Algorithms and Data Structures: Network Flows

Flow Networks

Definition 1

A flow network consists of

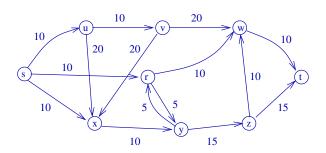
- ▶ A directed graph $\mathfrak{G} = (V, E)$.
- ▶ A capacity function $c: V \times V \to \mathbb{R}$ such that $c(u, v) \geq 0$ if $(u, v) \in E$ and c(u, v) = 0 for all $(u, v) \notin E$.
- ▶ Two distinguished vertices $s, t \in V$ called the *source* and the *sink*, respectively.

We read (u, v) to mean $u \rightarrow v$.

Assumption

Each vertex $v \in V$ is on some *directed path* from s to t. This implies that \mathcal{G} is connected (but not necessarily strongly connected), and that $|E| \geq |V| - 1$.

Example



For this graph, $V = \{s, r, u, v, w, x, y, z, t\}$. The edge set is

$$E = \{(s, u), (s, r), (s, x), (u, v), (u, x), (v, x), (v, w), (r, w), (r, y), (x, y), (y, r), (y, z), (z, w), (z, t), (w, t)\}.$$

Some examples of *capacities* are c(s,x)=10, c(r,y)=5, c(v,x)=20 and c(v,r)=0 (since there is no arc from v to r).

Network Flows

Definition 2

Let $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ be a flow network.

A *flow* in N is a function

$$f: V \times V \rightarrow \mathbb{R}$$

satisfying the following conditions:

Capacity constraint: $f(u, v) \le c(u, v)$ for all $u, v \in V$.

Skew symmetry: f(u, v) = -f(v, u) for all $u, v \in V$.

Flow conservation: For all $u \in V \setminus \{s, t\}$,

$$\sum_{v\in V} f(u,v) = 0.$$

Network Flows (cont'd)

 $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ flow network, $f : V \times V \to \mathbb{R}$ flow in \mathcal{N} .

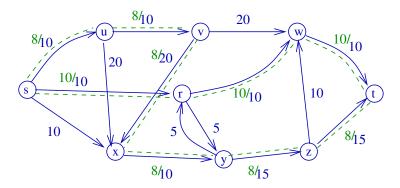
- ▶ For $u, v \in V$ we call f(u, v) the *net flow* at (u, v).
- ▶ The *value* of the flow *f* is the number

$$|f|=\sum_{v\in V}f(s,v).$$

Notice that our particular defn. of flow (the "skew-symmetry" constraint) ensures that f(u,v) is truly the "net flow" in the usual sense of the word (e.g. if (r,y) on slide 2 was to carry flow 3, and (y,r) to carry flow 4, we will have f(r,y)=-1).

Example

A flow of value 18.



Only positive net flows are shown.

The Maximum-Flow Problem

Input: Network N

Output: Flow of maximum value in N

The problem is to find the flow f such that $|f| = \sum_{v \in V} f(s, v)$ is the largest possible (over all "legal" flows).

The Ford-Fulkerson Algorithm

Published in 1956 by Delbert Fulkerson and Lester Randolph Ford Jr.

Algorithm FORD-FULKERSON(\mathbb{N})

- 1. $f \leftarrow \text{flow of value } 0$
- 2. **while** there exists an $s \to t$ path \mathcal{P} in the "residual network" **do**
- 3. $f \leftarrow f + f_{\mathcal{P}}$:
- 4. Update the "residual network".
- 5. return f

The "residual network" is N with the "used-up" capacity removed.

To make this precise, we need notation, and proofs - this lecture.

Some Technical Observations

$$\mathfrak{N} = (\mathfrak{G} = (V, E), c, s, t)$$
 flow network, $f : V \times V \to \mathbb{R}$ flow in \mathfrak{N} , $u, v \in V$.

- 1. f(u, u) = 0 for all $u \in V$.
 - "Proof": f(u, u) = -f(u, u) by skew symmetry.
- 2. For any $v \in V \setminus \{s, t\}$,

$$\sum_{u\in V} f(u,v) = 0.$$

Proof: $\sum_{u \in V} f(u, v) = -\sum_{u \in V} f(v, u) = 0$ by skew symmetry and flow conservation.

3. If $(u,v) \notin E$ and $(v,u) \notin E$ then f(u,v) = f(v,u) = 0. Proof: Either f(u,v) or $f(v,u) \ge 0$ by skew symmetry. Say, $f(u,v) \ge 0$. Then $0 \le f(u,v) \le c(u,v) = 0$ by the capacity constraint. So f(u,v) = 0. By skew symmetry, this shows f(v,u) = 0.

