
Algorithms and Data Structures

Richard Mayr

School of Informatics
University of Edinburgh

ADS – Lecture 1 – slide 1

Algorithms and Data Structures

I Emphasis is “Algorithms” rather than “Data Structures”.
I More proving in ADS than in Inf2 (ADS part).
I Most of the algorithms we study were breakthroughs at the

time when they were discovered (50s, 60s, and 70s).
I Two concerns in ADS:

1. Designing clever algorithms to solve problems.
2. Proving that our algorithms are correct, and satisfy certain

bounds on running time.
I We use three main techniques to design algorithms:

1. Divide-and-Conquer
2. Greedy approach (also called “hill climbing”)
3. Dynamic programming

ADS – Lecture 1 – slide 2

Algorithms and Data Structures

I Emphasis is “Algorithms” rather than “Data Structures”.
I More proving in ADS than in Inf2 (ADS part).
I Most of the algorithms we study were breakthroughs at the

time when they were discovered (50s, 60s, and 70s).
I Two concerns in ADS:

1. Designing clever algorithms to solve problems.
2. Proving that our algorithms are correct, and satisfy certain

bounds on running time.
I We use three main techniques to design algorithms:

1. Divide-and-Conquer
2. Greedy approach (also called “hill climbing”)
3. Dynamic programming

ADS – Lecture 1 – slide 2

Algorithms and Data Structures

I Emphasis is “Algorithms” rather than “Data Structures”.
I More proving in ADS than in Inf2 (ADS part).
I Most of the algorithms we study were breakthroughs at the

time when they were discovered (50s, 60s, and 70s).
I Two concerns in ADS:

1. Designing clever algorithms to solve problems.
2. Proving that our algorithms are correct, and satisfy certain

bounds on running time.
I We use three main techniques to design algorithms:

1. Divide-and-Conquer
2. Greedy approach (also called “hill climbing”)
3. Dynamic programming

ADS – Lecture 1 – slide 2



Algorithms and Data Structures

I Emphasis is “Algorithms” rather than “Data Structures”.
I More proving in ADS than in Inf2 (ADS part).
I Most of the algorithms we study were breakthroughs at the

time when they were discovered (50s, 60s, and 70s).
I Two concerns in ADS:

1. Designing clever algorithms to solve problems.
2. Proving that our algorithms are correct, and satisfy certain

bounds on running time.
I We use three main techniques to design algorithms:

1. Divide-and-Conquer
2. Greedy approach (also called “hill climbing”)
3. Dynamic programming

ADS – Lecture 1 – slide 2

Algorithms and Data Structures

I Emphasis is “Algorithms” rather than “Data Structures”.
I More proving in ADS than in Inf2 (ADS part).
I Most of the algorithms we study were breakthroughs at the

time when they were discovered (50s, 60s, and 70s).
I Two concerns in ADS:

1. Designing clever algorithms to solve problems.
2. Proving that our algorithms are correct, and satisfy certain

bounds on running time.
I We use three main techniques to design algorithms:

1. Divide-and-Conquer
2. Greedy approach (also called “hill climbing”)
3. Dynamic programming

ADS – Lecture 1 – slide 2

Syllabus

Introductory Review of Inf2 basics. Time and space complexity;
upper and lower bounds; O(·),Ω(·) and Θ(·)
notation; average and worst case analysis.

Algebraic algorithms Matrix multiplication: Strassen’s
algorithm.
Polynomial arithmetic: the Discrete Fourier
transform (DFT), the Fast Fourier transform (FFT);
recurrence relations for recursive algorithms.

Sorting Analysis of Quicksort; best-case, worst-case and
average-case analysis.
Sorting for restricted-values; counting sort, radix
sort.

ADS – Lecture 1 – slide 3

Syllabus cont.

Dynamic programming: Introduction to the technique;
matrix-chain multiplication, other examples.

Advanced data structures: Data structures for disjoint sets;
Union-by-rank, path-compression, etc.,
“heuristics”.

Minimum spanning trees: Prim’s algorithm (using priority
queues); Kruskal’s algorithm (using disjoint sets).

Graph/Network algorithms Network flows; Ford-Fulkerson
algorithm for finding max flow.

Geometric algorithms: Convex hull of a set of points in two
dimensions; Graham’s scan algorithm.

