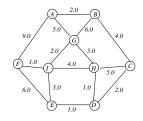
Weighted Graphs

${\sf Definition}\ 1$

A weighted (directed or undirected graph) is a pair (\mathcal{G}, W) consisting of a graph $\mathcal{G} = (V, E)$ and a weight function $W : E \to \mathbb{R}$.

In this lecture, we always assume that weights are non-negative, i.e., that $W(e) \ge 0$ for all $e \in E$.

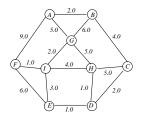
Example



ADS: lects 14 & 15 - slide 1 -

Representations of Weighted Graphs (as Matrices)

Algorithms and Data Structures: Minimum Spanning Trees I and II - Prim's Algorithm



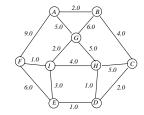
Adjacency Matrix

(0	2.0	0	0	0	9.0	5.0	0	0)
2.0	0	4.0	0	0	0	6.0	0	0
0	4.0	0	2.0	0	0	0	5.0	0
0	0	2.0	0	1.0	0	0	1.0	0
0	0	0	1.0	0	6.0	0	0	3.0
9.0	0	0	0	6.0	0	0	0	1.0
5.0	6.0	0	0	0	0	0	5.0	2.0
0	0	5.0	1.0	0	0	5.0	0	4.0
(0	0	0	0	3.0	1.0	2.0	4.0	o /

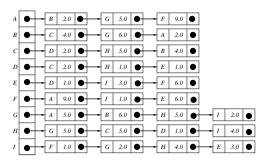
ADS: lects 14 & 15 – slide 3 –

ADS: lects 14 & 15 - slide 2 -

Representations of Weighted Graphs (Adjacency List)



Adjacency Lists



Connecting Sites

Problem

Given a collection of *sites* and *costs* of connecting them, find a minimum cost way of connecting all sites.

Our Graph Model

- Sites are vertices of a weighted graph, and (non-negative) weights of the edges represent the cost of connecting their endpoints.
- It is reasonable to assume that the graph is undirected and connected.
- The *cost* of a *subgraph* is the sum of the costs of its edges.
- The problem is to find a subgraph of minimum cost that connects all vertices.

Spanning Trees

 $\mathfrak{G} = (V, E)$ undirected connected graph and W weight function. $\mathfrak{H} = (V^H, E^H)$ with $V^H \subseteq V$ and $E^H \subseteq E$ subgraph of \mathfrak{G} .

• The *weight* of $\mathcal H$ is the number

$$W(\mathcal{H}) = \sum_{e \in E^H} W(e).$$

• \mathcal{H} is a spanning subgraph of \mathcal{G} if $V^H = V$.

Observation 2

A connected spanning subgraph of minimum weight is a tree.

ADS: lects 14 & 15 - slide 6 -

Prim's Algorithm

Idea

"Grow" an MST out of a single vertex by always adding "fringe" (neighbouring) edges of minimum weight.

A *fringe edge* for a subtree \mathcal{T} of a graph is an edge with exactly one endpoint in \mathcal{T} (so e = (u, v) with $u \in \mathcal{T}$ and $v \notin \mathcal{T}$).

Algorithm PRIM(G, W)

- 1. $\ensuremath{\mathfrak{T}} \leftarrow$ one vertex tree with arbitrary vertex of $\ensuremath{\mathfrak{G}}$
- 2. while there is a fringe edge do
- 3. add fringe edge of minimum weight to T
- 4. return \mathfrak{T}

Note that this is another use of the greedy strategy.

ADS: lects 14 & 15 - slide 5 -

Minimum Spanning Trees

 $(\mathcal{G}, \textit{W})$ undirected connected weighted graph

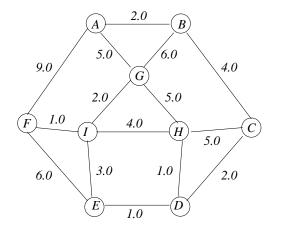
Definition 3

A minimum spanning tree (MST) of \mathcal{G} is a connected spanning subgraph \mathcal{T} of \mathcal{G} of minimum weight.

The minimum spanning tree problem:

Given: Undirected connected weighted graph (\mathfrak{G}, W) Output: An MST of \mathfrak{G}

Example



Correctness of Prim's algorithm

1. Throughout the execution of $\mathrm{PRIM},\,\mathcal{T}$ remains a tree.

Proof: To show this we need to show that throughout the execution of the algorithm, T is (i) always connected and (ii) never contains a cycle.

(i) Only edges with an endpoint in ${\mathfrak T}$ are added to ${\mathfrak T},$ so ${\mathfrak T}$ remains connected.

(ii) We never add any edge which has *both* endpoints in \mathcal{T} (we only allow a single endpoint), so the algorithm will never construct a cycle.

ADS: lects 14 & 15 - slide 9 -

Correctness of Prim's algorithm (cont'd)

2. All vertices will eventually be added to $\ensuremath{\mathbb{T}}.$

Proof: by *contradiction* ... (depends on our assumption that the graph \mathcal{G} was connected.)

