
Algorithms and Data Structures:
Network Flows
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Flow Networks

Definition 1
A flow network consists of

I A directed graph G = (V ,E ).

I A capacity function c : V × V → R such that c(u, v) ≥ 0 if
(u, v) ∈ E and c(u, v) = 0 for all (u, v) /∈ E .

I Two distinguished vertices s, t ∈ V called the source and the sink,
respectively.

We read (u, v) to mean u → v .

Assumption
Each vertex v ∈ V is on some directed path from s to t.
This implies that G is connected (but not necessarily
strongly connected), and that |E | ≥ |V |− 1.
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For this graph, V = {s, r , u, v ,w , x , y , z , t}. The edge set is

E = {(s, u), (s, r), (s, x), (u, v), (u, x), (v , x), (v ,w), (r ,w),
(r , y), (x , y), (y , r), (y , z), (z ,w), (z , t), (w , t)}.

Some examples of capacities are c(s, x) = 10, c(r , y) = 5, c(v , x) = 20
and c(v , r) = 0 (since there is no arc from v to r).
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Network Flows

Definition 2
Let N = (G = (V ,E ), c , s, t) be a flow network.
A flow in N is a function

f : V × V → R

satisfying the following conditions:

Capacity constraint: f (u, v) ≤ c(u, v) for all u, v ∈ V .

Skew symmetry: f (u, v) = −f (v , u) for all u, v ∈ V .

Flow conservation: For all u ∈ V \ {s, t},∑
v∈V

f (u, v) = 0.
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Network Flows (cont’d)

N = (G = (V ,E ), c , s, t) flow network, f : V × V → R flow in N.

I For u, v ∈ V we call f (u, v) the net flow at (u, v).

I The value of the flow f is the number

|f | =
∑
v∈V

f (s, v).

Notice that our particular defn. of flow (the “skew-symmetry” constraint)
ensures that f (u, v) is truly the “net flow” in the usual sense of the word
(e.g. if (r , y) on slide 2 was to carry flow 3, and (y , r) to carry flow 4, we
will have f (r , y) = −1).
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Example

A flow of value 18.
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Only positive net flows are shown.
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The Maximum-Flow Problem

Input: Network N

Output: Flow of maximum value in N

The problem is to find the flow f such that |f | =
∑

v∈V f (s, v) is the
largest possible (over all “legal” flows).
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The Ford-Fulkerson Algorithm

Published in 1956 by Delbert Fulkerson and Lester Randolph Ford Jr.

Algorithm Ford-Fulkerson(N)

1. f ← flow of value 0
2. while there exists an s → t path P in the “residual network” do
3. f ← f + fP;
4. Update the “residual network”.
5. return f

The “residual network” is N with the “used-up” capacity removed.

To make this precise, we need notation, and proofs - this lecture.
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Some Technical Observations

N = (G = (V ,E ), c , s, t) flow network, f : V × V → R flow in N, u, v ∈ V .

1. f (u, u) = 0 for all u ∈ V .

“Proof”: f (u, u) = −f (u, u) by skew symmetry.

2. For any v ∈ V \ {s, t}, ∑
u∈V

f (u, v) = 0.

Proof:
∑

u∈V f (u, v) = −
∑

u∈V f (v , u) = 0 by skew symmetry and flow
conservation.

3. If (u, v) /∈ E and (v , u) /∈ E then f (u, v) = f (v , u) = 0.

Proof: Either f (u, v) or f (v , u) ≥ 0 by skew symmetry. Say, f (u, v) ≥ 0.
Then 0 ≤ f (u, v) ≤ c(u, v) = 0 by the capacity constraint. So f (u, v) = 0.
By skew symmetry, this shows f (v , u) = 0.
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One More Technical Observation

4. The positive net flow entering v is:∑
u∈V

f (u,v)>0

f (u, v).

The positive net flow leaving v is defined symmetrically.

Flow conservation now says:

“positive net flow in = positive net flow out”.

All these observations are just to make it easy for us to talk about flows.
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Working with Flows

Implicit summation notation: For X ,Y ⊆ V put

f (X ,Y ) =
∑
u∈X

∑
v∈Y

f (u, v) =
∑

(u,v)∈X×Y

f (u, v).

