
Algorithms and Data Structures
Strassen’s Algorithm

Lecture 4 – slide 1



Tutorials

I Start in week (week 3)

I Tutorial allocations are linked from the course webpage
http://www.inf.ed.ac.uk/teaching/courses/ads/

Lecture 4 – slide 2

http://www.inf.ed.ac.uk/teaching/courses/ads/


The Master Theorem for solving recurrences

Theorem
Let n0 ∈ N, k ∈ N0 and a, b ∈ R with a > 0 and b > 1, and let
T : N→ R satisfy the following recurrence:

T (n) =

{
Θ(1) if n < n0,

a · T (n/b) +Θ(nk) if n ≥ n0.

Let c = logb(a); we call c the critical exponent. Then

T (n) =


Θ(nc) if k < c (I),

Θ(nc · lg(n)) if k = c (II),

Θ(nk) if k > c (III).

Theorem also holds if we replace a · T (n/b) above by
a1 · T (bn/bc) + a2 · T (dn/be) for any a1, a2 ≥ 0 with a1 + a2 = a.

Lecture 4 – slide 3



The Master Theorem (cont’d)

I We don’t have time to prove the Master Theorem in class. You can
find the proof in Section 4.6 of [CLRS]. Section 4.4 of [CLRS], 2nd
ed.
Their version of the M.T. is a bit more general than ours.

I Consider the following examples:

T (n) = 4T (n/2) + n,

T (n) = 4T (bn/2c) + n2,

T (n) = 4T (n/2) + n3.

Could alternatively unfold-and-sum to prove the first and third of
these (and to get an estimate for the second).

CLASS EXERCISE

Lecture 4 – slide 4



Matrix Multiplication

Recall
The product of two (n × n)-matrices

A = (aij)1≤i ,j≤n and B = (bij)1≤i ,j≤n

is the (n × n)-matrix C = AB where C = (cij)1≤i ,j≤n with
entries

cij =
n∑

k=1

aikbkj .

The Matrix Multiplication Problem
Input: (n × n)-matrices A and B
Output: the (n × n)-matrix AB

Lecture 4 – slide 5



Matrix Multiplication

=row i c ij

column j

a i1 a i2 a in
2jb

njb

1jb

- n multiplications and n additions for each cij .
- there are n2 different cij entries.

Lecture 4 – slide 6



Matrix Multiplication

=row i c ij

column j

a i1 a i2 a in
2jb

njb

1jb

- n multiplications and n additions for each cij .
- there are n2 different cij entries.

Lecture 4 – slide 6



A straightforward algorithm

Algorithm MatMult(A,B)

1. n← number of rows of A
2. for i ← 1 to n do
3. for j ← 1 to n do
4. cij ← 0
5. for k ← 1 to n do
6. cij ← cij + aik · bkj
7. return C = (cij)1≤i ,j≤n

Requires
Θ(n3)

arithmetic operations (additions and multiplications).

Lecture 4 – slide 7



A näive divide-and-conquer algorithm

Observe
If

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)

for (n/2× n/2)-submatrices Aij and Bij then

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

note: We are assuming n is a power of 2.

Lecture 4 – slide 8



A näive divide-and-conquer algorithm

=row i c ij

column j

a i1 a i2 a in

bnj

2jb
1jb

A A

AA

B

BB

B

21 22

11 12
11 12

21 22

Suppose i ≤ n/2 and j > n/2. Then

cij =

n∑
k=1

aikbkj =

n/2∑
k=1

aikbkj +

n∑
k=n/2+1

aikbkj

∈ A11B12 ∈ A12B22

Lecture 4 – slide 9



A näive divide-and-conquer algorithm

=row i c ij

column j

a i1 a i2 a in

bnj

2jb
1jb

A A

AA

B

BB

B

21 22

11 12
11 12

21 22

Suppose i ≤ n/2 and j > n/2. Then

cij =

n∑
k=1

aikbkj =

n/2∑
k=1

aikbkj +

n∑
k=n/2+1

aikbkj

∈ A11B12 ∈ A12B22

Lecture 4 – slide 9



A näive divide-and-conquer algorithm (cont’d)

Assume n is a power of 2.

Algorithm D&C-MatMult(A,B)

1. n← number of rows of A

2. if n = 1 then return (a11b11)

3. else

4. Let Aij , Bij (for i , j = 1, 2) be (n/2× n/2)-submatrices s.th.

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
5. Recursively compute A11B11, A12B21, A11B12, A12B22,

A21B11, A22B21, A21B12, A22B22

6. Compute C11 = A11B11 + A12B21, C12 = A11B12 + A12B22,

C21 = A21B11 + A22B21, C22 = A21B12 + A22B22

7. return

(
C11 C12

C21 C22

)

Lecture 4 – slide 10



Analysis of D&C-MatMult

T (n) is the number of operations done by D&C-MatMult.

