Algorithms and Data Structures:
Dynamic Programming; Matrix-chain multiplication

ADS: lects 12 and 13 — slide 1 —

Dynamic Programming - A Toy Example

Fibonacci Numbers

Fb = 0,
R = 1,
F, = F,_1+F,> (for n > 2).
A recursive algorithm
Algorithm REC-F1B(n)
1. if n=0 then
2 return 0
3. elseif n=1 then
4. return 1
5. else
6. return REC-FIB(n — 1)+ REC-FIB(n — 2)

Ridiculously slow: exponentially many repeated computations of REC-F1B(j)
for small values of ;.
ADS: lects 12 and 13 — slide 3 -

Algorithmic Paradigms

Divide and Conquer
Idea: Divide problem instance into smaller sub-instances of the
same problem, solve these recursively, and then put solutions
together to a solution of the given instance.

Examples: Mergesort, Quicksort, Strassen’s algorithm, FFT.

Greedy Algorithms
Idea: Find solution by always making the choice that looks
optimal at the moment — don't look ahead, never go back.

Examples: Prim’'s algorithm, Kruskal's algorithm.

Dynamic Programming
Idea: Turn recursion upside down.

Example: Floyd-Warshall algorithm for the all pairs shortest path
problem.

ADS: lects 12 and 13 — slide 2 —

Fibonacci Example (cont'd)

Why is the recursive solution so slow?
Running time T (n) satisfies

T(n)=Th—-1)+T(n—2)+0O(1) > F, ~ (1.618)".

ADS: lects 12 and 13 — slide 4 —

Lower bounds (in order of increasing quality and effort to prove).

1. Let T'(n) = 2% T/(n—2) + ©O(1). Show by induction on n that
T(n) > T'(n). Recursion reaches zero and ends after n/2 steps. Thus
T'(n) > 272 = /2" ~ (1.41)".

2. We show F, > %(3/2)” for n > 8 by induction on n. Induction
step: T(n) > T(n—1)+T(n—2) > %((3/2)"_1 +(3/2)"2) =
2(3/2)"72((3/2) +1) > 3(3/2)"2(3/2)* = 3(3/2)".

3. Let T'(n) =T'(n—1)+ T'(n—2) forn > 2 and T'(0) = 0 and
T'(1) =1. Then T(n) > T'(n). We have

—1
') | 1 1] [Te=0] [1 1" [T
T'(n—1)| |1 ol |T'(n=2)| |1 0 T'(0)
Basic linear algebra. Compute eigenvectors and a base transform to
diagonalize the matrix. Yields T'(n) = Q((%ﬁ)").

ADS: lects 12 and 13 — slide 5 —

Multiplying Sequences of Matrices

Recall
Multiplying a (p x g) matrix with a (g x r) matrix (in the
standard way) requires
pqr

multiplications.

We want to compute products of the form
Al -As--- A,

How do we set the parentheses?

ADS: lects 12 and 13 — slide 7 —

Fibonacci Example (cont'd)

Dynamic Programming Approach

Algorithm DyN-F1B(n)

1. F[0O]=0

2. F[1]=1

3. fori—2tondo

4. Flil « Fli — 1]+ F[i — 2]

5. return F[n]
Build “from the bottom up”

Running Time
O(n)

Very fast in practice - just need an array (of linear size) to store the F (/)
values.
Further improvement to use ©(1) space (but still ®(n) time): Just use
variables to store the current and two previous F;.

ADS: lects 12 and 13 — slide 6 —

Example

Compute
A . B . C . D
30x1 1 x40 40 x 10 10 x 25

Multiplication order (A- B) - (C - D) requires
30-1-40+40-10-25+4+30-40-25 =41,200

multiplications.
Multiplication order A- ((B - C) - D) requires

1-40-10+1-10-25+30-1-25=1,400

multiplications.

ADS: lects 12 and 13 — slide 8 —

The Matrix Chain Multiplication Problem

Input:
Sequence of matrices A1,...,A,, where A; is a
pi—1 X pi-matrix

Output:
Optimal number of multiplications needed to compute
A1 -As---A,, and an optimal parenthesisation to realise
this

Running time of algorithms will be measured in terms of n.

ADS: lects 12 and 13 — slide 9 —
Solution “Attempts” (cont'd)

Approach 3: Alternative greedy algorithm (INCORRECT).
Set outermost parentheses such that cheapest multiplication is
done last.