One More Technical Observation

4. The positive net flow entering v is:

$$\sum_{\substack{u \in V \\ f(u,v) > 0}} f(u,v).$$

The positive net flow leaving v is defined symmetrically. Flow conservation now says:

"positive net flow in = positive net flow out".

All these observations are just to make it easy for us to talk about flows.

Working with Flows

Implicit summation notation: For $X, Y \subseteq V$ put

$$f(X,Y) = \sum_{u \in X} \sum_{v \in Y} f(u,v) = \sum_{(u,v) \in X \times Y} f(u,v).$$

Abbreviations:

$$f(u, Y)$$
 stands for $f({u}, Y)$ and $f(X, v)$ stands for $f(X, {v})$.

Conservation of flow is now:

$$f(u, V) = 0$$
 for all $u \in V \setminus \{s, t\}$.

Working with Flows (cont'd)

Lemma 3

 $\mathbb{N}=(\mathbb{G}=(V,E),c,s,t)$ flow network, f flow in $\mathbb{N}.$

Then for all $X, Y, Z \subseteq V$,

- 1. f(X,X) = 0.
- 2. f(X, Y) = -f(Y, X).
- 3. If $X \cap Y = \emptyset$ then

$$f(X \cup Y, Z) = f(X, Z) + f(Y, Z),$$

$$f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$$

Lemma "lifts" Network flow properties to sets-of-vertices.

$$\begin{array}{lll} 1. & f(X,X) & = & \displaystyle \sum_{(u,v) \in X \times X} f(u,v) & \text{by defn. of } f(X,X) \\ & = & \displaystyle \sum_{\{u,v\} \subseteq X} \left(f(u,v) + f(v,u) \right) & \text{take } (u,v), \, (v,u) \, \, \text{together} \\ & = & 0. & \text{by skew-symm} \end{array}$$

2.
$$f(X,Y) = \sum_{(u,v) \in X \times Y} f(u,v)$$
 by defin of $f(X,Y)$

$$= \sum_{(u,v) \in X \times Y} -f(v,u)$$
 by skew-symmetry
$$= -\sum_{(v,u) \in Y \times X} f(v,u)$$
 take — outside the summation
$$= -f(Y,X).$$
 by defin of $f(Y,X)$

Proof of Lemma 3 (cont'd)

$$\begin{split} f(X \cup Y, Z) &= \sum_{u \in X \cup Y} \sum_{v \in Z} f(u, v) \\ &= \sum_{u \in X} \sum_{v \in Z} f(u, v) + \sum_{u \in Y} \sum_{v \in Z} f(u, v) - \sum_{u \in X \cap Y} \sum_{v \in Z} f(u, v) \\ & (expand \ sum \ into \ X \ and \ Y, \ subtract \ duplicates \ in \ X \cap Y) \\ &= \sum_{u \in X} \sum_{v \in Z} f(u, v) + \sum_{u \in Y} \sum_{v \in Z} f(u, v) \\ & (but \ X \cap Y = \emptyset, \ so \ third \ term \ disappears) \end{split}$$

Moreover,

$$f(Z, X \cup Y) = -f(X \cup Y, Z) = -(f(X, Z) + f(Y, Z)) = f(Z, X) + f(Z, Y).$$

= f(X,Z) + f(Y,Z).

Working with Flows (cont'd)

Corollary 4

$$\mathbb{N}=(\mathbb{G}=(V,E),c,s,t)$$
 flow network, f flow in \mathbb{N} . Then
$$|f|=f(V,t).$$

Proof:

$$|f| = f(s, V)$$
 (by definition)

$$= f(V, V) - f(V \setminus \{s\}, V)$$
 (by Lemma 3 (3.))

$$= -f(V \setminus \{s\}, V)$$
 (by Lemma 3 (1.))

$$= f(V, V \setminus \{s\})$$
 (by Lemma 3 (2.))

$$= f(V, t) + f(V, V \setminus \{s, t\})$$
 (by Lemma 3 (3.))

$$= f(V, t) + \sum_{v \in V \setminus \{s, t\}} f(V, v)$$
 (by Definition)

$$= f(V, t)$$
 (by flow conservation)

Residual Networks

Idea is to capture possible extra flow given current flow.

Definition 5

$$\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$$
 flow network, f flow in \mathcal{N} .

