
Storing and Querying XML Data using an RDMBS

Daniela Florescu
INRIA, Roquencourt

daniela.florescu@inria.fr

Donald Kossmann
University of Passau

kossmann@db.fmi.uni-passau.de

1 Introduction

XML is rapidly becoming a popular data format. It can be expected that soon large volumes of XML data will
exist. XML data is either produced manually (like html documents today), or it is generated by a new generation
of software tools for the WWW and/or electronic data interchange (EDI).

The purpose of this paper is to present the results of an initial study about storing and querying XML data. As
a first step, this study was focussed on the use of relational database systems and on very simplistic schemes to
store and query XML data. In other words, we would like to study how the simplest and most obvious approaches
perform, before thinking about more sophisticated approaches.

In general, numerous different options to store and query XML data exist. In addition to a relational database,
XML data can be stored in a file system, an object-oriented database (e.g., Excelon), or a special-purpose (or
semi-structured) system such as Lore (Stanford), Lotus Notes, or Tamino (Software AG). It is still unclear which
of these options will ultimately find wide-spread acceptance. A file system could be used with very little effort
to store XML data, but a file system would not provide any support for querying the XML data. Object-oriented
database systems would allow toclusterXML elements and sub-elements; this feature might be useful for cer-
tain applications, but the current generation of object-oriented database systems is not mature enough to process
complex queries on large databases. It is going to take even longer before special-purpose systems are mature.

Even when using an RDBMS, there are many different ways to store XML data. One strategy is to ask the user
or a system administrator in order to decide how XML elements are stored in relational tables. Such an approach
is supported, e.g., by Oracle 8i. Another option is to infer from the DTDs of the XML documents how the XML
elements should be mapped into tables; such an approach has been studied in [4]. Yet another option is to analyze
the XML data and the expected query workload; such an approach has been devised, e.g., in [2]. In this work,
we will only study very simplead-hocschemes; we think that such a study is necessary before adopting a more
complex approach. The schemes that we analyze require no input by the user, they work in the absence of DTDs
or if DTDs are meaningless, and they do not involve any analysis of the XML data. Due to their simplicity, the
approaches we study will not show the best possible performance, but as we will see, some of them will show
very good query performance in most situations. Also, there is no guarantee that any of the more sophisticated
approaches known so far will perform better than our simple schemes; see [3] for some experimental results in
this respect. Furthermore, the results of our study can be used as input for more sophisticated approaches.

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

27



2 Mapping XML Data into Relational Tables

The starting point is one or a set of XML documents. We propose to scan and parse these documents one at a
time and store all the information into relational tables. For simplicity, we assume here that an XML document
can be represented as an ordered and labeled directed graph. Each XML element is represented by a node in the
graph; the node is labeled with theoid of the XML object1. Element-subelement relationships are represented
by edges in the graph and labeled by the name of the subelement. In order to represent the order of subelements
of an XML object, we also order the outgoing edges of a node in the graph. Values (e.g., strings) of an XML
document are represented as leaves in the graph. In all, we consider six ways to store XML data (i.e., graphs)
in a relational database: three alternative ways to store the edges of a graph and two alternative ways to store
the leaves (i.e., values), resulting in overall three times two different schemes. Other schemes and variants of
the schemes presented in this paper are described and discussed in [3]. In particular, we describe and evaluate a
scheme in [3] which would take advantage of an object-relational database system’s feature to store multi-valued
attributes.

Representing XML data as a graph is a simplification and some information can be lost in this process. The
reason is that our graph model does not differentiate between XML subelements and attributes, and it is does
not differentiate between subelements and references (i.e., IDREFs). Using one of our schemes, therefore, the
original XML document cannot exactly be reconstructed from the relational data. However, these simplifications
can easily be alleviated with additional bookkeeping in the relational database.

