
Asymptotic Notation, Recurrences
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Asymptotic growth rates

Let g : N→ R.

O-notation: O(g) is the set of all functions f : N→ R for which there are
constants c > 0 and n0 ≥ 0 such that

0 ≤ f (n) ≤ c · g(n), for all n ≥ n0.

“Rate of change of f (n) is at most that of g(n)”

Ω-notation: Ω(g) is the set of all functions f : N→ R for which there are
constants c > 0 and n0 ≥ 0 such that

0 ≤ c · g(n) ≤ f (n), for all n ≥ n0.

“Rate of change of f (n) is at least that of g(n)”

Θ-notation: Θ(g) is the set of all functions f : N→ R for which there are
constants c1, c2 > 0 and n0 ≥ 0 such that

0 ≤ c1 · g(n) ≤ f (n) ≤ c2 · g(n), for all n ≥ n0.

“Rate of change of f (n) and g(n) are about the same”
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Examples

I Let f (n) = 0.01 · n2 and g(n) = n. Then g = O(f ).

I Let f (n) = ln(n) and g(n) = n. Then g = Ω(f ).

I Let f (n) = 10n + ln(n) and g(n) = n. Then g = Θ(f ).

Sometimes O(. . .) appears within a formula, rather than simply
forming the right hand side of an equation. We make sense of
this by thinking of O(. . .) as standing for some anonymous (but
fixed) function from the set of the same name.
For example, h(n) = 2O(n) means ∃c > 0, n0 ∈ N such that

h(n) ≤ 2cn for all n > n0.
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Consequences

Suppose f (n) = O(g(n)) AND g(n) = O(f (n)). What can we say?

What if f (n) = O(g(n)) AND f (n) = Ω(g(n))?

Various consequences of the above conventions:

Θ(n)×Θ(n2) = Θ(n3),

Θ(n) +Θ(n2) = Θ(n2),

Θ(n) +Θ(n) = Θ(n).
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Reminder of InsertionSort

Algorithm Insertion-Sort(A)

1. for j ← 2 to length[A] do
2. key ← A[j ]

(now insert A[j ] into the sorted sequence A[1 . . . j − 1])
3. i ← j − 1
4. while i > 0 and A[i ] > key do
5. A[i + 1]← A[i ]
6. i ← i − 1
7. A[i + 1]← key

Array A is indexed from j = 1 to n = length[A] (different from Java).
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running-time of InsertionSort

I The for-loop on line 1 is iterated n − 1 times

I For each execution of the for, the while does ≤ j iterations;

I Each of the comparisons/assignments requires only O(1) basic steps;

I Therefore the total number of steps (=time) is at most

O(1)
n∑

j=1

j = O(1)
n(n + 1)

2
= O(n2).

I This is essentially tight - sorting the list n, n − 1, n − 2, . . . , 3, 2, 1
takes Ω(n2) time. Exercise.
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reminder of MergeSort

Input: A list A of natural numbers, p, r : 1 ≤ p ≤ r ≤ n.
Output: A sorted (increasing order) permutation of A[p . . . r ].

Algorithm Merge-Sort(A, p, r)

1. if p < r then
2. q ← bp+r

2 c
3. Merge-Sort(A, p, q)
4. Merge-Sort(A, q + 1, r)
5. Merge(A, p, q, r)
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reminder of Merge

(recall that A[p . . . q] and A[q + 1 . . . r ] both come (individually) sorted)

Algorithm Merge(A, p, q, r)

1. n← r − p + 1, n1 ← q − p + 1, n2 ← r − q
2. create an array B of length n
3. i ← p, j ← q + 1, k ← 1
4. while ((i ≤ q) ‖ (j ≤ r))
5. if ((j > r) ‖ ((i ≤ q) && (A[i ] ≤ A[j ])))
6. B[k ]← A[i ]
7. i ← i + 1
8. else
9. B[k ]← A[j ]

10. j ← j + 1
11. k ← k + 1
12. for i = 1 to n
13. A[(p − 1) + i ]← B[i ]
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Analysis of Merge

We have n = (r −p)+ 1, n1 = (q−p)+ 1, n2 = r −q (note n = n1+n2).
Merge carries out the following steps:
I Initialisation/maintenance work in steps 1., 2., 3., uses 3 + n + 3

operations (n for setting up B).
I Over all n iterations of while, line 4. will carry out between n

and n + n2 index comparisons
I Over all n iterations of while, line 5 will carry out between n and

n + n1 index comparisons and between n1 and n key comparisons.
I Over all n iterations of while, lines 6.-11. will carry out 2n index

updates and n copy operations (keys being copied into B)
I Lines 12.-13. take 2n steps.

