37286309.

Lecture 4 — slide 17

Remarks on Matrix Multiplication

> In practice, the “school” MATMULT algorithm tends to outperform
Strassen's algorithm, unless the matrices are huge.

» The best known lower bound for matrix multiplication is
Q(n?).

This is a trivial lower bound (need to look at all entries of each
matrix). Amazingly, Q(n?) is believed to be “the truth”!

Open problem: Can we find a O(n?"°)-algorithm for Matrix
Multiplication of n x n matrices?

Lecture 4 — slide 18

Reading Assignment

[CLRS] (3rd ed) Section 4.5 “The Master method for solving recurrences”
(Section 4.3 “Using the Master method” of [CLRS], 2nd ed)
[CLRS] (3rd ed) Section 4.2 (Section 28.2 of [CLRS], 2nd ed)

Problems

1. Exercise 4.5-2 of [CLRS] (3rd ed) Exercise 4.3-2 of [CLRS], 2nd ed.
2. Exercise 4.2-1 of [CLRS], 3rd ed. Exercise 28.2-1 [CLRS], 2nd ed.
3. Week 3 tutorial sheet.

Lecture 4 — slide 19

