Algorithms and Data Structures: Dynamic Programming; Matrix-chain multiplication

Algorithmic Paradigms

Divide and Conquer

Idea: Divide problem instance into smaller sub-instances of the same problem, solve these recursively, and then put solutions together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen's algorithm, FFT.

Greedy Algorithms

Idea: Find solution by always making the choice that looks optimal at the moment — don't look ahead, never go back.

Examples: Prim's algorithm, Kruskal's algorithm.

Dynamic Programming

Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path problem.

Dynamic Programming - A Toy Example

Fibonacci Numbers

$$F_0 = 0,$$

 $F_1 = 1,$
 $F_n = F_{n-1} + F_{n-2}$ (for $n \ge 2$).

A recursive algorithm

Algorithm Rec-Fib(n)

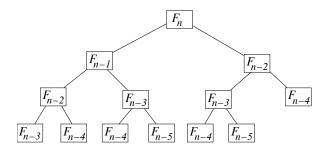
- 1. if n = 0 then
 - return 0
 - 3. else if n = 1 then
 - 4. return 1
 - 5. else
 - 6. **return** REC-FIB(n-1)+REC-FIB(n-2)

Ridiculously slow: **exponentially many** repeated computations of $\operatorname{Rec-Fib}(j)$ for small values of j.

Fibonacci Example (cont'd)

Why is the recursive solution so slow? Running time T(n) satisfies

$$T(n) = T(n-1) + T(n-2) + \Theta(1) \ge F_n \sim (1.618)^n$$
.



Lower bounds (in order of increasing quality and effort to prove).

- 1. Let $T'(n)=2*T'(n-2)+\Theta(1)$. Show by induction on n that $\mathsf{T}(\mathsf{n})\geq T'(n)$. Recursion reaches zero and ends after n/2 steps. Thus $T'(n)\geq 2^{n/2}=\sqrt{2}^n\sim (1.41)^n$.
- 2. We show $F_n \geq \frac{1}{2}(3/2)^n$ for $n \geq 8$ by induction on n. Induction step: $T(n) \geq T(n-1) + T(n-2) \geq \frac{1}{2}((3/2)^{n-1} + (3/2)^{n-2}) = \frac{1}{2}(3/2)^{n-2}((3/2)+1) > \frac{1}{2}(3/2)^{n-2}(3/2)^2 = \frac{1}{2}(3/2)^n$.
- 3. Let T'(n)=T'(n-1)+T'(n-2) for $n\geq 2$ and T'(0)=0 and T'(1)=1. Then $T(n)\geq T'(n)$. We have

$$\begin{bmatrix} T'(n) \\ T'(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} T'(n-1) \\ T'(n-2) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} T'(1) \\ T'(0) \end{bmatrix}$$

Basic linear algebra. Compute eigenvectors and a base transform to diagonalize the matrix. Yields $T'(n) = \Omega((\frac{1+\sqrt{5}}{2})^n)$.

Fibonacci Example (cont'd)

Dynamic Programming Approach

Algorithm DYN-FIB(n)

- 1. F[0] = 0
- 2. F[1] = 1
- 3. for $i \leftarrow 2$ to n do
- 4. $F[i] \leftarrow F[i-1] + F[i-2]$
- 5. return F[n]

Build "from the bottom up"

Running Time

$$\Theta(n)$$

Very fast in practice - just need an array (of linear size) to store the $\mathrm{F}(i)$ values.

Further improvement to use $\Theta(1)$ space (but still $\Theta(n)$ time): Just use variables to store the current and two previous F_i .

ADS: lects 12 and 13 - slide 6 -

Multiplying Sequences of Matrices

Recall

Multiplying a $(p \times q)$ matrix with a $(q \times r)$ matrix (in the standard way) requires

pqr

multiplications.

We want to compute products of the form

$$A_1 \cdot A_2 \cdot \cdot \cdot A_n$$
.

How do we set the parentheses?

Example

Compute

$$A \cdot B \cdot C \cdot D$$

 $30 \times 1 \quad 1 \times 40 \quad 40 \times 10 \quad 10 \times 25$

Multiplication order $(A \cdot B) \cdot (C \cdot D)$ requires

$$30 \cdot 1 \cdot 40 + 40 \cdot 10 \cdot 25 + 30 \cdot 40 \cdot 25 = 41,200$$

multiplications.

Multiplication order $A \cdot ((B \cdot C) \cdot D)$ requires

$$1 \cdot 40 \cdot 10 + 1 \cdot 10 \cdot 25 + 30 \cdot 1 \cdot 25 = 1,400$$

multiplications.

The Matrix Chain Multiplication Problem

Input:

Sequence of matrices A_1, \ldots, A_n , where A_i is a $p_{i-1} \times p_i$ -matrix

Output:

Optimal number of multiplications needed to compute $A_1 \cdot A_2 \cdot \cdot \cdot A_n$, and an optimal parenthesisation to realise this

Running time of algorithms will be measured in terms of n.