In order to show how XML data is mapped into relational tables in each scheme, we will use the following
XML example which contains information about four persons:

hpersoni hid=’1’ age=’55’i
hnamei Peterh/namei
haddressi 4711 Fruitdale Ave.h/addressi
hchildi

hpersoni hid=’3’ age=’22’i
hnamei Johnh/namei
haddressi 5361 Columbia Ave.h/addressi
hhobbyi swimmingh/hobbyi
hhobbyi cycling h/hobbyi

h/personi
h/childi
hchildi

hpersoni hid=’4’ age=’7’i
hnamei David h/namei
haddressi 4711 Fruitdale Ave.h/addressi

h/personi
h/childi

h/personi

hpersoni hid=’2’ age=’38’ child=’4’i
hnamei Mary h/namei
haddressi 4711 Fruitdale Ave.h/addressi

hhobbyi paintingh/hobbyi
h/personi

2.1 Mapping Edges

2.1.1 Edge Approach

The simplest scheme is to store all edges of the graph that represents an XML document in a single table; let us
call this table theEdgetable. TheEdgetable records the oids of the source and target objects of each edge of the
graph, the label of the edge, a flag that indicates whether the edge represents an inter-object reference (i.e., an
internal node) or points to a value (i.e., a leaf), and an ordinal number because the edges are ordered, as mentioned
above. TheEdgetable, therefore, has the following structure:

1We assume that every XML element has a unique identifier. In the absence of such an identifier in the imported data, the system will
automatically generate one.

28



Edge
source ordinal name flag target

1 1 age int v1
1 2 name string v2
1 3 address string v3
1 4 child ref 3
1 5 child ref 4
2 1 age int v4
: : : : : : : : : : : :

Vint
vid value
v1 55
v4 38
v8 22
v13 7

Vstring
vid value
v2 Peter
v3 4711 Fruitdale Ave.
v5 Mary
v6 4711 Fruitdale Ave.
v7 painting
: : : : : :
v15 4711 Fruitdale Ave.

Figure 1: Example: Edge Table with Separate Value Tables

Edge(source, ordinal, name, flag, target)

The key of theEdgetable isfsource, ordinalg. Figure 1 shows how theEdgetable would be populated for our
XML example. The figure also shows one particular way to store values in separateValuetables; this approach
is explained in more detail in Section 2.2. The bold faced numbers in thetargetcolumn of theEdgetable (i.e.,
3 and4) are the oids of the target objects. The italicized entries in thetargetcolumn refer to representations of
values (explained later).

In terms of indices, we propose to establish an index on thesourcecolumn and a combined index on thefname,
targetg columns. The index on thesourcecolumn is useful for forward traversals such as needed to reconstruct
a specific object given itsoid. The index onfname, targetg is useful for backward traversals; e.g., “find all ob-
jects that have a child named John.” We experimented with different sets of indices as part of our performance
experiments. We found these two indices to be the overall most useful ones.

2.1.2 Binary Approach

In the second mapping scheme, we propose to group all edges with the same label into one table. This approach
resembles the binary storage scheme proposed to store semi-structured data in [5]. Conceptually, this approach
corresponds to a horizontal partitioning of theEdgetable used in the first approach, usingnameas the partitioning
attribute. Thus, we create as manyBinary tables as different subelement and attribute names occur in the XML
document. EachBinary table has the following structure:

Bname(source, ordinal, flag, target)

The key of such aBinary table isfsource, ordinalg, and all the fields have the same meaning as in theEdge
approach. In terms of indices, we propose to construct an index on thesourcecolumn of everyBinary table and
a separate index on thetargetcolumn. This is analogous to the indexing scheme we propose to use for theEdge
approach.

2.1.3 Universal Table

The third approach we study generates a singleUniversaltable to store all the edges. Conceptionally, thisUni-
versaltable corresponds to the result of a full outer join of allBinary tables. The structure of theUniversaltable
is as follows, ifn1; : : : ; nk are the label names.

