Algorithms and Data Structures:
Dynamic Programming; Matrix-chain multiplication

ADS: lects 12 and 13 — slide 1 —

Algorithmic Paradigms

Divide and Conquer
Idea: Divide problem instance into smaller sub-instances of the

same problem, solve these recursively, and then put solutions
together to a solution of the given instance.
Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms
Idea: Find solution by always making the choice that looks

optimal at the moment — don't look ahead, never go back.

Examples: Prim's algorithm, Kruskal's algorithm.

Dynamic Programming
Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path
problem.

ADS: lects 12 and 13 — slide 2 —

Dynamic Programming - A Toy Example

Fibonacci Numbers

FO = 0)
R =1
Fn = Fooa+Fro (for n > 2).

A recursive algorithm

Algorithm REcC-FIB(n)
1. if n=0 then

2 return 0
3. elseif n=1 then
4 return 1
5. else
6. return REC-F1B(n — 1)+REC-FI1B(n — 2)
Ridiculously slow: exponentially many repeated computations of REC-FIB(j)

for small values of .
ADS: lects 12 and 13 - slide 3 —

Fibonacci Example (cont’d)

Why is the recursive solution so slow?
Running time T (n) satisfies

T(n)=T(n—1)+T(n—-2)+0(1) > F, ~ (1.618)".

ADS: lects 12 and 13 - slide 4 —

Lower bounds (in order of increasing quality and effort to prove).

1. Let T/(n) = 2% T'(n—2) + ©(1). Show by induction on n that
T(n) > T'(n). Recursion reaches zero and ends after n/2 steps. Thus
T'(n) > 272 = /2" ~ (1.41)".

2. We show F, > %(3/2)” for n > 8 by induction on n. Induction
step: T(n) > T(n—1)+ T(n—2) > 3((3/2)" '+ (3/2)"?) =
3(3/2)"2((3/2) + 1) > 3(3/2)"2(3/2)* = 3(3/2)".

3. Let T'(n)=T'(n—1)+ T/'(n—2) for n > 2 and T/(0) = 0 and
T'(1)=1. Then T(n) > T'(n). We have

n—1
T'(n) | |1 1| |T'(h—=1)] |1 1 T'(1)
T'n—1)| |1 0| |T'(n—2)] |1 0 T'(0)
Basic linear algebra. Compute eigenvectors and a base transform to
diagonalize the matrix. Yields T'(n) = Q((H—g/g)”).

|| ol

ADS: lects 12 and 13 — slide 5 —

Fibonacci Example (cont'd)
Dynamic Programming Approach

Algorithm DyN-F1B(n)

1. F[0O]=0

2. Fli]=1

3. fori«+ 2tondo

4, Flil« Fli — 1]+ F[i — 2]

5. return F[n]
Build “from the bottom up”

Running Time
O(n)

Very fast in practice - just need an array (of linear size) to store the F (/)
values.
Further improvement to use ©(1) space (but still ®(n) time): Just use
variables to store the current and two previous F;.

ADS: lects 12 and 13 — slide 6 —

Multiplying Sequences of Matrices

Recall
Multiplying a (p x g) matrix with a (g x r) matrix (in the
standard way) requires
pqr

multiplications.

We want to compute products of the form
Ap-As--- A,

How do we set the parentheses?

ADS: lects 12 and 13 — slide 7 —

Example

Compute
A . B . C . D
30x1 1 x40 40 x 10 10 x 25

Multiplication order (A- B) - (C - D) requires
30-1-40+40-10-25+30-40-25=41,200

multiplications.
Multiplication order A- ((B - C) - D) requires

1-40-10+1-10-25+30-1-25=1,400

multiplications.

ADS: lects 12 and 13 — slide 8 —

The Matrix Chain Multiplication Problem

[nput:
Sequence of matrices Ag,...,A,, where A; is a
pi—1 X pj-matrix

Output:
Optimal number of multiplications needed to compute
A1 -Ay--- A, and an optimal parenthesisation to realise
this

Running time of algorithms will be measured in terms of n.