Abbreviations:

f (u,Y ) stands for f ({u},Y ) and

f (X , v) stands for f (X , {v }).

Conservation of flow is now:

f (u,V ) = 0 for all u ∈ V \ {s, t}.
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Working with Flows (cont’d)

Lemma 3
N = (G = (V ,E ), c , s, t) flow network, f flow in N.
Then for all X ,Y ,Z ⊆ V ,

1. f (X ,X ) = 0.

2. f (X ,Y ) = −f (Y ,X ).

3. If X ∩ Y = ∅ then

f (X ∪ Y ,Z ) = f (X ,Z ) + f (Y ,Z ),

f (Z ,X ∪ Y ) = f (Z ,X ) + f (Z ,Y ).

Lemma “lifts” Network flow properties to sets-of-vertices.
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Proof of Lemma 3

1. f (X ,X ) =
∑

(u,v)∈X×X

f (u, v) by defn. of f (X ,X )

=
∑

{u,v}⊆X

(
f (u, v) + f (v , u)

)
take (u, v), (v , u) together

= 0. by skew-symm

2. f (X ,Y ) =
∑

(u,v)∈X×Y

f (u, v) by defn of f (X ,Y )

=
∑

(u,v)∈X×Y

−f (v , u) by skew-symmetry

= −
∑

(v,u)∈Y×X

f (v , u) take − outside the summation

= −f (Y ,X ). by defn of f (Y ,X )
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Proof of Lemma 3 (cont’d)

3.
f (X ∪ Y ,Z ) =

∑
u∈X∪Y

∑
v∈Z

f (u, v)

=
∑
u∈X

∑
v∈Z

f (u, v) +
∑
u∈Y

∑
v∈Z

f (u, v) −
∑

u∈X∩Y

∑
v∈Z

f (u, v)

(expand sum into X and Y , subtract duplicates in X ∩ Y )

=
∑
u∈X

∑
v∈Z

f (u, v) +
∑
u∈Y

∑
v∈Z

f (u, v)

(but X ∩ Y = ∅, so third term disappears)

= f (X ,Z ) + f (Y ,Z ).

Moreover,

f (Z ,X ∪ Y ) = −f (X ∪ Y ,Z ) = −
(
f (X ,Z ) + f (Y ,Z )

)
= f (Z ,X ) + f (Z ,Y ).

ADS: lectures 10 & 11 – slide 14 –



Working with Flows (cont’d)

Corollary 4

N = (G = (V ,E ), c , s, t) flow network, f flow in N. Then

|f | = f (V , t).

Proof:

|f | = f (s,V ) (by definition)

= f (V ,V ) − f (V \ {s},V ) (by Lemma 3 (3.))

= −f (V \ {s},V ) (by Lemma 3 (1.))

= f (V ,V \ {s}) (by Lemma 3 (2.))

= f (V , t) + f (V ,V \ {s, t}) (by Lemma 3 (3.))

= f (V , t) +
∑

v∈V \{s,t} f (V , v) (by Definition)

= f (V , t) (by flow conservation)
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Residual Networks

Idea is to capture possible extra flow given current flow.

Definition 5
N = (G = (V ,E ), c , s, t) flow network, f flow in N.

1. For all u, v ∈ V × V , the residual capacity of (u, v) is

cf (u, v) = c(u, v) − f (u, v).

2. The residual network of N induced by f is

Nf ((V ,Ef ), cf , s, t),

where
Ef = {(u, v) ∈ V × V | cf (u, v) > 0}

Notice that Ef may contain edges not originally in E (“back-edges”).
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Example

A flow and the corresponding residual network
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Adding Flows

Lemma 6
Let N = (G = (V ,E ), c , s, t) be a flow network.

Let f be a flow in N.

Let g : V × V → R be a flow in the residual network Nf .

Then the function f + g : V × V → R defined by

(f + g)(u, v) = f (u, v) + g(u, v)

is a flow of value |f |+ |g | in N.
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Proof of Lemma 6

First we have to check that f + g is actually a flow in N.

Capacity constraints:

(f + g)(u, v) = f (u, v) + g(u, v)

≤ f (u, v) + cf (u, v)

= f (u, v) + c(u, v) − f (u, v)

= c(u, v).

Skew symmetry:

(f +g)(u, v) = f (u, v)+g(u, v) = −f (v , u)−g(v , u) = −(f +g)(v , u).