Universal(source, ordinaln1, flagn1 , targetn1 , ordinaln2 , flagn2 , targetn2 , : : : , ordinalnk , flagnk , targetnk)

Figure 2 shows the instance of theUniversal table for our XML example. As we can see, theUniversal table
has many fields which are set tonull, and it also has a great deal of redundancy; the valuePeter, for instance,
is represented twice because Object 1 has twochild edges. (How values are exactly represented is described
in the next section.) In other words, theUniversal table is denormalized—with all the known advantages and
disadvantages of such a denormalization. Corresponding to the indexing scheme of theBinary approach, we
propose to establish separate indices on all thesourceand all thetargetcolumns of theUniversaltable.

29



source : : : ordname targname : : : ordchild targchild ordhobby targhobby
1 : : : 2 Peter : : : 4 3 null null
1 : : : 2 Peter : : : 5 4 null null
2 : : : 2 Mary : : : 4 4 5 painting
3 : : : 2 John : : : null null 4 swimming
3 : : : 2 John : : : null null 5 cycling
4 : : : 2 David : : : null null null null

Figure 2: Example Universal Table

Bhobby

source ord valint valstring target
2 5 null painting null
3 4 null swimming null
3 5 null cycling null

Bchild

source ord valint valstring target
1 4 null null 3
1 5 null null 4
2 4 null null 4

Figure 3: Example: Binary Tables with Inlining

2.2 Mapping Values

We now turn to alternative ways to map the values of an XML document (e.g., strings like “Peter” or “4711
Fruitdale Ave.”). We study two variants in this work: (a) storing values in separateValue tables; (b) storing
values together with edges. Both variants can be used together with theEdge, Binary, andUniversalapproaches,
resulting in a total of six possible mapping schemes.

2.2.1 Separate Value Tables

The first way to store values is to establish separateValuetables for each conceivable data type. There could, for
example, be separateValuetables storing all integers, dates, and all strings.2 The structure of eachValuetable is
as follows, where the type of thevaluecolumn depends on thetypeof theValuetable:

Vtype(vid, value)

Figure 1 shows how this approach can be combined with theEdgeapproach. Thevidsof the Valuetables are
generated as part of an implementation of the mapping scheme. Theflag column in theEdgetable indicates in
which Valuetable a value is stored; aflag can, therefore, take values such asinteger, date, string, or ref indicat-
ing an inter-object reference. In the very same way, separateValuetables can be established for theBinary and
Universalapproaches. In terms of indices, we propose to index thevid and thevaluecolumns of theValuetables.

2.2.2 Inlining

The obvious alternative is to store values and attributes in the same tables. In theEdgeapproach, this corresponds
to an outer join of theEdgetable and theValuetables. (Analogously, this corresponds to outer joins between the
BinaryandUniversaltables for the other approaches.) Hence, we need a column for each data type. We refer to
such an approach asinlining. Figure 3 shows how inlining would work for theBinary approach. Obviously, no
flag is needed anymore, and a large number ofnull values occur. In terms of indexing, we propose to establish
indices for everyvaluecolumn separately, in addition to thesourceandtarget indices.

3 Performance Experiments and Results

We carried out a series of performance experiments in order to study the tradeoffs of the alternative mapping
schemes and the viability to store XML data in an RDBMS. In this paper, we present the size of the resulting
relational database for each mapping scheme, the time to reconstruct an XML document from the relational data,

2XML currently does not differentiate between different data types, but there are several proposals to extend XML in this respect.

30



n 100,000 number of objects
fn 4 maximum number of attributes with inter-object references per object
fv 9 maximum number of attributes with values per object
s 15 size of a short string value [bytes]
t 500 size of a long text value [bytes]
ps 80 percent of the values that are strings
pt 20 percent of the values that are text
d 20 number of different attribute names
l 10 size of an attribute name [bytes]

Table 2: Characteristics of the XML Document

and the time to execute different classes of XML queries. Other experimental results such as bulkloading times
and times to execute different kinds of update functions are presented in [3].