1. For all $u, v \in V \times V$, the *residual capacity* of (u, v) is

$$c_f(u,v)=c(u,v)-f(u,v).$$

2. The *residual network* of \mathbb{N} induced by f is

$$\mathcal{N}_f((V, E_f), c_f, s, t),$$

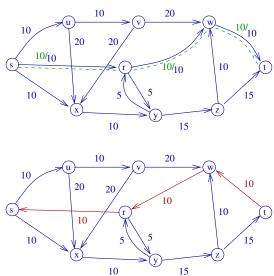
where

$$E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$$

Notice that E_f may contain edges not originally in E ("back-edges").

Example

A flow and the corresponding residual network



ADS: lectures 10 & 11 - slide 17 -

Adding Flows

Lemma 6

Let $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ be a flow network.

Let f be a flow in \mathbb{N} .

Let $g: V \times V \to \mathbb{R}$ be a flow in the residual network \mathbb{N}_f .

Then the function $f + g : V \times V \to \mathbb{R}$ defined by

$$(f+g)(u,v)=f(u,v)+g(u,v)$$

is a flow of value |f| + |g| in \mathbb{N} .

Proof of Lemma 6

First we have to check that f + g is actually a flow in \mathbb{N} .

Capacity constraints:

$$(f+g)(u,v) = f(u,v) + g(u,v) \leq f(u,v) + c_f(u,v) = f(u,v) + c(u,v) - f(u,v) = c(u,v).$$

Skew symmetry:

$$(f+g)(u,v) = f(u,v) + g(u,v) = -f(v,u) - g(v,u) = -(f+g)(v,u).$$

Flow Conservation: For every $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} (f+g)(u,v) = \sum_{v \in V} f(u,v) + \sum_{v \in V} g(u,v) = 0 + 0 = 0.$$

Proof of Lemma 6 (cont'd)

Next we have to check that f + g does have the value that we claimed for it.

Value:

$$|f+g| = \sum_{v \in V} (f+g)(s,v)$$
$$= \sum_{v \in V} f(s,v) + \sum_{v \in V} g(s,v)$$
$$= |f| + |g|.$$

Augmenting Paths

Definition 7

 $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ flow network, f flow in \mathcal{N} .

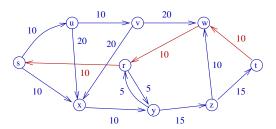
Then an augmenting path for f is a path \mathcal{P} from s to t in the residual network \mathcal{N}_f .

The *residual capacity* of \mathcal{P} is

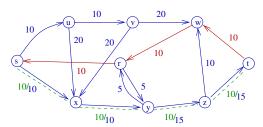
$$c_f(\mathcal{P}) = \min\{c_f(u, v) \mid (u, v) \text{ edge on } \mathcal{P}\}.$$

Note that $c_f(\mathcal{P}) > 0$, by definition of E_f (recall that we only keep edges in E_f if their residual capacity is strictly positive).

Example



An augmenting path of residual capacity 10



ADS: lectures 10 & 11 - slide 22 -

Pushing Flow through an Augmenting Path

Lemma 8

 $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ flow network, f flow in \mathcal{N} .

 ${\mathbb P}$ augmenting path. Then $f_{\mathbb P}:V imes V o {\mathbb R}$ defined by

$$f_{\mathbb{P}}(u,v) = egin{cases} c_f(\mathbb{P}) & \textit{if } (u,v) \textit{ is an edge of } \mathbb{P}, \\ -c_f(\mathbb{P}) & \textit{if } (v,u) \textit{ is an edge of } \mathbb{P}, \\ 0 & \textit{otherwise} \end{cases}$$

is a flow in \mathcal{N}_f of value $c_f(\mathcal{P})$.

Proof left as an exercise. It is not too difficult - just have to check that the three conditions of a flow are satisfied (and that the value is $c_f(\mathcal{P})$). Similar to Lemma 6.

Augmenting a Flow

Corollary 9

 $\mathbb{N}=(\mathfrak{G}=(V,E),c,s,t)$ flow network, f flow in \mathbb{N} . Let \mathfrak{P} be an augmenting path. Then $f+f_{\mathfrak{P}}$ is a flow in \mathbb{N} of value

$$|f| + c_f(\mathcal{P}) > |f|$$
.

Proof: Follows from Lemma 6 and Lemma 8.

The Ford-Fulkerson Algorithm

Algorithm Ford-Fulkerson(\mathcal{N})

- 1. $f \leftarrow \text{flow of value 0}$
- 2. **while** there exists an augmenting path \mathcal{P} in \mathcal{N}_f **do**
- 3. $f \leftarrow f + f_{\mathcal{P}}$
- 4. return *f*

To prove that FORD-FULKERSON correctly solves the Maximum Flow problem, we have to prove that:

- 1. The algorithm terminates.
- 2. After termination, f is a maximum flow.

