Algorithms and Data Structures:
Minimum Spanning Trees (Kruskal)

ADS: lecture 16 — slide 1 —

Minimum Spanning Tree Problem

Given: Undirected connected weighted graph (G, W)
Output: An MST of G

> We have already seen the PrRIM algorithm, which runs in
O((m+ n)lg(n)) time (standard Heap implementation) for graphs
with n vertices and m edges.

> In this lecture we will see KRUSKAL's algorithm, a different
approach to constructing a MST.

ADS: lecture 16 — slide 2 —

Kruskal's Algorithm

A forest is a graph whose connected components are trees.

Idea
Starting from a spanning forest with no edges, repeatedly
add edges of minimum weight (never creating a cycle) until
the forest becomes a tree.

Algorithm KRUSKAL(SG, W)

1. Fe0

2. for all e € E in the order of increasing weight do

3. if the endpoints of e are in different con-
nected components of (V, F) then

4, F— FuU{e}

5. return tree with edge set F

ADS: lecture 16 — slide 3 —

Example

ADS: lecture 16 — slide 4 —

Correctness of Kruskal's algorithm

1. Throughout the execution of KRUSKAL, (V, F) remains a spanning
forest.
Proof: (V, F) is a spanning subgraph because the vertex set is V. It
always remains a forest because edges with endpoints in different
connected components never induce a cycle.

2. Eventually, (V, F) will be connected and thus a spanning tree.
Proof: Suppose that after the complete execution of the loop,
(V, F) has a connected component (V4, F1) with Vi # V. Since §
is connected, there is an edge e € E with exactly one endpoint in
V1. This edge would have been added to F when being processed in
the loop, so this can never happen.

3. Throughout the execution of KRUSKAL, (V/, F) is contained in
some MST of §.
Proof: Similar to the proof of the corresponding statement for
Prim’s algorithm.

ADS: lecture 16 — slide 5 —

Data Structures for Disjoint Sets

» A disjoint set data structure maintains a collection 8 ={Ss,..., Sk}
of disjoint sets.

> The sets are dynamic, i.e., they may change over time.

» Each set S; is identified by some representative, which is some
member of that set.

Operations:

» MAKE-SET(x): Creates new set whose only member is x. The
representative is x.

» UNION(x, y): Unites set S, containing x and set S, containing y
into a new set S and removes S, and S, from the collection.

» FIND-SET(x): Returns representative of the set holding x.

ADS: lecture 16 — slide 6 —

Implementation of Kruskal's Algorithm

Algorithm KRUSKAL(SG, W)
1. F«0

2. for all vertices v of G do

3 MAKE-SET(Vv)

4. sort edges of G into non-decreasing order by weight

5. for all edges (u,v) of G in non-decreasing order by weight do
6. if FIND-SET(u) # FIND-SET(v) then

7 F— Fu{(uv)}

8 UNION(u, v)

9. return F

ADS: lecture 16 — slide 7 —

Analysis of KRUSKAL

Let n be the number of vertices and m the number of edges of the input
graph

» Line 1: ©(1)

» Loop in Lines 2-3: ©(n - Tyiake-ser(n))
Line 4: ©(mlg m)
Loop in Lines 5-8: @<2m- Trinp-Ser(n) + (n—1) - TUNION(n)).
Line 9: ©(1)

Overall:

v

v

v

@<nTMAKE-SET(n) + (n—1) Tynion(n) + m(lg m+ 2TFIND—SET(”))>

ADS: lecture 16 — slide 8 —

Analysis of KRUSKAL (overview)

T(n,m) = ®<’7TMAKE-SET(’7)+(’7*1) TUNION(”)+m(lg m+-2 TFIND—SET(”)))

We will see that with standard efficient implementations of disjoint sets
this amounts to
T(n,m) =0(mlg(m)).

» NOT better than the standard Heap implementation of PRIM for
typical implementations of disjoint sets.
> Always have to sort the weights when using KRUSKAL:
» O(mlg(m)) if the weights are arbitrarily large.

ADS: lecture 16 — slide 9 —

Linked List Implementation of Disjoint Sets

Each element represented by a pointer to a cell:

—

S /

Use a linked list for each set.
Representative of the set is at the head of the list.
Each cell has a pointer direct to the representative (head of the list).

ADS: lecture 16 — slide 10 —

Example

Linked list representation of

{a,f}, {b}, {gycye}, {d}:

o] |/

=
AT

(«11/]
v
The "repmse,&a!:(l/e_x" are b, g ad d respeckively

last[) poinkers are in red

ADS: lecture 16 — slide 11 —

Analysis of Linked List Implementation

MAKE-SET: constant (©(1)) time.
FIND-SET: constant (©(1)) time.
UNION: Naive implementation of

UNION(x, y)

appends x's list onto end of y's list.
Assumption: Representative y of each set has attribute
last[y]: a pointer to last cell of y's list.
Snag: have to update “representative pointer” in each cell
of x's list to point to the representative (head) of y's list.
Cost is:

O(length of x's list).

ADS: lecture 16 — slide 12 —

Notation for Analysis

Express running time in terms of:
7 : the number of MAKE-SET operations,

m : the number of MAKE-SET, UNION and FIND-SET
operations overall.

Note
1. After n — 1 UNION operations only one set remains.

2. m>n.

ADS: lecture 16 — slide 13 —

Weighted-Union Heuristic

Idea
Maintain a “length” field for each list. To execute

UNION(x, y)
append shorter list to longer one (breaking ties arbitrarily).

Theorem 1

Using the linked-list representation of disjoint sets and the weighted-union
heuristic, a sequence of m MAKE-SET, UNION & FIND-SET operations, n of
which are MAKE-SET operations, takes

O(m + filgA)
time.

“Proof”: Each element appears at most lgn times in the short list of a UNION.

ADS: lecture 16 — slide 14 —

Example (UNION(g, b)))

SE L

bs lisk s
SHORTER. Ehan
3’5‘ So bk Dons
the end of
3’574‘;&

o b's “representative "
pomker changes
b poik ok 9- cel(

= o ¢ “nak" pomber

- (L\anﬂej & P'"”.“E
ﬂ.' at b-call

. 5'5 "(uSL" po;n(‘er"
cL\a«aas to poamt
abk b-cdl

result of performing Uniow (g, b)

ADS: lecture 16 — slide 15 —

KRUSKAL with Linked lists (weighted union)
The run-time for KRUSKAL (for § = (V, E) with |V| = n,|E| = m) is
T (n,m) = ©(nTatare-ser (n)+(n—1) Toios (m)+m(1g m+2 Terwo s (n)))
In terms of the collection of “Disjoint-sets” operations, we have m =

2n+2m — 1 operations, n = n which are UNION. So

T(nym) = O(mlg(m)+ (2n+2m—1)+ nlg(n))
= O(mlg(m))

ADS: lecture 16 — slide 16 —