Flow Conservation: For every u ∈ V \ {s, t}:∑
v∈V

(f + g)(u, v) =
∑
v∈V

f (u, v) +
∑
v∈V

g(u, v) = 0 + 0 = 0.
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Proof of Lemma 6 (cont’d)

Next we have to check that f + g does have the value that we claimed for it.

Value:

|f + g | =
∑
v∈V

(f + g)(s, v)

=
∑
v∈V

f (s, v) +
∑
v∈V

g(s, v)

= |f | + |g |.
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Augmenting Paths

Definition 7
N = (G = (V ,E ), c , s, t) flow network, f flow in N.

Then an augmenting path for f is a path P from s to t in the residual
network Nf .

The residual capacity of P is

cf (P) = min{cf (u, v) | (u, v) edge on P}.

Note that cf (P) > 0, by definition of Ef (recall that we only keep edges
in Ef if their residual capacity is strictly positive).
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Example
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Pushing Flow through an Augmenting Path

Lemma 8
N = (G = (V ,E ), c , s, t) flow network, f flow in N.
P augmenting path. Then fP : V × V → R defined by

fP(u, v) =


cf (P) if (u, v) is an edge of P,

−cf (P) if (v , u) is an edge of P,

0 otherwise

is a flow in Nf of value cf (P).

Proof left as an exercise. It is not too difficult - just have to check that
the three conditions of a flow are satisfied (and that the value is cf (P)).
Similar to Lemma 6.
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Augmenting a Flow

Corollary 9

N = (G = (V ,E ), c , s, t) flow network, f flow in N. Let P be an
augmenting path. Then f + fP is a flow in N of value

|f |+ cf (P) > |f |.

Proof: Follows from Lemma 6 and Lemma 8.
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The Ford-Fulkerson Algorithm

Algorithm Ford-Fulkerson(N)

1. f ← flow of value 0
2. while there exists an augmenting path P in Nf do
3. f ← f + fP
4. return f

To prove that Ford-Fulkerson correctly solves the Maximum Flow
problem, we have to prove that:

1. The algorithm terminates.

2. After termination, f is a maximum flow.
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Cuts

Definition 10
N = (G = (V ,E ), c , s, t) flow network.
A cut of N is a pair (S ,T ) such that:

1. s ∈ S and t ∈ T ,

2. V = S ∪ T and S ∩ T = ∅.
The capacity of the cut (S ,T ) is

c(S ,T ) =
∑

u∈S ,v∈T
c(u, v).
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Example

A cut of capacity 45.
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Example

A cut of capacity 25.
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Cuts and Flows

Lemma 11
N = (G = (V ,E ), c , s, t) flow network, f flow in N, (S ,T ) cut of N.
Then

|f | = f (S ,T ).

Proof: We apply Lemma 3:

|f | = f (s,V )

= f (s,V ) + f (S − {s},V ) [t 6∈ S ⇒ f (S − {s},V ) = 0]

= f (S ,V )

= f (S ,T ) + f (S , S)

= f (S ,T ).
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Cuts and Flows (cont’d)

Corollary 12

The value of any flow in a network is bounded from above by the
capacity of any cut.

Proof: Let f be a flow and (S ,T ) a cut. Then

|f | = f (S ,T ) ≤ c(S ,T ).
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The Max-Flow Min-Cut Theorem

Theorem 13
Let N = (G = (V ,E ), c , s, t) be a flow network.
Then the maximum value of a flow in N is equal to the minimum
capacity of a cut in N.
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Proof of the Max-Flow Min-Cut Theorem

Let f be a flow of maximum value and (S ,T ) a cut of minimum capacity in N. We
shall prove that

|f | = c(S ,T ).

1. |f | ≤ c(S ,T ) follows from Corollary 12.
So all we have to prove is that there is a cut (S ,T ) such that

c(S ,T ) ≤ |f |.

2. First remember that |f | has no augmenting path.

Proof: If P was an augmenting path, then f + fP would be a flow of larger value
(because by definition of Nf , all edges in Nf have strictly positive weights).