Solution "Attempts"

- Approach 1: Exhaustive search (CORRECT but SLOW).

 Try all possible parenthesisations and compare them. Correct, but extremely slow. Similar recurrence as Divide and Conquer (see below), thus exponential. See also Textbook.
- Approach 2: Greedy algorithm (INCORRECT).

 Always do the cheapest multiplication first. Does not work correctly sometimes, it returns a parenthesisation that is not optimal:

Example: Consider

$$A_1$$
 · A_2 · A_3 3×100 · 100×2 · 2×2

Solution proposed by greedy algorithm: $A_1 \cdot (A_2 \cdot A_3)$ with $100 \cdot 2 \cdot 2 + 3 \cdot 100 \cdot 2 = 1000$ multiplications.

Optimal solution: $(A_1 \cdot A_2) \cdot A_3$ with $3 \cdot 100 \cdot 2 + 3 \cdot 2 \cdot 2 = 612$ multiplications.

ADS: lects 12 and 13 - slide 10 -

Solution "Attempts" (cont'd)

Approach 3: Alternative greedy algorithm (INCORRECT).

Set outermost parentheses such that cheapest multiplication is done last.

Doesn't work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).

Divide:

$$(A_1 \cdots A_k) \cdot (A_{k+1} \cdots A_n)$$

For all k, recursively solve the two sub-problems and then take best overall solution.

For 1 < i < j < n, let

 $m[i,j] = \text{least number of multiplications needed to compute } A_i \cdots A_i$

Then

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \left(m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \right) & \text{if } i < j. \end{cases}$$

The Recursive Algorithm (SLOW)

Running time T(n) satisfies the recurrence

$$T(n) = \sum_{k=1}^{n-1} \left(T(k) + T(n-k) \right) + \Theta(n).$$

This implies

$$T(n) = \Omega(2^n)$$
.

We show $T(n) \ge c2^n$ for some constant c by induction on n. Base case easy (choose constant suitably).

Induction hypothesis $T(n) \ge c2^n$ for some constant c.

Ind. step.:
$$T(n) \ge \sum_{k=1}^{n-1} (T(k) + T(n-k)) = \sum_{k=1}^{n-1} (2T(k)) \ge \sum_{k=1}^{n-1} (2c2^k) = c \sum_{k=1}^{n-1} (2^{k+1}) \ge c2^n$$
.

Dynamic Programming Solution

As before:

$$m[i,j] = \text{least number of multiplications needed to}$$

compute $A_i \cdots A_j$

Moreover.

$$s[i,j] =$$
(the smallest) k such that $i \le k < j$ and $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j.$

s[i,j] can be used to reconstruct the optimal parenthesisation.

Idea

Compute the m[i,j] and s[i,j] in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

Implementation

Algorithm Matrix-Chain-Order(p)

```
1. n \leftarrow p.length - 1
 2. for i \leftarrow 1 to n do
 3.
               m[i,i] \leftarrow 0
 4. for \ell \leftarrow 2 to n do
                for i \leftarrow 1 to n - \ell + 1 do
 5.
 6.
                         i \leftarrow i + \ell - 1
 7.
                          m[i,j] \leftarrow \infty
                          for k \leftarrow i to i-1 do
 8.
                                   a \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
 9.
                                             if q < m[i,j] then
10.
11.
                                                      m[i,j] \leftarrow q
12.
                                                      s[i,j] \leftarrow k
13.
       return s
```

Running Time: $\Theta(n^3)$

Example

$$A_1$$
 · A_2 · A_3 · A_4
 30×1 1×40 40×10 10×25

Solution for m and s

m	1	2	3	4	s	1	2	3	4
1	0	1200	700	1400	 1		1	1	1
2		0	400	650	2			2	3
3			0	10 000	3				3
4				0	4				

Optimal Parenthesisation

$$A_1 \cdot ((A_2 \cdot A_3) \cdot A_4))$$

Multiplying the Matrices

Algorithm Matrix-Chain-Multiply(A, p)

- 1. $n \leftarrow A.length$
- 2. $s \leftarrow \text{Matrix-Chain-Order}(p)$
- 3. **return** Rec-Mult(A, s, 1, n)

Algorithm Rec-Mult(A, s, i, j)

- 1. if i < j then
- 2. $C \leftarrow \text{Rec-Mult}(A, s, i, s[i, j])$
- 3. $D \leftarrow \text{Rec-Mult}(A, s, s[i, j] + 1, j)$
- 4. return $(C) \cdot (D)$
- 5. else
- 6. return A_i

Problems

See Wikipedia:

http://en.wikipedia.org/wiki/Dynamic_programming [CLRS] Sections 15.2-15.3

- 1. Review the Edit-Distance Algorithm and try to understand why it is a dynamic programming algorithm.
- 2. Exercise 15.2-1 of [CLRS].