Therefore the running-time of Merge satisfies the following:

8n + n1 + 6 ≤ TMerge(n : n1, n2) ≤ 9n + n1 + n2 + 6

We can express a neater bound as

8n ≤ TMerge(n : n1, n2) ≤ 13n ≤ 14n.
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Running-time of MergeSort

n = r − p + 1.
Running time TMS(n) satisfies:

TMS(n) =

{
Θ(1) if n = 1,

TMS(dn/2e) + TMS(bn/2c) +Θ(n) if n > 1.

The Θ(n) is from analysis of Merge on the previous slide. Analysis of
MergeSort gives bn+1

2 c and dn−1
2 e as the subarray sizes - these are

same as bn2c and dn2e.
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Solving recurrences

Methods for deriving/verifying solutions to recurrences:

Induction Guess the solution and verify by induction on n.

Lovely if your recurrence is “NICE” enough that you can
guess-and-verify. Rare.

Unfold and sum “Unfold” the recurrence by iterated substitution on the
“neat” values of n (often power of 2 case). At some point
a pattern emerges. The “solution” is obtained by
evaluating a sum that arises from the pattern.
Since the pattern is just for the “neat” n, the method is
rigorous only if we verify the solution (e.g., by a direct
induction proof).

Often the only way to do the PROOF neatly is to RELATE
to “neat” values of n . . . sometimes powers-of-2

“Master Theorem” Match the recurrence against a template. Read off
the solution from the Master Theorem.

Lectures 2 and 3 – slide 11



Upper bounds by first principles

Proof by “first principles”
When working from first principles, need to replace “extra work” terms
(Θ(n) for MergeSort) by terms with explicit constants.
So we check slide 10 again.

TMS(n) ≤

{
1 if n = 1,

TMS(dn/2e) + TMS(bn/2c) + 14n if n > 1.
(1)

Unfold-and-sum will give a “guess” for the upper bound:

TMS(n) ≤ 14n lg(n) + n.
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Upper bound for MergeSort (n a power-of-2)

T ′
MS(n) =

{
1 if n = 1,

T ′
MS(dn/2e) + T ′

MS(bn/2c) + 14n if n > 1.
(2)

claim (powers of 2): T ′
MS(n) = 14n lg(n) + n if n = 2k for some k ∈ N

Proof (for powers of 2):
Base case k = 0: direct from recurrence (14 · 20 · lg(20) + 20 = 14 · 1 · 0 + 1 = 1,
as required).
Induction Hypothesis (IH): Upper bound holds for n = 2k−1.
Induction Step: Now consider n = 2k and apply the recurrence:

T ′
MS(n) = T ′

MS(d2k−1e) + T ′
MS(b2k−1c) + 14n

= 2 · T ′
MS(2

k−1) + 14n

= 2 · 2k−1(14 lg(2k−1) + 1) + 14n (using (IH))

= n · 14 lg(n/2) + n + 14n

= 14n(lg(n/2) + 1) + n = 14n lg(n) + n (by lg rules),

AS REQUIRED.
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Upper bounds for general n

Three steps for turning a “proof for the neat case” into a “proof for all n”.

I STEP 1: Prove an exact expression for “neat” n for an equality version
T ′(·) of the recurrence.

Done for T ′
MS(n) (the proof for T ′

MS(n) on slide 14). “Neat” was
powers-of-2.

I STEP 2: Prove that the equality version of the recurrence is monotone
increasing; ie, that we have T ′(n) ≤ T ′(m) for all n,m with n < m (not
just for “neat” n,m).

This step is why we need to introduce an “equality version” (to prove
STEP 2 we will need to work with T ′(n) =, T ′(m) =).

I STEP 3: For “not-neat n”, choose a close-by “neat n̂” (for proving O(·)
bounds, n̂ should be larger; for Ω(·) bounds, n̂ should be smaller).

Then apply monotonicity (STEP 2) to show a relationship between T ′(n)
and T ′(n̂), and then substitute the exact expression (from STEP 1) to
T ′(n̂) to work out an upper bound for T ′(n).
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Upper bound for MergeSort (general n)

STEP 2: Prove that T ′
MS(n) is monotone increasing.