Doesn't work correctly either (Exercise!).

Approach 4: Recursive (Divide and Conquer) - (SLOW - see over).
Divide:
(A A) - (Aksr - An)

For all k, recursively solve the two sub-problems and then take
best overall solution.

For1 <i<j<n,let

mli, j1 = least number of multiplications needed to com-
pute A;--- Aj

Then

il 0 if i =,
mii =
P mingc e (mliy K+ mik+ 1, + proapep;) i i <.

ADS: lects 12 and 13 — slide 11 —

Solution “Attempts”

Approach 1: Exhaustive search (CORRECT but SLOW).
Try all possible parenthesisations and compare them. Correct,
but extremely slow. Similar recurrence as Divide and Conquer
(see below), thus exponential. See also Textbook.

Approach 2: Greedy algorithm (INCORRECT).
Always do the cheapest multiplication first. Does not work
correctly — sometimes, it returns a parenthesisation that is not
optimal:

Example: Consider

AL - A - A
3%x100 100x2 2x?2

Solution proposed by greedy algorithm: A; - (As - A3) with
100-2-2+3-100 -2 = 1000 multiplications.

Optimal solution: (A; - Ay) - A3 with3-100-2+3-2-2 =612
multiplications.

ADS: lects 12 and 13 — slide 10 -

The Recursive Algorithm (SLOW)

Running time T (n) satisfies the recurrence

1
(T(k) + T(n— k)) +O(n).

3
|

This implies

We show T (n) > ¢2" for some constant ¢ by induction on n. Base case

easy (choose constant suitably).

Induction hypothesis T(n) > ¢2" for some constant c.

Ind. step.. T(n) > Y71 (T(k)+ T(n—k)) =
11 (2c2%) = ¢ Y707 (K1) > 2.

11 (2T(k) >

ADS: lects 12 and 13 — slide 12 -

Dynamic Programming Solution
As before:

mli, j] = least number of multiplications needed to
compute A;---A;

Moreover,

s[i, jl = (the smallest) k such that /i < k < j and
mli,j] = mli, k] + mlk + 1,1 + pi—1pxp;-

s[i, j] can be used to reconstruct the optimal parenthesisation.

Idea
Compute the mli,] and s[i,] in a bottom-up fashion.

TURN RECURSION UPSIDE DOWN :-)

ADS: lects 12 and 13 — slide 13 —
Example

A - A - A3 ' Ag
30x1 1 x40 40 x 10 10 x 25

Solution for m and s

m|1 2 3 4 s|1 2 3 4
1|0 1200 700 1400 1 1 11
2 0 400 650 2 2 3
3 0 10000 3 3
4 0 4

Optimal Parenthesisation

A1 ((A2- A3) - Ag))

ADS: lects 12 and 13 — slide 15 —

1.
2.
3.
4.

© 00N oo

10.
11.
12,
13.

n « p.length—1

for i «— 1 to ndo

mli,i] <0

for { < 2 to n do
fori—1ton—{+1do

jeitt—1

Implementation
Algorithm MATRIX-CHAIN-ORDER(p)

for k — itoj—1do
q < m[’) k] + m[k + 1)./] + Pi—1PkPj

return s

Running Time: ©(n%)

if g < mli,j] then
mli,jl < q
sliy jl « k

ADS: lects 12 and 13 — slide 14 —

Multiplying the Matrices

Algorithm MATRIX-CHAIN-MULTIPLY (A, p)

1.
2.
3.

n « A.length
s < MATRIX-CHAIN-ORDER(p)
return REC-MULT(A,s, 1, n)

Algorithm REC-MULT(A, s, 1, /)
if i <j then
C —REC-MULT(A, s, i, s[i, j1)

D «REc-MuLT(A, s, sli,j]1 + 1)

1.

o0 AW

else

return (C) -

return A;

(D)

ADS: lects 12 and 13 — slide 16 —

Problems

See Wikipedia:
http://en.wikipedia.org/wiki/Dynamic_programming
[CLRS] Sections 15.2-15.3

1. Review the Edit-Distance Algorithm and try to understand why it is
a dynamic programming algorithm.
2. Exercise 15.2-1 of [CLRS].

ADS: lects 12 and 13 — slide 17 —