Cuts

Definition 10

 $\mathcal{N} = (\mathcal{G} = (V, E), c, s, t)$ flow network.

A *cut* of \mathbb{N} is a pair (S, T) such that:

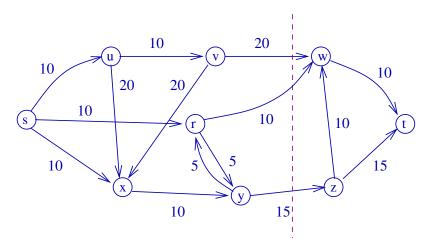
- 1. $s \in S$ and $t \in T$,
- 2. $V = S \cup T$ and $S \cap T = \emptyset$.

The *capacity* of the cut (S, T) is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v).$$

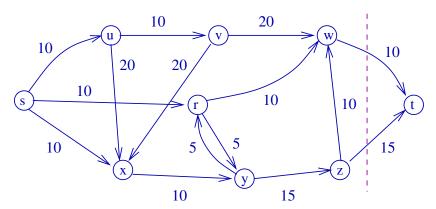
Example

A cut of capacity 45.



Example

A cut of capacity 25.



Cuts and Flows

Lemma 11

 $\mathbb{N}=(\mathbb{G}=(V,E),c,s,t)$ flow network, f flow in $\mathbb{N},$ (S,T) cut of $\mathbb{N}.$ Then

$$|f|=f(S,T).$$

Proof: We apply Lemma 3:

$$|f| = f(s, V) = f(s, V) + f(S - \{s\}, V) [t \notin S \Rightarrow f(S - \{s\}, V) = 0] = f(S, V) = f(S, T) + f(S, S) = f(S, T).$$

Cuts and Flows (cont'd)

Corollary 12

The value of any flow in a network is bounded from above by the capacity of any cut.

Proof: Let f be a flow and (S, T) a cut. Then

$$|f| = f(S, T) \le c(S, T).$$

The Max-Flow Min-Cut Theorem

Theorem 13

Let $\mathbb{N} = (\mathcal{G} = (V, E), c, s, t)$ be a flow network.

Then the maximum value of a flow in $\mathbb N$ is equal to the minimum capacity of a cut in $\mathbb N$.

Let f be a flow of maximum value and (S,T) a cut of minimum capacity in ${\mathfrak N}.$ We shall prove that

$$|f| = c(S, T).$$

1. $|f| \le c(S, T)$ follows from Corollary 12. So all we have to prove is that there is a cut (S, T) such that

$$c(S, T) \leq |f|$$
.

- 2. First remember that |f| has no augmenting path. *Proof:* If \mathcal{P} was an augmenting path, then $f+f_{\mathcal{P}}$ would be a flow of larger value (because by definition of \mathcal{N}_f , all edges in \mathcal{N}_f have strictly positive weights).
- 3. Thus there is no path from s to t in \mathcal{N}_f . Let

$$S = \{v \mid \text{there is a path from } s \text{ to } v \text{ in } \mathcal{N}_f\}$$

and $T = V \setminus S$. Then (S, T) is a cut.

- 4. By definition of S, and because reachability in graphs is a transitive relation, there cannot be any edge from S to T in \mathbb{N}_f . Thus for all $u \in S$, $v \in T$ we have c(u,v)-f(u,v)=0.
- 5. Thus

$$c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v) = \sum_{u \in S} \sum_{v \in T} f(u, v) = f(S, T) = |f|$$

(by Lemma 11).

Corollaries

Corollary 14

A flow is maximum if, and only if, it has no augmenting path.

Proof: This follows from the proof of the Max-Flow Min-Cut theorem.

Corollary 15

If the Ford-Fulkerson algorithm terminates, then it returns a maximum flow.

 $\ensuremath{\textit{Proof:}}$ The flow returned by $\ensuremath{\textit{FORD-Fulkerson}}$ has no augmenting path.

Termination

Let f^* be a maximum flow in a network \mathbb{N} .

▶ If all capacities are integers, then FORD-FULKERSON stops after at most

$$|f^*|$$

iterations of the main loop.

▶ If all capacities are rationals, then FORD-FULKERSON stops after at most

$$q \cdot |f^*|$$

iterations of the main loop, where q is the least common multiple of the denominators of all the capacities.

► For arbitrary real capacities, it may happen that FORD-FULKERSON does not stop.