ADS: lects 12 and 13 — slide 9 —

Approach 1:

Approach 2:

Solution “Attempts”

Exhaustive search (CORRECT but SLOW).

Try all possible parenthesisations and compare them. Correct,
but extremely slow. Similar recurrence as Divide and Conquer
(see below), thus exponential. See also Textbook.

Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work
correctly — sometimes, it returns a parenthesisation that is not
optimal:
Example: Consider
Ay : Ay - Az

3 x 100 100 x 2 2x 2
Solution proposed by greedy algorithm: A - (A, - A3) with
100-2-2+3-100 -2 = 1000 multiplications.

Optimal solution: (A; - Ay) - A3 with 3-100-2+3-2-2 =612
multiplications.

ADS: lects 12 and 13 — slide 10 —

Approach 3:

Approach 4:

Solution “Attempts” (cont'd)

Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is
done last.
Doesn't work correctly either (Exercise!).
Recursive (Divide and Conquer) - (SLOW - see over).
Divide:
(A A - (Acia - Ar)
For all k, recursively solve the two sub-problems and then take
best overall solution.
For1 <i<j<n,let
mli,jl = least number of multiplications needed to com-
pute A; - -- Aj
Then
o 0 if i =j,
mli,jl=14 " | . . e
minj<y<j (mli, kI + mlk + 1,1+ pi1pep;) if i <.

ADS: lects 12 and 13 — slide 11 —

The Recursive Algorithm (SLOW)

Running time T (n) satisfies the recurrence

1
T(n) = (T(k) +T(n— k)) + 0(n).
1

3
|

x
Il

This implies
T(n)=Q(2").

We show T (n) > c2" for some constant ¢ by induction on n. Base case

easy (choose constant suitably).

Induction hypothesis T(n) > ¢2" for some constant c.

Ind. step.: T(n) > Y71 (T(k)+ T(n—k) = Y71 (2T(k)) >
P (2c29) = ey ph (2K > o,

ADS: lects 12 and 13 — slide 12 —

Dynamic Programming Solution
As before:

mli,j] = least number of multiplications needed to
compute A; -+ A;

Moreover,

s[i, jl = (the smallest) k such that i < k < j and
mli, jl = mli, k] + mlk 4+ 1,/] + Pi—1PkP;-
s[i,] can be used to reconstruct the optimal parenthesisation.

Idea
Compute the m[i,] and s[i, /] in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

ADS: lects 12 and 13 — slide 13 —

Implementation

Algorithm MATRIX-CHAIN-ORDER(p)

=
No= o

13.

© 00N ok =

n « p.length—1
for i < 1 to ndo
mli,i] <0
for { — 2 to ndo
fori—1ton—{+1do
Jje—i+t—-1
mli,j] < oo
for k«— itoj—1do
q — mli, k] + mlk + 1,/] + Pi—1PkPj
if g < mli,j] then
mli,jl «q
sliyjl « k
return s

Running Time: 0(n%)

ADS: lects 12 and 13 - slide 14 —

Example

AL - A A3 . Ay
30x1 1 x40 40 x 10 10 x 25

Solution for m and s

m|1l 2 3 4 s|1 2 3 4
110 1200 700 1400 1 111
2 0 400 650 2 2 3
3 0 10000 3 3
4 0 4

Optimal Parenthesisation

A1 - ((A2- A3) - Ag))

ADS: lects 12 and 13 — slide 15 —

Multiplying the Matrices

Algorithm MATRIX-CHAIN-MULTIPLY (A, p)

1. n« A.length
2. s «—MATRIX-CHAIN-ORDER(p)
3. return REC-MULT(A,s, 1, n)

Algorithm REC-MULT(A,s, i, j)
1. if i <j then
C «REC-MULT(A,s, i, sli, 1)
D «—REC-MULT(A, s, sli, jl + 1, /)
return (C) - (D)
else

I o

return A;

ADS: lects 12 and 13 — slide 16 —

Problems

See Wikipedia:
http://en.wikipedia.org/wiki/Dynamic_programming
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is
a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].

ADS: lects 12 and 13 — slide 17 —