I Lines 1, 2, 3, 4, 7 require Θ(1) arithmetic operations

I Line 5 requires 8T (n/2) arithmetic operations

I Line 6 requires 4(n/2)2 = Θ(n2) arithmetic operations.
Remember! Size of matrices is Θ(n2), NOT Θ(n)

We get the recurrence

T (n) = 8T (n/2) +Θ(n2).

Since log2(8) = 3, the Master Theorem yields

T (n) = Θ(n3).

(No improvement over MatMult . . . why? CLASS? . . .)

Lecture 4 – slide 11



Analysis of D&C-MatMult

T (n) is the number of operations done by D&C-MatMult.

I Lines 1, 2, 3, 4, 7 require Θ(1) arithmetic operations

I Line 5 requires 8T (n/2) arithmetic operations

I Line 6 requires 4(n/2)2 = Θ(n2) arithmetic operations.
Remember! Size of matrices is Θ(n2), NOT Θ(n)

We get the recurrence

T (n) = 8T (n/2) +Θ(n2).

Since log2(8) = 3, the Master Theorem yields

T (n) = Θ(n3).

(No improvement over MatMult . . . why? CLASS? . . .)

Lecture 4 – slide 11



Strassen’s algorithm (1969)

Assume n is a power of 2.
Let

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
.

We want to compute

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

=

(
C11 C12

C21 C22

)
.

Strassen’s algorithm uses a trick in applying Divide-and-Conquer.

Lecture 4 – slide 12



Strassen’s algorithm (cont’d)

Let
P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)B11

P3 = A11(B12 − B22)

P4 = A22(−B11 + B21)

P5 = (A11 + A12)B22

P6 = (−A11 + A21)(B11 + B12)

P7 = (A12 − A22)(B21 + B22)

(∗)

Then

C11 = P1 + P4 − P5 + P7 C12 = P3 + P5

C21 = P2 + P4 C22 = P1 + P3 − P2 + P6

(∗∗)

Lecture 4 – slide 13



Strassen’s algorithm (cont’d)

Let
P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)B11

P3 = A11(B12 − B22)

P4 = A22(−B11 + B21)

P5 = (A11 + A12)B22

P6 = (−A11 + A21)(B11 + B12)

P7 = (A12 − A22)(B21 + B22)

(∗)

Then

C11 = P1 + P4 − P5 + P7 C12 = P3 + P5

C21 = P2 + P4 C22 = P1 + P3 − P2 + P6

(∗∗)

Lecture 4 – slide 13



Checking Strassen’s algorithm - C11

We will check the equation for C11 is correct.
Strassen’s algorithm computes C11 = P1 + P4 − P5 + P7. We have

P1 = (A11 + A22)(B11 + B22)

= A11B11 + A11B22 + A22B11 + A22B22.

P4 = A22(−B11 + B21) = A22B21 − A22B11.

P5 = (A11 + A12)B22 = A11B22 + A12B22.

P7 = (A12 − A22)(B21 + B22)

= A12B21 + A12B22 − A22B21 − A22B22.

Then P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21.
Then P1 + P4 − P5 = A11B11 + A22B22 + A22B21 − A12B22.
Then P1 + P4 − P5 + P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 – slide 14



Checking Strassen’s algorithm - C11

We will check the equation for C11 is correct.
Strassen’s algorithm computes C11 = P1 + P4 − P5 + P7. We have

P1 = (A11 + A22)(B11 + B22)

= A11B11 + A11B22 + A22B11 + A22B22.

P4 = A22(−B11 + B21) = A22B21 − A22B11.

P5 = (A11 + A12)B22 = A11B22 + A12B22.

P7 = (A12 − A22)(B21 + B22)

= A12B21 + A12B22 − A22B21 − A22B22.

Then P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21.

Then P1 + P4 − P5 = A11B11 + A22B22 + A22B21 − A12B22.
Then P1 + P4 − P5 + P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 – slide 14



Checking Strassen’s algorithm - C11

We will check the equation for C11 is correct.
Strassen’s algorithm computes C11 = P1 + P4 − P5 + P7. We have

P1 = (A11 + A22)(B11 + B22)

= A11B11 + A11B22 + A22B11 + A22B22.

P4 = A22(−B11 + B21) = A22B21 − A22B11.

P5 = (A11 + A12)B22 = A11B22 + A12B22.

P7 = (A12 − A22)(B21 + B22)

= A12B21 + A12B22 − A22B21 − A22B22.

