
Algorithms and Data Structures:
Minimum Spanning Trees (Kruskal)
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Minimum Spanning Tree Problem

Given: Undirected connected weighted graph (G,W )
Output: An MST of G

I We have already seen the Prim algorithm, which runs in
O((m + n) lg(n)) time (standard Heap implementation) for graphs
with n vertices and m edges.

I In this lecture we will see Kruskal’s algorithm, a different
approach to constructing a MST.
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Kruskal’s Algorithm

A forest is a graph whose connected components are trees.

Idea
Starting from a spanning forest with no edges, repeatedly
add edges of minimum weight (never creating a cycle) until
the forest becomes a tree.

Algorithm Kruskal(G,W )

1. F ← ∅
2. for all e ∈ E in the order of increasing weight do
3. if the endpoints of e are in different con-

nected components of (V ,F ) then
4. F ← F ∪ {e}
5. return tree with edge set F
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Correctness of Kruskal’s algorithm

1. Throughout the execution of Kruskal, (V ,F ) remains a spanning
forest.
Proof: (V ,F ) is a spanning subgraph because the vertex set is V . It
always remains a forest because edges with endpoints in different
connected components never induce a cycle.

2. Eventually, (V ,F ) will be connected and thus a spanning tree.
Proof: Suppose that after the complete execution of the loop,
(V ,F ) has a connected component (V1,F1) with V1 6= V . Since G

is connected, there is an edge e ∈ E with exactly one endpoint in
V1. This edge would have been added to F when being processed in
the loop, so this can never happen.

3. Throughout the execution of Kruskal, (V ,F ) is contained in
some MST of G.
Proof: Similar to the proof of the corresponding statement for
Prim’s algorithm.
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Data Structures for Disjoint Sets

I A disjoint set data structure maintains a collection S = {S1, . . . ,Sk }
of disjoint sets.

I The sets are dynamic, i.e., they may change over time.

I Each set Si is identified by some representative, which is some
member of that set.

Operations:

I Make-Set(x): Creates new set whose only member is x . The
representative is x .

I Union(x , y): Unites set Sx containing x and set Sy containing y
into a new set S and removes Sx and Sy from the collection.

I Find-Set(x): Returns representative of the set holding x .
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Implementation of Kruskal’s Algorithm

Algorithm Kruskal(G,W )

1. F ← 0
2. for all vertices v of G do
3. Make-Set(v)
4. sort edges of G into non-decreasing order by weight
5. for all edges (u, v) of G in non-decreasing order by weight do
6. if Find-Set(u) 6= Find-Set(v) then
7. F ← F ∪ {(u, v)}
8. Union(u, v)
9. return F
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Analysis of Kruskal

Let n be the number of vertices and m the number of edges of the input
graph

I Line 1: Θ(1)

I Loop in Lines 2–3: Θ(n · TMake-Set(n))

I Line 4: Θ(m lgm)

I Loop in Lines 5–8: Θ
(

2m · TFind-Set(n) + (n − 1) · TUnion(n)
)

.

I Line 9: Θ(1)

Overall:

Θ
(
nTMake-Set(n) + (n − 1)TUnion(n) +m

(
lgm + 2TFind-Set(n)

))
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Analysis of Kruskal (overview)

T (n,m) = Θ
(
nTMake-Set(n)+(n−1)TUnion(n)+m

(
lgm+2TFind-Set(n)

))

We will see that with standard efficient implementations of disjoint sets
this amounts to

T (n,m) = Θ(m lg(m)).

I NOT better than the standard Heap implementation of Prim for
typical implementations of disjoint sets.

I Always have to sort the weights when using Kruskal:
I Θ(m lg(m)) if the weights are arbitrarily large.
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Linked List Implementation of Disjoint Sets

Each element represented by a pointer to a cell:Linked List Implementation of Disjoint Sets

Each element represented by a pointer to a cell:

x

Use a linked list for each set.

Representative of the set is at the head of the list.

Each cell has a pointer direct to the representative (head of the list).

A&DS Lecture 11 8 Mary Cryan

Use a linked list for each set.
Representative of the set is at the head of the list.
Each cell has a pointer direct to the representative (head of the list).
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Example

Linked list representation of

{a, f }, {b}, {g , c , e}, {d} :
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Analysis of Linked List Implementation

Make-Set: constant (Θ(1)) time.

Find-Set: constant (Θ(1)) time.

Union: Naive implementation of

Union(x , y)

appends x ’s list onto end of y ’s list.
Assumption: Representative y of each set has attribute
last[y]: a pointer to last cell of y ’s list.
Snag: have to update “representative pointer” in each cell
of x ’s list to point to the representative (head) of y ’s list.
Cost is:

Θ(length of x ’s list).
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Notation for Analysis

Express running time in terms of:

n̂ : the number of Make-Set operations,

m̂ : the number of Make-Set, Union and Find-Set
operations overall.

Note

1. After n̂ − 1 Union operations only one set remains.

2. m̂ ≥ n̂.

ADS: lecture 16 – slide 13 –

Weighted-Union Heuristic

Idea
Maintain a “length” field for each list. To execute

Union(x , y)

append shorter list to longer one (breaking ties arbitrarily).

Theorem 1
Using the linked-list representation of disjoint sets and the weighted-union
heuristic, a sequence of m̂ Make-Set, Union & Find-Set operations, n̂ of
which are Make-Set operations, takes

O(m̂ + n̂ lg n̂)

time.

“Proof”: Each element appears at most lg n̂ times in the short list of a Union.
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Example (Union(g , b)))
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Kruskal with Linked lists (weighted union)

The run-time for Kruskal (for G = (V ,E ) with |V | = n, |E | = m) is

T (n,m) = Θ
(
nTMake-Set(n)+(n−1)TUnion(n)+m

(
lgm+2TFind-Set(n)

))

In terms of the collection of “Disjoint-sets” operations, we have m̂ =
2n + 2m − 1 operations, n̂ = n which are Union. So

T (n,m) = Θ(m lg(m) + (2n + 2m − 1) + n lg(n))

= Θ(m lg(m))
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