ADS – Lecture 1 – slide 4



Course Book

I T. H. Cormen, C. E. Leiserson and R. L. Rivest, C. Stein
Introduction to Algorithms (3rd Edition),
MIT Press 2009.

I Called [CLRS] from now on.
I Essential for the course.

It will be possible to work with the 2nd edition (or even
the 1st edition, which is just CLR (without Stein)). I’ll
try to reference the 2nd edition numbering as well as
the 3rd (but if using [CLR], it is your responsibility to
find the right sections in [CLR]).

ADS – Lecture 1 – slide 5

Other References

I Kleinberg and Tardos: Algorithm Design. Addison-Wesley,
2005. (Nice book - but doesn’t cover many of our topics).

I Sedgewick: Algorithms in C (Part 1-5), Addison Wesley,
2001.

Course Webpage
(with slides, tutorials, coursework, etc.)

http://www.inf.ed.ac.uk/teaching/courses/ads/

ADS – Lecture 1 – slide 6

Pre-requisites

Official pre-requisites:
I Passes in Inf2 & Discrete Math/“Probability with

Applications” (or year 2 Honours Maths).

Un-official recommendation (not enforced):
I Should be better than 50% at first attempt in Inf2 and your

2nd year Maths courses (and better again if second or later
attempt).

I If you are a Visiting student or MSc, drop-me-an-email.

If you didn’t take Inf2, but have excellent Maths, will be ok . . .

should be happy doing small proofs, not just applying Maths.

ADS – Lecture 1 – slide 7

Pre-requisites

Official pre-requisites:
I Passes in Inf2 & Discrete Math/“Probability with

Applications” (or year 2 Honours Maths).

Un-official recommendation (not enforced):
I Should be better than 50% at first attempt in Inf2 and your

2nd year Maths courses (and better again if second or later
attempt).

I If you are a Visiting student or MSc, drop-me-an-email.

If you didn’t take Inf2, but have excellent Maths, will be ok . . .

should be happy doing small proofs, not just applying Maths.

ADS – Lecture 1 – slide 7



Pre-requisites

Official pre-requisites:
I Passes in Inf2 & Discrete Math/“Probability with

Applications” (or year 2 Honours Maths).

Un-official recommendation (not enforced):
I Should be better than 50% at first attempt in Inf2 and your

2nd year Maths courses (and better again if second or later
attempt).

I If you are a Visiting student or MSc, drop-me-an-email.

If you didn’t take Inf2, but have excellent Maths, will be ok . . .

should be happy doing small proofs, not just applying Maths.

ADS – Lecture 1 – slide 7

Pre-requisites

Official pre-requisites:
I Passes in Inf2 & Discrete Math/“Probability with

Applications” (or year 2 Honours Maths).

Un-official recommendation (not enforced):
I Should be better than 50% at first attempt in Inf2 and your

2nd year Maths courses (and better again if second or later
attempt).

I If you are a Visiting student or MSc, drop-me-an-email.

If you didn’t take Inf2, but have excellent Maths, will be ok . . .

should be happy doing small proofs, not just applying Maths.

ADS – Lecture 1 – slide 7

Math Pre-requisites

You should know:
I how to multiply matrices or polynomials,
I some probability theory,
I some graph theory,
I what it means to prove a theorem (induction, proof by

contradiction, . . . ) and to be confident in your ability to do
this.

The appendices of [CLRS] might be useful for reviewing your
math.

ADS – Lecture 1 – slide 8

Tutorials start week 3

Details of the tutorial group allocations, times, and places will
be available on the course webpage
http://www.inf.ed.ac.uk/teaching/courses/ads/

ADS – Lecture 1 – slide 9



Your own work (formative assessment)

I Tutorial sheet every week.
It is very important that you attempt these problems
BEFORE tutorials! Preparing for tutorials will make a huge
difference in what you get out of the course - it will
massively improve your final grade.

I You should participate in tutorial discussions. There is often
more than one way to solve a question.

I Also . . . it’s a good idea to try coding-up a few of the
algorithms :)

ADS – Lecture 1 – slide 10

Coursework (summative assessment)

There will be 2 Assessed Courseworks, one formative and one
summative (counting 25% towards the course mark).

I Coursework 1 (formative; not counting towards the course
mark)

I Coursework 2 (summative; counting 25% towards the
course mark)

See the course webpage
http://www.inf.ed.ac.uk/teaching/courses/ads/
for coursework deadlines.