The proof is by Induction.

Claim:
If n ∈ N then T ′

MS(n) < T ′
MS(m) for all n < m.

Induction Hypothesis (IH): Claim holds for all n = 1, . . . , h (with any m > n).

Base Case (h = 1):
T ′
MS(1) = 1.

For m ≥ 2, T ′
MS(m) ≥ 14m ≥ 28, and 28 > T ′

MS(1), as needed.
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Upper bound for MergeSort (general n) cont’d.

STEP 2 cont’d.

Induction Step (n): Suppose true for all n ∈ N, n = 1, . . . , h. Consider n = h+1.
We know n ≥ 2, so the recurrence for n is

T ′
MS(n) = T ′

MS(dn/2e) + T ′
MS(bn/2c) + 14n. (3)

We are considering m > n (so definitely m ≥ 2), and the recurrence for m is

T ′
MS(m) = T ′

MS(dm/2e) + T ′
MS(bm/2c) + 14m.

n ≥ 2 implies b n2c = b
h+1
2 c < n (need strict <) so b n2c ∈ {1, . . . h}. So the (IH)

can be applied to b n2c with appropriate m-values. m > n implies bm2 c ≥ b
n
2c, so

I either b n2c = b
m
2 c, and hence T ′

MS(b n2c) = T ′
MS(bm2 c).

I or else bm2 c > b
n
2c and taking this together with b n2c ≤ h, the (IH) implies

that T ′
MS(b n2c) < T ′

MS(bm2 c).
Same argument goes through with d n2e. Hence the (IH) shows that each of the
first two terms for T ′

MS(n) are ≤ than the corresponding terms for T ′
MS(m).

But also 14n < 14m, so . . . ⇒ T ′
MS(n) < T ′

MS(m).
Hence by Induction, T ′

MS(n) < T ′
MS(m) for all n, for all m > n.
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Upper bound for MergeSort (general n) cont’d.

STEP 3: Choose a “power of 2” to relate to n.

I Want an upper bound, so need a power of 2 greater than n.

I So define n̂ = 2dlg(n)e (this will be “m”).

I We know n ≤ n̂ but n̂ < 2n.

I Monotonicity property from STEP 2 tells us T ′
MS(n) ≤ T ′

MS(n̂)

I Proof of Upper bound for powers of 2 tells us T ′
MS(n̂) ≤ 14n̂ lg(n̂) + n̂.

I By n̂ < 2n, we get

T ′
MS(n) ≤ T ′

MS(n̂) ≤ 14n̂(lg(n̂))+n̂ < 14(2n) lg(2n)+2n = 28n lg(n)+30n.

So for any n ∈ N we have T ′
MS(n) ≤ 28n lg(n) + 30n.

Hence T ′
MS(n) = O(n lg(n)), and (of course) TMS(n) = O(n lg(n)).
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Proving a lower bound

The “first principles” proof is essentially a direct proof of a sub-case of the
Master Theorem.

Slide 15 described the usual structure of proving O(·) bounds for general n ∈ N.
When wanting to instead give a “first principles” proof of Ω(·) for a recurrence
T (n), there are slight differences:

I (different) Consider an equality version T ′(·) of the recurrence T (·) such
that T (n) ≥ T ′(n) holds for all n ∈ N.

I (same) STEP 1: Prove an exact expression for T ′ for the “NEAT” case
(power-of-2 here, but would be power-of-d if bn/dc, dn/de was involved)

I (same) STEP 2: Prove T ′(n) is monotonically increasing with n for
general n.

I (different) STEP 3: Consider the closest power-of-d less than n, say n̂, for
a non-neat n ∈ N. Then exploit T (n) ≥ T ′(n) (by definition),
T ′(n) ≥ T ′(n̂) (from STEP 2), and then substitute in the exact expression
for T ′(n̂) (because n̂ is “NEAT”) and work from there.
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Reading and Working

Reading Assignment

Inf2B ADS Lecture Notes 2 and 8.

[CLRS] Sections 2.1, 2.2 and 2.3 (of 3rd or 2nd edition). Also Section 3.1
(omitting the bits on the little-o and little-ω notation at the end).

(all this material should be familiar from Inf2B and your math classes)
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