To simplify the discussion, we will only present experimental results for four of the six alternative mapping
schemes described in Section 2. We will study theEdge, Binary, andUniversalapproaches with separateValue
tables in order to study the tradeoffs of the different ways to map edges. In addition, we will study theBinary
approach with inlining in order to compare inlining and the separateValuetables variants.

As an experimental platform, we use a commercial relational database system3 installed on a Sun Sparc Station
20 with two 75 MHz processors and 128 MB of main memory and a disk that stores the database and intermediate
results of query processing. The machine runs under Solaris 2.6. In all our experiments, we limited the size of
the main memory buffer pool of the database system to 6.4 MB, which was less than a tenth of the size of the
XML document. Other than that, we use the default configuration of the database system, if not stated otherwise.
(For some experiments, we used non-default options for query optimization; we will indicate those experiments
when we describe the results.) All software which runs outside of the RDBMS (e.g., programs to prepare the
XML document for bulkloading) is implemented in Java and runs on the same machine. Calls to the relational
database from the Java programs are implemented using JDBC.

3.1 Benchmark Specification

3.1.1 Benchmark Database

The characteristics of the synthetic XML document we generate for the performance experiments are described
in Table 2. The XML document consists ofn objects. Each object has0::fn attributes containing inter-object
references (i.e., IDREFs) and0::fv attributes with values. The document is flat; that is, there is no nesting of
objects. (Given our graph model described in Section 2, flat documents with IDREFs are stored in the same way
as documents with nested objects.) All attributes are labeled with one ofd different attribute names; we will refer
to these names asa1; : : : ; ad, but in fact each name isl bytes long. There are two types of values: short strings
with s bytes and long texts witht bytes.ps% of the values are strings andpt% of the values are text. We use a
uniform distribution in order to select the number of attributes for each object individually and to determine the
objects referenced by an object and the name of every attribute. The graph that represents the XML document
contains cycles, but this fact is not relevant for our experiments.

Since the XML document contains values of two different data types (string and text), twoValuetables are gen-
erated in the relational database for the mapping schemes without inlining and twovaluecolumns are included in
theBinaryscheme with inlining. We index the strings completely, as proposed in Section 2.2, but we do not index
the text (for obvious reasons), deviating from the proposed indexing scheme of Section 2.2. Strings and text, as
well as attribute names (in theEdgetable) are represented asvarchars in the relational database.flagsare rep-
resented aschars , and all other information (e.g.,oids, vids, ordinals,etc.) is represented asnumber(10,0) .

The parameter settings we use for our experiments are also shown in Table 2. We create a database with
100,000 objects. Each object has, on an average, two attributes with inter-object references and 4.5 attributes
with values. So, we have a total of approximately 450,000 values; 90,000 texts of 500 bytes and 360,000 short
strings of 15 bytes.

3Our licenses agreement does not allow us to publish the name of the database vendor.

31



Query Description Feature
Q1 reconstruct XML object with oid = 1 select by oid
Q2 find objects that have attributea1 with value in certain range select by value
Q3 find objects that have attributesa1 anda2 with certain values two predicates
Q4 find objects that havea1 anda2 with certain value or justa1 with certain value optional predicate
Q5 find objects that havea1 or a2 or a3 with certain value predicate on attribute name
Q6 find object that match a complex pattern with seven references and eight nodespattern matching
Q7 find all objects that are connected by a chain ofa1 references regular path expression

to an object with a specifica1 value
Q8 find all objects that are connected by a chain ofa1 or a2 references regular path expression with