3. Thus there is no path from s to t in Nf . Let

S = {v | there is a path from s to v in Nf }

and T = V \ S . Then (S ,T ) is a cut.
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Proof of the Max-Flow Min-Cut Theorem (cont’d)

4. By definition of S , and because reachability in graphs is a transitive relation,
there cannot be any edge from S to T in Nf . Thus for all u ∈ S , v ∈ T we have
c(u, v) − f (u, v) = 0.

5. Thus
c(S ,T ) =

∑
u∈S

∑
v∈T

c(u, v) =
∑
u∈S

∑
v∈T

f (u, v) = f (S ,T ) = |f |

(by Lemma 11).
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Corollaries

Corollary 14

A flow is maximum if, and only if, it has no augmenting path.

Proof: This follows from the proof of the Max-Flow Min-Cut theorem.

Corollary 15

If the Ford-Fulkerson algorithm terminates, then it returns a maximum
flow.

Proof: The flow returned by Ford-Fulkerson has no augmenting
path.
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Termination

Let f ∗ be a maximum flow in a network N.

I If all capacities are integers, then Ford-Fulkerson stops after at
most

|f ∗|

iterations of the main loop.

I If all capacities are rationals, then Ford-Fulkerson stops after at
most

q · |f ∗|

iterations of the main loop, where q is the least common multiple of
the denominators of all the capacities.

I For arbitrary real capacities, it may happen that Ford-Fulkerson
does not stop.
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A Nasty Example
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The Edmonds-Karp Heuristic

Idea
Always choose a shortest augmenting path.

n number of vertices, m number of edges. Recall that n ≤ m + 1
A shortest augmenting path can be found by Breadth-First-Search (reading
assignment) in time O(n + m) = O(m).

Theorem 16
The Ford-Fulkerson algorithm with the Edmonds-Karp heuristic stops
after at most O(nm) iterations of the main loop.
Thus the running time is O(nm2).
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Interesting Example
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We will run Ford-Fulkerson (with the Edmonds-Karp heuristic) on this
network. This is interesting because we will see the “back-edges” being
used to “undo” part of an previous augmenting path.
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Interesting Example cont.
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1st augmenting path: s → r → w → t.

Length is 3 (so we satisfy Edmonds-Karp rule to take a shortest possible
path). Min capacity is 10, so we push flow of 10 along the path. Starting
flow becomes 10.
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Interesting Example cont.
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Residual network after adding first flow of value 10 along s → r → w → t.

The newly-created “back-edges” are shown in red.
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Interesting Example cont.
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There is no longer any augmenting path of length ≤ 3, and the only one
of length 4 is s → x → y → z → t, which has a minimum capacity
min{10, 10, 15, 15}, ie 10.

We push this extra flow of value 10 along s → x → y → z → t, bringing
overall flow to 20.
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Interesting Example cont.
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Residual network after adding flow from second augmenting path s →
x → y → z → t, overall flow now 20.
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Interesting Example cont.

s

u v w

tr

y
zx

10 20

10

10
20 10

10

10

10
10

10

20

5/

5/ 5/

10

5

5

5

5/

5/

5/

5/
5

Now there is only one simple augmenting path - s → u → v → w → r →
y → z → t, with minimum residual capacity 5.

Notice we use the “back-edge” w → r in our path. This is essentially
“re-shipping” 5 units from the first flow-path away from r → w → t and
along r → y → z → t instead.

ADS: lectures 10 & 11 – slide 43 –



Interesting Example
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Residual network after adding 3rd flow, of value 5 ⇒ total flow 25.

There is no longer any augmenting path in our residual network (set of
vertices “reachable” from s is {s, u, v , x ,w , r }).
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Reading and Problems

[CLRS] Chapter 26
For breadth-first search: [CLRS], Section 22.2.

Problems

1. Exercise 26.1-5 of [CLRS] (ed 2).

Not in [CLRS] (ed 3). Question is: consider Figure 26.1(b) and find
a pair of subsets X ,Y ⊆ V such that f (X ,Y ) = −f (V \ X ,Y ).
After that, find a pair of subsets X ′,Y ′ ⊆ V for which
f (X ′,Y ′) 6= −f (V \ X ′,Y ′).

2. Exercise 26.2-2 of [CLRS] (2nd ed), Ex 26.2-3 of [CLRS] (3rd ed).

3. Prove Lemma 8.

4. Problem 26-4 of [CLRS].
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