
Advanced Databases :: Second practical assignment
Stratis Viglas
sviglas@inf.ed.ac.uk

In this assignment you will implement two join algorithms in the context of the attica RDBMS. The first
algorithm is merge-join and the second algorithm is Grace hash join. In what follows we will go through the
steps necessary to successfully complete the assignment. Throughout, we assume that you have a working
version of attica and you also have some experience with it through your first assignment.

Merge-join
As a rough guide, the steps you need to follow are the following:

• look into the MergeJoin.java file of your source distribution,
• initialise all the temporary files you might need,
• implement the merge-join algorithm, storing the join result in the pre-defined output relation, and
• modify the optimiser (PlanBuilder.java) so that it will pick up your code.

In more detail:

MergeJoin.java is under org/dejave/attica/engine/operators of your source installation. This is the
main class that you will have to modify. The class's constructor has the following signature:

/** 
	
 	
 *	
 Construct	
 a	
 new	
 mergejoin	
 operator. 
	
 	
 *	
  
	
 	
 *	
 @param	
 left	
 the	
 left	
 input	
 operator. 
	
 	
 *	
 @param	
 right	
 the	
 right	
 input	
 operator. 
	
 	
 *	
 @param	
 sm	
 the	
 storage	
 manager. 
	
 	
 *	
 @param	
 predicate	
 the	
 predicate	
 evaluated	
 by	
 this	
 join	
 operator.  
	
 	
 *	
 @throws	
 EngineException	
 thrown	
 whenever	
 the	
 operator	
 cannot	
 be  
	
 	
 *	
 properly	
 constructed. 
	
 	
 */	

public	
 MergeJoin	
 (Operator	
 left, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Operator	
 right, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 StorageManager	
 sm, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 leftSlot, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 rightSlot, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Predicate	
 predicate)	
  
	
 	
 	
 	
 throws	
 EngineException	
 {	
 ...	

The values of the first three arguments will be set by the caller of the constructor—as was the case in the
first assignment, attica's optimiser. The fourth and fifth argument should concern you, but only minimally.
They are the indexes of the sort-attributes for either input relation (leftSlot for the left input, rightSlot for
the right input.) You will need to access these attributes of the corresponding tuple to "advance" your relation
pointers when implementing the merging phase. The last argument is the predicate itself. The predicate
evaluator will compute the value of the predicate (details following), while the argument value to the
constructor will, again, be taken care of by the optimiser.

Moving on into MergeJoin.java, there is a method called initTempFiles(). You should write your own
code here in order to generate any temporary files that may be used for join evaluation. You already know
how to do so from your previous assignment.

The next step is implementing the merge join algorithm. For this, you will have to modify the setup()
method of the MergeJoin class. Of course, not your entire implementation has to be in this single method!
But when the method exits, the join result should be stored in the designated output file. In order to

mailto:sviglas@inf.ed.ac.uk

implement the merging phase, you will need to access the attributes on which the input relations are sorted
(indexed by leftSlot for the left input and rightSlot for the right input.)

To look at another join implementation, consult NestedLoopsJoin.java. A crucial point is making the right
call to the predicate evaluator. Assuming that the two tuples the join predicates is being evaluated on are
leftTuple and rightTuple, then the call you need to make is the following:

Tuple	
 rightTuple	
 =	
 rightMan.nextTuple(); 
PredicateTupleInserter.insertTuples(leftTuple,	
 rightTuple,	
 getPredicate());  
boolean	
 value	
 =	
 PredicateEvaluator.evaluate(getPredicate());  
if	
 (value)	
 { 
	
 	
 	
 	
 //	
 the	
 predicate	
 is	
 true	
 -­‐-­‐	
 store	
 the	
 new	
 tuple  
	
 	
 	
 	
 Tuple	
 newTuple	
 =	
 combineTuples(leftTuple,	
 rightTuple);  
	
 	
 	
 	
 outputMan.insertTuple(newTuple); 
}	

After you have implemented the merge phase of merge join, the final result should be stored in the output file
pointed to by the outputFile field of MergeJoin (which outputManager writes to.) This file will then be
scanned during the retrieval of the output relation. Again, you might want to take a look at
NestedLoopsJoin.java to see how this is done.

Grace hash join
The second algorithm you will implement is Grace hash join. To do that you will need to modify the source of
GraceHashJoin.java under org/dejave/attica/engine/operators of your source installation.

Your implementation should roughly work as follows:

• look into the GraceHashJoin.java file of your source distribution,
• initialise all the temporary files you might need,
• implement the Grace hash-join algorithm, storing the join result in the pre-defined output relation, and
• modify the optimiser (PlanBuilder.java) so that it will pick up your code.

In more detail, the signature of the class implementing the operator is:

/** 
	
 *	
 Constructs	
 a	
 new	
 grace-­‐hash	
 join	
 operator.  
	
 *	
 	

	
 *	
 @param	
 left	
 the	
 left	
 input	
 operator. 
	
 *	
 @param	
 right	
 the	
 right	
 input	
 operator. 
	
 *	
 @param	
 sm	
 the	
 storage	
 manager. 
	