to an object with a specifica1 or a2 value a predicate on the attribute name

Table 3: Benchmark Query Templates

Q1 Q2L Q2H Q3L Q3H Q4L Q4H Q5L Q5H Q6L Q6H Q7L Q7H Q8L Q8H
9 11 1805 3 131 9 1386 50 5556 1 3 11 2309 37 4616

Table 4: Size of Result Sets of Benchmark Queries

3.1.2 Benchmark Queries

Table 3 describes the XML-QL query templates that we use for our experiments. The XML-QL formulation for
these queries is given in [3]. These query templates test a variety of features provided by XML-QL, including
simple selections by oid and value, optional predicates, predicates on attribute names, pattern matching, and reg-
ular path expressions. In all, we test fifteen queries as part of our benchmark. We test each of the Q2 to Q8
templates in two variants: onelight variant in which the predicates are very selective so that index lookups are
effective and intermediate results fit in memory, and oneheavyvariant in which the use of indices is typically not
attractive and intermediate results do not fit into the database buffers. Specifically, we set the predicates ona1 to
select 0.1% of the values in the light query variants and to select 10% of the values in the heavy variants. The
predicates ona2 are always set to select 30% of the values. All predicates involve short strings only (no text).
For our benchmark database, the size of the result sets for each of these fifteen benchmark queries is listed in
Table 4. To execute these XML-QL queries, we translate them into SQL queries. How this translation is done
for each mapping scheme is outlined in [3] and beyond the scope of this paper.

To get reproducible experimental results, we carry out all benchmark queries in the following way: every query
is carried out once to warm up the database buffers and then at least three times (depending on the query) in order
to get the mean running time of the query. Warming up the buffers impacts the performance of the light queries
that operate on data that fits in main memory; warming up the buffers, however, does not impact the results of
the heavy queries.

3.2 Database Size

Table 5 shows the size of the XML document and of the resulting relational database for each mapping scheme.
The size of the XML document is about 80 MB. We see that even without indices every mapping scheme pro-
duces a larger relational database. TheUniversalapproach, of course, produces the most base data because the
Universaltable is denormalized as described in Section 2.1. Comparing theBinary approach with and without
inlining, we see that inlining results in a smaller relational database: novidsare stored in the inline variant and
nullswhich are produced by the inline variant are stored in a very compact way by our RDBMS. Looking at the
size of the indices, we can see that indices can consume up to 40% of the space.

XML Binary Edge Universal Bin.+Inline
base data 79.2 105.2 122.3 138.9 86.9
indices – 71.1 85.6 76.7 52.7
total 79.2 176.3 207.9 215.6 139.6

Table 5: Database Sizes [MB]

32



Binary Edge Universal Bin.+Inline
Q1 0.036 0.023 0.074 0.024
Q2(l) 0.104/4.6 0.089/5.3 0.093/4.8 0.011/5.3
Q2(h) 15.7 83.0 62.1 0.644/5.5
Q3(l) 6.0 5.1 5.8 2.0
Q3(h) 15.8 133.7 70.5 3.5
Q4(l) 12.3 9.9 11.7 4.1
Q4(h) 32.0 255.7 132.9 6.7
Q5(l) 0.277/15.4 5.1 14.2 0.028/13.9
Q5(h) 48.6 148.1 185.8 14.8
Q6(l) 0.130/6.5 6.1 0.141/6.3 0.017/2.0
Q6(h) 17.0 123.7 63.7 3.3
Q7(l) 0.111/6.2 0.101/5.4 0.096/6.2 0.012/5.3
Q7(h) 16.8 221.5 62.7 1.060/6.6
Q8(l) 18.3 5.0 91.4 32.7
Q8(h) 47.2 392.0 206.9 36.3

Table 6: Running Times of Queries [secs]; Tuned/Untuned

3.3 Running Times of the Queries

Table 6 shows the running times of our fifteen benchmark queries for each mapping scheme. In most cases, the
optimizer of the RDBMS found good plans with the default configuration. In some cases, however, we were able
to get significant improvements by using a non-default configuration; for such cases, Table 6 shows the running
times obtained using the untuned (default) optimizer configuration and the tuned optimizer configuration. Most
of the improvements were achieved for light queries and by forcing the optimizer to use indices instead of table
scans and index nested-loop joins instead of hash or sort-merge joins.

The main observation is that the best mapping scheme (Binary with inlining) shows very good performance.
For all queries, the running time is acceptable. The reason is that today’s relational query engines are very pow-
erful, even if the queries involve many joins and recursion.