Then P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21.
Then P1 + P4 − P5 = A11B11 + A22B22 + A22B21 − A12B22.

Then P1 + P4 − P5 + P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 – slide 14



Checking Strassen’s algorithm - C11

We will check the equation for C11 is correct.
Strassen’s algorithm computes C11 = P1 + P4 − P5 + P7. We have

P1 = (A11 + A22)(B11 + B22)

= A11B11 + A11B22 + A22B11 + A22B22.

P4 = A22(−B11 + B21) = A22B21 − A22B11.

P5 = (A11 + A12)B22 = A11B22 + A12B22.

P7 = (A12 − A22)(B21 + B22)

= A12B21 + A12B22 − A22B21 − A22B22.

Then P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21.
Then P1 + P4 − P5 = A11B11 + A22B22 + A22B21 − A12B22.
Then P1 + P4 − P5 + P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 – slide 14



Checking Strassen’s algorithm - C11

We will check the equation for C11 is correct.
Strassen’s algorithm computes C11 = P1 + P4 − P5 + P7. We have

P1 = (A11 + A22)(B11 + B22)

= A11B11 + A11B22 + A22B11 + A22B22.

P4 = A22(−B11 + B21) = A22B21 − A22B11.

P5 = (A11 + A12)B22 = A11B22 + A12B22.

P7 = (A12 − A22)(B21 + B22)

= A12B21 + A12B22 − A22B21 − A22B22.

Then P1 + P4 = A11B11 + A11B22 + A22B22 + A22B21.
Then P1 + P4 − P5 = A11B11 + A22B22 + A22B21 − A12B22.
Then P1 + P4 − P5 + P7 = A11B11 + A12B21, which is C11.

Homework: check other 3 equations.

Lecture 4 – slide 14



Strassen’s algorithm (cont’d)

Crucial Observation
Only 777 multiplications of (n/2× n/2)-matrices are needed
to compute AB.

Algorithm Strassen(A,B)

1. n← number of rows of A
2. if n = 1 then return (a11b11)
3. else
4. Determine Aij and Bij for i , j = 1, 2 (as before)
5. Compute P1, . . . ,P7 as in (∗)
6. Compute C11,C12,C21,C22 as in (∗∗)

7. return

(
C11 C12

C21 C22

)

Lecture 4 – slide 15



Analysis of Strassen’s algorithm

Let T (n) be the number of arithmetic operations performed by Strassen.

I Lines 1 − 4 and 7 require Θ(1) arithmetic operations

I Line 5 requires 7T (n/2) +Θ(n2) arithmetic operations

I Line 6 requires Θ(n2) arithmetic operations. remember.

We get the recurrence

T (n) = 7T (n/2) +Θ(n2).

Since log2(7) ≈ 2.807 > 2, the Master Theorem yields

T (n) = Θ(nlog2(7)).

Lecture 4 – slide 16



Breakthroughs on matrix multiplication

I Coppersmith & Winograd (1987) came up with an improved
algorithm with running time of

O(n2.376).

I . . . many years of silence . . .

I Then in his 2010 PhD thesis, Andrew Stothers from the School of
Maths, at the University of Edinburgh got an algorithm with
O(nc) for c < 2.3737 . . .

I ⇒ Coppersmith/Winograd not optimal.
I But Stothers didn’t publish.

I In 2011, Virginia Vassilevska Williams of Stanford, came up with a
O(nc) algorithm, for c = 2.3729 (partly, but not only, making use of
some of Stothers’ ideas)

I 2014, François Le Gall, O(nc) algorithm, for c = 2.3728639.

Lecture 4 – slide 17



Remarks on Matrix Multiplication

I In practice, the “school” MatMult algorithm tends to outperform
Strassen’s algorithm, unless the matrices are huge.

I The best known lower bound for matrix multiplication is

Ω(n2).

This is a trivial lower bound (need to look at all entries of each
matrix). Amazingly, Ω(n2) is believed to be “the truth”!

Open problem: Can we find a O(n2+o(1))-algorithm for Matrix
Multiplication of n × n matrices?

Lecture 4 – slide 18



Reading Assignment

[CLRS] (3rd ed) Section 4.5 “The Master method for solving recurrences”
(Section 4.3 “Using the Master method” of [CLRS], 2nd ed)
[CLRS] (3rd ed) Section 4.2 (Section 28.2 of [CLRS], 2nd ed)

Problems

1. Exercise 4.5-2 of [CLRS] (3rd ed) Exercise 4.3-2 of [CLRS], 2nd ed.

2. Exercise 4.2-1 of [CLRS], 3rd ed. Exercise 28.2-1 [CLRS], 2nd ed.

3. Week 3 tutorial sheet.

Lecture 4 – slide 19