A Nasty Example



ADS: lectures 10 & 11 - slide 36 -

The Edmonds-Karp Heuristic

Idea

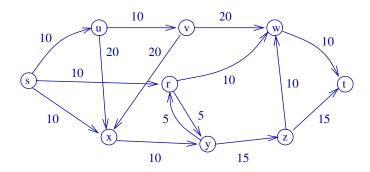
Always choose a shortest augmenting path.

n number of vertices, m number of edges. Recall that $n \leq m+1$ A shortest augmenting path can be found by Breadth-First-Search (reading assignment) in time O(n+m)=O(m).

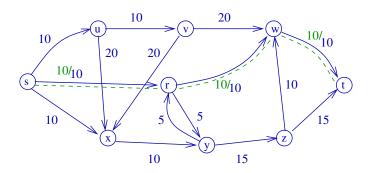
Theorem 16

The Ford-Fulkerson algorithm with the Edmonds-Karp heuristic stops after at most O(nm) iterations of the main loop. Thus the running time is $O(nm^2)$.

Interesting Example

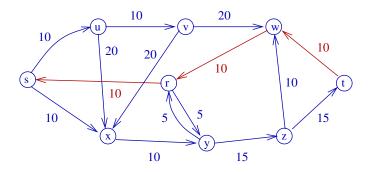


We will run Ford-Fulkerson (with the Edmonds-Karp heuristic) on this network. This is interesting because we will see the "back-edges" being used to "undo" part of an previous augmenting path.

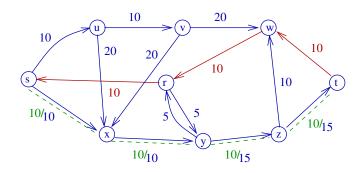


1st augmenting path: $s \rightarrow r \rightarrow w \rightarrow t$.

Length is 3 (so we satisfy Edmonds-Karp rule to take a shortest possible path). Min capacity is 10, so we push flow of 10 along the path. Starting flow becomes 10.



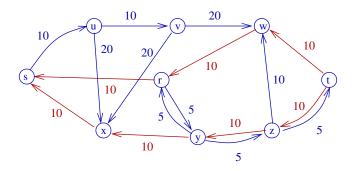
Residual network after adding first flow of value 10 along $s \to r \to w \to t$. The newly-created "back-edges" are shown in red.



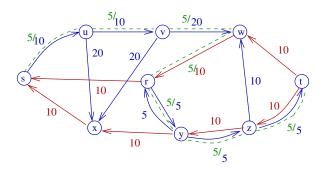
There is no longer any augmenting path of length ≤ 3 , and the only one of length 4 is $s \to x \to y \to z \to t$, which has a minimum capacity $\min\{10, 10, 15, 15\}$, ie 10.

We push this extra flow of value 10 along $s \to x \to y \to z \to t$, bringing overall flow to 20.

ADS: lectures 10 & 11 - slide 41 -



Residual network after adding flow from second augmenting path $s \to x \to y \to z \to t$, overall flow now 20.

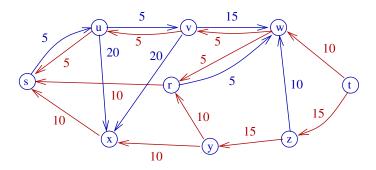


Now there is only one simple augmenting path - $s \to u \to v \to w \to r \to y \to z \to t$, with minimum residual capacity 5.

Notice we use the "back-edge" $w\to r$ in our path. This is essentially "re-shipping" 5 units from the first flow-path away from $r\to w\to t$ and along $r\to y\to z\to t$ instead.

ADS: lectures 10 & 11 - slide 43 -

Interesting Example



Residual network after adding 3rd flow, of value $5 \Rightarrow$ total flow 25.

There is no longer *any* augmenting path in our residual network (set of vertices "reachable" from s is $\{s, u, v, x, w, r\}$).

Reading and Problems

[CLRS] Chapter 26 For breadth-first search: [CLRS], Section 22.2.

Problems

1. Exercise 26.1-5 of [CLRS] (ed 2).

Not in [CLRS] (ed 3). Question is: consider Figure 26.1(b) and find a pair of subsets $X, Y \subseteq V$ such that $f(X, Y) = -f(V \setminus X, Y)$. After that, find a pair of subsets $X', Y' \subseteq V$ for which $f(X', Y') \neq -f(V \setminus X', Y')$.

- 2. Exercise 26.2-2 of [CLRS] (2nd ed), Ex 26.2-3 of [CLRS] (3rd ed).
- 3. Prove Lemma 8.
- 4. Problem 26-4 of [CLRS].