ADS – Lecture 1 – slide 11

Basic Notions

Model of Computation: An abstract sequential computer, called
a Random Access Machine or RAM. Uniform cost
model.

Computational Problem: A specification in general terms of
inputs and outputs and the desired input/output
relationship.

Problem Instance: A particular collection of inputs for a given
problem.

Algorithm: A method of solving a problem which can be
implemented on a computer.
Usually there are many algorithms for a given
problem.

Program: Particular implementation of some algorithm.

ADS – Lecture 1 – slide 12

Algorithms and “Running time”

I Formally, we define the running time of an algorithm on a
particular input instance to be the number of computation
steps performed by the algorithm on this instance.

I This depends on our machine model - need the algorithm
to be written as a program for such a machine.

I number of basic arithmetic operations - abstract way of
only counting the essential computation steps.

I Both notions are abstractions of the actual running time,
which also depends on factors like

I Quality of the implementation
I Quality of the code generated by the compiler
I The machine used to execute the program.

ADS – Lecture 1 – slide 13



Worst-Case Running Time

Assign a size to each possible input (this will be proportional to
the length of the input, in some reasonable encoding).

Definition
The (worst-case) running time of an algorithm A is the function
TA : N→ N where TA(n) is the maximum number of
computation steps performed by A on an input of size n.

I A similar definition applies to other measures of resource.

ADS – Lecture 1 – slide 14

Average-Case Running Time

Definition
The average-case running time of an algorithm A is the function
AVTA : N→ N where AVTA(n) is the average number of
computation steps performed by A on an input of size n.

For a genuine average–case analysis we need to know for
each n the probability with which each input turns up. Usually
we assume that all inputs of size n are equally likely.

ADS – Lecture 1 – slide 15

Bounds

Given a problem, a function T (n) is an:
Upper Bound: If there is an algorithm which solves the problem

and has worst-case running time at most T (n).
Average-case bound: If there is an algorithm which solves the

problem and has average-case running time at
most T (n).

Lower Bound: If every algorithm which solves the problem
must use at least T (n) time on some instance of
size n for infinitely many n.

ADS – Lecture 1 – slide 16

A little thought goes a long way

Problem: Remainder of a power.
Input: Integers a, n, m with n ≥ 1, m > 1.

Output: The remainder of an divided by m, i.e., an mod m.

Algorithm POWER-REM1(a,n,m)

1. r ← a
2. for j ← 2 to n do
3. r ← r · a
4. return r mod m

I Real world: integer overflow even for small a, m and
moderate n.

I Even without overflow numbers become needlessly large.

ADS – Lecture 1 – slide 17



A little thought . . . (cont’d)

Algorithm POWER-REM2(a,n,m)

1. x ← a mod m
2. r ← x
3. for j ← 2 to n do
4. r ← r · x mod m
5. return r

Much better than POWER-REM1.

I No integer overflow (unless m large).
I Arithmetic more efficient — numbers kept small.

ADS – Lecture 1 – slide 18

A little thought . . . (cont’d)

Algorithm POWER-REM3(a,n,m)

1. if n = 1 then
2. return a mod m
3. else if n even then
4. r ← POWER-REM3(a,n/2,m)
5. return r2 mod m
6. else
7. r ← POWER-REM3(a, (n − 1)/2,m)
8. return (r2 mod m) · a mod m

Even better.
I No integer overflow (unless a, m large), nums kept small.
I Number of arithmetic operations even less.

ADS – Lecture 1 – slide 19

Reading Assignment

[CLRS] Chapters 1 and 2.1-2.2 (pp. 1–27) (all this material
should be familiar from Inf2).

If you did not take Inf2 . . . read all of the ADS part of Inf2.

Problems

1. Analyse the asymptotic worst-case running time of the
three POWER-REM algorithms.
Hint: The worst-case running time of POWER-REM1 and
POWER-REM2 is Θ(n), and the worst-case running time of
POWER-REM3 is Θ(lg n)

2. Exercise 1.2-2, p. 13 of [CLRS] (Ex 1.4-1, p 17 in [CLR]).
3. Exercise 1.2-3, p. 13 of [CLRS] (Ex 1.4-2, p 17 in [CLR]).

ADS – Lecture 1 – slide 20