Comparing the alternative mapping schemes, we can see that theBinary approach wins over theEdgeand
Universalapproaches and that inlining beats separateValuetables. Both of these results can be explained fairly
easily. TheEdgeapproach performs poorly for heavy queries because joins with the (large)Edgetable become
expensive in this case; in effect, most of the data in theEdgetable is irrelevant for a specific query. For the same
reason, theUniversalapproach with its very largeUniversal table performs poorly for heavy queries. In the
Binary approach, on the other hand, only relevant data is processed. The same kind of benefits of a binary table
approach have been observed in the Monet project for (structured) TPC-D data [1]; for XML data the benefits are
particularly high. Explaining the differences between inlining and separateValuetables is even easier: inlining
simply wins because it saves the cost of the joins with theValue tables. The results show that inlining beats
separateValuetables even if very large values (such as text) are inlined. Inlining would also win if many different
types are involved andnull values are stored in a compact way by the RDBMS.

Q8(l) and to some extent Q1 and Q5(l) are exceptions to the above rules. Q8 involves a predicate on the at-
tribute names. TheEdgeapproach is attractive for such queries because such predicates can directly be applied
to theEdgetable. Executing such predicates involves the generation of an SQLUNIONquery which carries out
duplicate work for the other mapping schemes.

3.4 Reconstructing the XML Document

Table 7 shows the overall time to reconstruct the XML document (and write it to disk) from the relational data for
each mapping scheme. In all cases, it takes more than 30 minutes, and this fact is probably the most compelling
argument against the use of RDMBSs to store XML data. All mapping schemes need to sort by oid in order to
re-group the objects, and this sort is expensive in our environment (it is an 80 MB sort with 6.4 MB of memory).
The disastrous running time for theUniversalapproach with separateValuetables can also be explained. The
Universal table must be scannedd = 20 times (once for each attribute name) in order to restructure the data
and carry out the joins with theValuetables. These observations indicate that it might be advantageous to store

33



Binary Edge Universal Bin.+Inline
56m 52s 40m 56s 1h 41m 17s 32m 8s

Table 7: Reconstructing the XML Document

copies of the original XML documents in the file system in addition to loading the XML data into an RDBMS.
In general, there is no way to store data to meet the requirements of all purposes. Depending on the workload,
multiple copies in possibly different formats are needed – XML data is no exception to this rule.

4 Conclusion

We studied alternative mapping schemes to store XML data in a relational database. The mapping schemes we
studied are extremely simple. Due to their simplicity, they will never be the best choices, but our experiments
indicate that even with such simple mapping schemes, it is possible to obtain very good query performance. The
only operation which had unacceptably high cost was completely reconstructing a very large XML document;
more sophisticated mapping schemes, however, would show poor performance for this operation as well.

This study was only a first step towards finding the best way to store XML data. Our results can be used as a
basis to develop and configure more sophisticated mapping schemes. Also, more experiments with different kinds
of (real and synthetic) XML data are required. In addition, other characteristics such as authorization, locking
behavior etc. need to be studied. Furthermore, performance experiments with OODBMSs and special-purpose
XML data stores ought to be conducted. The XML document and the XML-QL and SQL queries we used for
our experiments can be retrieved from the authors’ Web pages.

References

[1] P. Boncz, A. Wilschut, and M. Kersten. Flattening an object algebra to provide performance. InProc. of
ICDE, Orlando, FL, 1998.

[2] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. InProc. of ACM
SIGMOD, Philadelphia, PN, 1999.

[3] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping schemes for storing XML
data in a relational database. Technical Report, INRIA, France, 1999.

[4] J. Shanmugasundaram et al. Relational databases for querying XML documents: Limitations and opportu-
nities. InProc. of VLDB, Edinburgh, Scotland, 1999.

[5] R. v. Zwol, P. Apers, and A. Wilschut. Modelling and querying semistructured data with MOA.Workshop
on Query processing for semistructured data and non-standard data formats, 1999.

34