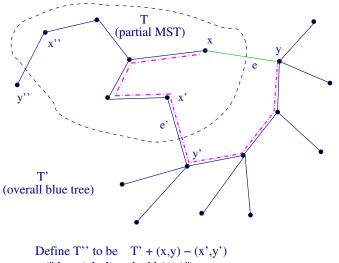
- Suppose w is a vertex that never gets added to T (as usual, in proof by contradiction, we suppose the opposite of what we want).
- Let v = v₀e₁v₁e₂...v_n = w be a path from some vertex v inside T to w (we know such a path must exist, because G is connected). Let v_i be the first vertex on this path that never got added to T.
- ► After v_{i-1} was added to T, e_i = (v_{i-1}, v_i) would have become a fringe edge. Also, it would have remained as a fringe edge unless v_i was added to T.
- So eventually v_i must have been added, because Prims algorithm only stops if there are no fringe edges. So our assumption was wrong. So we must have w in T for every vertex w.

ADS: lects 14 & 15 – slide 10 –

Correctness of Prim's algorithm (cont'd)

- Throughout the execution of PRIM, T is contained in some MST of G. Proof: (by Induction)
 - Suppose that T is contained in an MST T' and that fringe edge e = (x, y) is then added to T by PRIM. We shall prove that T + e is contained in some MST T" (not necessarily T').
 - ▶ case (i): If *e* is contained in T', our proof is easy, we simply let T'' = T'.
 - case (ii): Otherwise, if e ∉ ℑ', consider the unique path 𝔅 from x to y in 𝔅' (𝔅 is the pink path in the example overleaf).

Then \mathcal{P} contains *exactly one* fringe edge e' = (x', y') (same names in example).



("drop (x',y') and add (x,y)")

ADS: lects 14 & 15 - slide 13 -

Towards an Implementation

Improvement

- Instead of fringe edges, we think about adding *fringe vertices* to the tree
- A fringe vertex is a vertex y not in T that is an endpoint of a fringe edge.
- The weight of a fringe vertex y is

 $\min\{W(e) \mid e = (x, y) \text{ a fringe edge}\}\$

(ie, the best weight that could "bring y into the MST")

To be able to recover the tree, every time we "bring a fringe vertex y into the tree", we store its *parent* in the tree.

We will store the fringe vertices in a priority queue.

Correctness of Prim's algorithm (cont'd)

- 3. case (ii) cont'd
 - Then W(e) ≤ W(e').
 (otherwise e' would definitely have been added before e)
 - Let $\mathfrak{T}'' = \mathfrak{T}' + e e'$.
 - ▶ T" is a tree.

Why? Well, we drop e' = (x', y'), which splits the global MST T into two components: $\mathfrak{T}'_{x'}$ and the other subtree $\mathfrak{T}'_{y'} = \mathfrak{T}' \setminus \mathfrak{T}'_{x'}$. We know x and y are now in different components after this split, because we have *broken* the unique path \mathcal{P} between x and y in \mathfrak{T}' . Hence we can add e = (x, y) to *re-join* $\mathfrak{T}'_{x'}$ and $\mathfrak{T}'_{y'}$ without making a cycle.

 \mathfrak{T}'' has the same vertices as $\mathfrak{T}',$ thus it is a spanning tree.

• Moreover, $W(\mathcal{T}'') = W(\mathcal{T}') + W(e) - W(e')$, and because we know $W(e) \leq W(e')$, this gives $W(\mathcal{T}'') \leq W(\mathcal{T}')$, thus \mathcal{T}'' is also a MST.

ADS: lects 14 & 15 - slide 14 -

Priority Queues with Decreasing Key

A *Priority Queue* is an ADT for storing a collection of elements with an associated *key*. The following methods are supported:

- INSERT(e, k): Insert element *e* with key *k*.
- ► GET-MIN(): Return an element with minimum key; an error occurs if the priority queue is empty.
- EXTRACT-MIN(): Return and remove an element with minimum key; an error if the priority queue is empty.
- ► IS-EMPTY(): Return TRUE if the priority queue is empty and FALSE otherwise.

To update the keys during the execution of ${\rm PRIM},$ we need priority queues supporting the following additional method:

 DECREASE-KEY(e, k): Set the key of e to k and update the priority queue. It is assumed that k is smaller than of equal to the old key of e.

