
Algorithms and Data Structures:
Dynamic Programming; Matrix-chain multiplication

ADS: lects 12 and 13 – slide 1 –



Algorithmic Paradigms

Divide and Conquer
Idea: Divide problem instance into smaller sub-instances of the
same problem, solve these recursively, and then put solutions
together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms
Idea: Find solution by always making the choice that looks
optimal at the moment — don’t look ahead, never go back.

Examples: Prim’s algorithm, Kruskal’s algorithm.

Dynamic Programming
Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path
problem.

ADS: lects 12 and 13 – slide 2 –



Dynamic Programming - A Toy Example

Fibonacci Numbers

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2 (for n ≥ 2).

A recursive algorithm

Algorithm Rec-Fib(n)

1. if n = 0 then

2. return 0

3. else if n = 1 then

4. return 1

5. else

6. return Rec-Fib(n − 1)+Rec-Fib(n − 2)

Ridiculously slow: exponentially many repeated computations of Rec-Fib(j)
for small values of j .

ADS: lects 12 and 13 – slide 3 –



Fibonacci Example (cont’d)

Why is the recursive solution so slow?
Running time T (n) satisfies

T (n) = T (n − 1) + T (n − 2) +Θ(1) ≥ Fn ∼ (1.618)n.

Fn

Fn−1 Fn−2

Fn−3 Fn−4Fn−2 Fn−3

Fn−4 Fn−4 Fn−5 Fn−4 Fn−5Fn−3

ADS: lects 12 and 13 – slide 4 –



Lower bounds (in order of increasing quality and effort to prove).

1. Let T ′(n) = 2 ∗ T ′(n − 2) + Θ(1). Show by induction on n that
T(n) ≥ T ′(n). Recursion reaches zero and ends after n/2 steps. Thus
T ′(n) ≥ 2n/2 =

√
2
n
∼ (1.41)n.

2. We show Fn ≥ 1
2(3/2)n for n ≥ 8 by induction on n. Induction

step: T (n) ≥ T (n − 1) + T (n − 2) ≥ 1
2((3/2)n−1 + (3/2)n−2) =

1
2(3/2)n−2((3/2) + 1) > 1

2(3/2)n−2(3/2)2 = 1
2(3/2)n.

3. Let T ′(n) = T ′(n − 1) + T ′(n − 2) for n ≥ 2 and T ′(0) = 0 and
T ′(1) = 1. Then T (n) ≥ T ′(n). We have[

T ′(n)

T ′(n − 1)

]
=

[
1 1

1 0

][
T ′(n − 1)

T ′(n − 2)

]
=

[
1 1

1 0

]n−1 [
T ′(1)

T ′(0)

]

Basic linear algebra. Compute eigenvectors and a base transform to

diagonalize the matrix. Yields T ′(n) = Ω((1+
√
5

2 )n).

ADS: lects 12 and 13 – slide 5 –



Fibonacci Example (cont’d)

Dynamic Programming Approach

Algorithm Dyn-Fib(n)

1. F [0] = 0
2. F [1] = 1
3. for i ← 2 to n do
4. F [i ]← F [i − 1] + F [i − 2]
5. return F [n]

Build “from the bottom up”

Running Time
Θ(n)

Very fast in practice - just need an array (of linear size) to store the F(i)
values.
Further improvement to use Θ(1) space (but still Θ(n) time): Just use
variables to store the current and two previous Fi .

ADS: lects 12 and 13 – slide 6 –



Multiplying Sequences of Matrices

Recall
Multiplying a (p × q) matrix with a (q × r) matrix (in the
standard way) requires

pqr

multiplications.

We want to compute products of the form

A1 · A2 · · ·An.

How do we set the parentheses?

ADS: lects 12 and 13 – slide 7 –



Example

Compute

A · B · C · D

30× 1 1× 40 40× 10 10× 25

Multiplication order (A · B) · (C · D) requires

30 · 1 · 40 + 40 · 10 · 25 + 30 · 40 · 25 = 41, 200

multiplications.
Multiplication order A · ((B · C ) · D) requires

1 · 40 · 10 + 1 · 10 · 25 + 30 · 1 · 25 = 1, 400

multiplications.

ADS: lects 12 and 13 – slide 8 –



The Matrix Chain Multiplication Problem

Input:
Sequence of matrices A1, . . . ,An, where Ai is a
pi−1 × pi -matrix

Output:
Optimal number of multiplications needed to compute
A1 · A2 · · ·An, and an optimal parenthesisation to realise
this

Running time of algorithms will be measured in terms of n.