 *	
 @param	
 leftSlot	
 pointer	
 to	
 the	
 left	
 sort	
 attribute.  
	
 *	
 @param	
 rightSlot	
 pointer	
 to	
 the	
 right	
 sort	
 attribute.  
	
 *	
 @param	
 buffers	
 the	
 number	
 of	
 buffers	
 to	
 be	
 used	
 for	
 the	
 hash	
 tables.  
	
 *	
 @param	
 predicate	
 the	
 predicate	
 evaluated	
 by	
 this	
 join	
 operator.  
	
 *	
 @throws	
 EngineException	
 thrown	
 whenever	
 the	
 operator	
 cannot	
 be  
	
 *	
 properly	
 constructed. 
	
 */ 
public	
 GraceHashJoin(Operator	
 left,	
  
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Operator	
 right, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 StorageManager	
 sm, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 leftSlot, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 rightSlot, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 buffers, 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Predicate	
 predicate) 
	
 	
 	
 	
 throws	
 EngineException	
 {	
 ...	

As was the case in merge join, the first three arguments will be set by the optimiser. The fourth and firth
arguments are the two join attributes from the lest and right input respectively. The sixth argument is the
number of buffers you have available for building the hash table for one of the inputs. And the last argument
is the predicate being evaluated.

• Assume for the time being that the left input is the smaller one (i.e., the one you should have all of its hash
tables fit into main memory).

• Scan the left input and store it in a temporary file, so you know how many pages there are in that file.
• Given the number of buffers you have available, pick the right number of partitions.
• If the input is N pages and you only have B pages available, then you should generate at least N/B

partitions. To keep things safe, aim to double that number.
• Generate as many partition files as needed for the left input (one per partition).
• Scan the stored left input and partition it by applying a hash function on the value of the join slot to figure

out what partition it belongs to.
• Generate as many partition files as needed for the right input (one per partition).
• Scan the right input and partition it by applying a hash function on the value of the join slot to figure out

what partition it belongs to.
• Iterate over the number of partitions and for each partition:

• Open the left partition file on disk, read it tuple by tuple and place its contents into an in-memory hash
table based on the join key of the input.

• Open the right partition file, ready it tuple-by-tuple and for its tuple extract the value of its join attribute
and look it up in the hash table for the left partition.

• If there are any matches, output the result out to disk in the designated output file. The output file has
already been created for you as was the case in merge join.

One thing to note here is that the left join attribute may not be a candidate key, i.e., each value may appear
more than one times in the input. So you will need to build a hash tble structure capable of storing multiple
records per value.

Connecting your code to the rest of the system
The final step you should take: open PlanBuilder.java under org/dejave/attica/engine/optimiser of
your source installation. Go to line 985 and uncomment all lines until line 1044.

Then substitute the calls to ExternalSort with your own implementation of external sort—remember to
change the name if you have named it differently (if you have not submitted the first assignment, a solution
will be provided.). Then comment out lines 1045 and 1046. That way, the next time a join is specified in a
query, your code will be executed if it is an equality join. In all other cases the system will choose nested
loops.

As was the case in the first assignment, to enable hash-based algorithms and, subsequently, Grace hash
join, you need to issue the appropriate command on attica's prompt:

aSQL>	
 enable	
 hash;	

To disable hashing you will need to execute:

aSQL>	
 disable	
 hash;	

Overall, the rules are that:

• By default (i.e., without any changes to PlanBuilder.java) nested loops join is the join processing
algorithm.

• If you change PlanBuilder.java by following the instructions, you enable fast join processing algorithms
for equality join predicates.

• Merge-join is the default algorithm and, if hash-based algorithms have been enabled through the command
prompt, join processing defaults to using Grace hash join.

Testing your implementation

For that purpose you can use the same data generator as before, after generating multiple test tables. You
can have key to key joins (e.g., joining on any of the unique* attributes) or joins with different key
cardinalities. Have a look into WBGen.java to see the key cardinalities but your best bet for testing is a one-
to-many join.

Your implementation will only be tested with a single join per query, so there is no need to try anything more
complicated than that (not to mention that it might have chasing down bugs you are most likely not
responsible for).

Marking guidelines
The assignment is marked out of a possible 100 marks. Each of the two implementations is worth 50 marks
for the assignment. Of these 50 marks per implementation:

25 marks are for a faithful implementation of the algorithm.
10 marks are for code cleanliness
15 marks are for code efficiency of the standard algorithm.

What you need to hand in
You will have to hand in the compiled version of your source tree, along with the source for your
implementations of MergeJoin.java and GraceHashJoin.java. Please also submit any other files you
have modified (apart from PlanBuilder.java).

The submission is electronic only and the deadline is

Friday, 13 March, 12:00 pm.

Use the submit program to make the submission. For instance, to submit the compiled version of the source
tree, use:

submit	
 adbs	
 2	
 attica.jar	

You get the idea for the source files. If you have modified any other source files of the code base, please
submit them as well. You might also think of handing in a description (a text file will do) of what you did if you
think something is worth mentioning. It is not compulsory, but it might make marking the assignment easier.
You can write whatever you want in that file, ranging from implementation issues and problems you faced
(hopefully, along with the solutions you provided!) to comments about the code in general.