ADS: lects 14 & 15 - slide 15 -

Implementation of Prim's Algorithm

A 1	$\mathbf{D}_{\mathbf{D}}$				
Algo	rithm $PRIM(\mathcal{G}, W)$	-	Algorithm $\operatorname{ReLAX}(y,$		
1.	Initialise parent array π :	1.	$w \leftarrow W(y, z)$		
	$\pi[v] \leftarrow ext{NIL}$ for all vertices v	2.	if weight $[z] = c$		
2.	0,	3.	weight[z		
	weight[v] $\leftarrow \infty$ for all v	4.	$\pi[z] \leftarrow$		
3.	Initialise inMST array:	5.	Q.INSER		
Л	$inMST[v] \leftarrow false \text{ for all } v$	6.	else if $(w < we)$		
4.		7.	not (
	$v \leftarrow \text{arbitrary vertex of } \mathcal{G}$	8.	_		
	Q.INSERT(v, 0)		-		
7.	weight $[v] = 0;$	9.	$\pi[z] \leftarrow j$		
8.	while not(Q .Is-EMPTY()) do	10.	Q.Decf		
9.	$y \leftarrow Q.$ Extract-Min()				
10.	$inMST[y] \leftarrow true$				
11.	for all z adjacent to y do				
12.	RELAX(y,z)				
13.	return π				
]			

thm RELAX(y, z) $w \leftarrow W(y, z)$ if weight $[z] = \infty$ then weight $[z] \leftarrow w$ $\pi[z] \leftarrow y$ Q.INSERT(z, w)else if (w < weight[z] and not (inMST[z])) then weight $[z] \leftarrow w$ $\pi[z] \leftarrow y$ Q.DECREASE KEY(z, w)

ADS: lects 14 & 15 - slide 17 -

Analysis of **PRIM's algorithm** (RELAX)

- Decreasing the time needed to execute INSERT and DECREASE-KEY, the execution of RELAX requires time Θ(1).
- \blacktriangleright INSERT is executed once for every vertex, which requires time

$$\Theta(\mathbf{n} \cdot \mathbf{T}_{\text{INSERT}}(\mathbf{n}))$$

 DECREASE-KEY is executed at most once for every edge. This can require time of size

$$\Theta(\boldsymbol{m} \cdot \boldsymbol{T}_{\text{Decrease-Key}}(\boldsymbol{n}))$$

Overall, we get

$$T_{\text{PRIM}}(n,m) = \Theta\left(n\left(T_{\text{EXTRACT-MIN}}(n) + T_{\text{INSERT}}(n)\right) + mT_{\text{DECREASE-KEY}}(n)\right)$$

Analysis of $\operatorname{PRIM}\nolimits$'s algorithm

Let n be the number of vertices and m the number of edges of the input graph.

- ▶ Lines 1-7, 13 of Prim require $\Theta(n)$ time altogether.
- ▶ Q will extract each of the n vertices of G once. Thus the loop at lines 8-12 is iterated n times.

Thus, disregarding (for now) the time to execute the inner loop (lines 11-12) the execution of the loop requires time

 $\Theta(\mathbf{n} \cdot \mathbf{T}_{\text{EXTRACT-MIN}}(\mathbf{n}))$

The inner loop is executed at most once for each edge (and at least once for each edge). So its execution requires time

 $\Theta(m \cdot T_{\text{RELAX}}(n,m)).$

ADS: lects 14 & 15 - slide 18 -

Priority Queue Implementations

- Array: Elements simply stored in an array.
- Heap: Elements are stored in a binary heap (see [CLRS] Section 6.5)
- Fibonacci Heap: Sophisticated variant of the simple binary heap (see [CLRS] Chapters 19 and 20)

method		running time			
	Array	Heap	Fibonacci Heap		
INSERT	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(1)$		
Extract-Min	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(\lg n)$		
Decrease-Key	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(1)$ (amortised)		

Running-time of PRIM

Remarks

 $T_{\text{PRIM}}(n,m) = \Theta\left(n\left(T_{\text{EXTRACT-MIN}}(n) + T_{\text{INSERT}}(n)\right) + mT_{\text{DECREASE-Key}}(n)\right)$

Which Priority Queue implementation?

With array implementation of priority queue:

 $T_{\rm PRIM}(n,m) = \Theta(n^2).$

• With heap implementation of priority queue:

$$T_{\mathrm{PRIM}}(n,m) = \Theta((n+m)\lg(n)).$$

• With Fibonacci heap implementation of priority queue:

$$T_{\text{PRIM}}(n,m) = \Theta(n \lg(n) + m).$$

(*n* being the number of vertices and *m* the number of edges)

ADS: lects 14 & 15 - slide 21 -

Reading Assignment

[CLRS] Chapter 23.

Problems

- 1. Exercises 23.1-1, 23.1-2, 23.1-4 of [CLRS]
- 2. In line 3 of Prim's algorithm, there may be more than one fringe edge of minimum weight. Suppose we add all these minimum edges in one step. Does the algorithm still compute a MST?
- 3. Prove that our *implementation* of Prim's algorithm on slide 6 is correct i.e., that it computes an MST.

- The Fibonacci heap implementation is mainly of theoretical interest. It is not much used in practice because it is very complicated and the constants hidden in the Θ-notation are large.
- For dense graphs with m = Θ(n²), the array implementation is probably the best, because it is so simple.
- For sparser graphs with m ∈ O(^{n²}/_{lgn}), the heap implementation is a good alternative, since it is still quite simple, but more efficient for smaller m.

Instead of using binary heaps, the use of *d*-ary heaps for some $d \ge 1$ can speed up the algorithm (see [Sedgewick] for a discussion of practical implementations of Prims algorithm).

ADS: lects 14 & 15 - slide 22 -