ADS: lects 12 and 13 – slide 9 –



Solution “Attempts”

Approach 1: Exhaustive search (CORRECT but SLOW).
Try all possible parenthesisations and compare them. Correct,
but extremely slow. Similar recurrence as Divide and Conquer
(see below), thus exponential. See also Textbook.

Approach 2: Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work
correctly — sometimes, it returns a parenthesisation that is not
optimal:

Example: Consider

A1 · A2 · A3

3× 100 100× 2 2× 2

Solution proposed by greedy algorithm: A1 · (A2 · A3) with
100 · 2 · 2 + 3 · 100 · 2 = 1000 multiplications.

Optimal solution: (A1 · A2) · A3 with 3 · 100 · 2 + 3 · 2 · 2 = 612
multiplications.

ADS: lects 12 and 13 – slide 10 –



Solution “Attempts” (cont’d)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is
done last.

Doesn’t work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).
Divide:

(A1 · · ·Ak) · (Ak+1 · · ·An)

For all k , recursively solve the two sub-problems and then take
best overall solution.

For 1 ≤ i ≤ j ≤ n, let

m[i , j ] = least number of multiplications needed to com-
pute Ai · · ·Aj

Then

m[i , j ] =

{
0 if i = j ,

mini≤k<j

(
m[i , k ] +m[k + 1, j ] + pi−1pkpj

)
if i < j .

ADS: lects 12 and 13 – slide 11 –



The Recursive Algorithm (SLOW)

Running time T (n) satisfies the recurrence

T (n) =
n−1∑
k=1

(
T (k) + T (n − k)

)
+Θ(n).

This implies
T (n) = Ω(2n).

We show T (n) ≥ c2n for some constant c by induction on n. Base case
easy (choose constant suitably).
Induction hypothesis T (n) ≥ c2n for some constant c .
Ind. step.: T (n) ≥

∑n−1
k=1

(
T (k) + T (n − k)

)
=
∑n−1

k=1

(
2T (k))

)
≥∑n−1

k=1

(
2c2k

)
= c
∑n−1

k=1

(
2k+1

)
≥ c2n.

ADS: lects 12 and 13 – slide 12 –



Dynamic Programming Solution

As before:

m[i , j ] = least number of multiplications needed to
compute Ai · · ·Aj

Moreover,

s[i , j ] = (the smallest) k such that i ≤ k < j and
m[i , j ] = m[i , k ] +m[k + 1, j ] + pi−1pkpj .

s[i , j ] can be used to reconstruct the optimal parenthesisation.

Idea
Compute the m[i , j ] and s[i , j ] in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

ADS: lects 12 and 13 – slide 13 –



Implementation
Algorithm Matrix-Chain-Order(p)

1. n← p.length− 1

2. for i ← 1 to n do

3. m[i , i ]← 0

4. for `← 2 to n do

5. for i ← 1 to n − `+ 1 do

6. j ← i + `− 1

7. m[i , j ]←∞
8. for k ← i to j − 1 do

9. q ← m[i , k ] +m[k + 1, j ] + pi−1pkpj

10. if q < m[i , j ] then

11. m[i , j ]← q

12. s[i , j ]← k

13. return s

Running Time: Θ(n3)
ADS: lects 12 and 13 – slide 14 –



Example

A1 · A2 · A3 · A4

30× 1 1× 40 40× 10 10× 25

Solution for m and s

m 1 2 3 4

1 0 1200 700 1400

2 0 400 650

3 0 10 000

4 0

s 1 2 3 4

1 1 1 1

2 2 3

3 3

4

Optimal Parenthesisation

A1 · ((A2 · A3) · A4))

ADS: lects 12 and 13 – slide 15 –



Multiplying the Matrices

Algorithm Matrix-Chain-Multiply(A, p)

1. n← A.length
2. s ←Matrix-Chain-Order(p)
3. return Rec-Mult(A, s, 1, n)

Algorithm Rec-Mult(A, s, i , j)

1. if i < j then
2. C ←Rec-Mult(A, s, i , s[i , j ])
3. D ←Rec-Mult(A, s, s[i , j ] + 1, j)
4. return (C ) · (D)
5. else
6. return Ai

ADS: lects 12 and 13 – slide 16 –



Problems

See Wikipedia:
http://en.wikipedia.org/wiki/Dynamic programming

[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is
a dynamic programming algorithm.

2. Exercise 15.2-1 of [CLRS].

ADS: lects 12 and 13 – slide 17 –


