
Advanced Databases :: First practical assignment
Stratis Viglas
sviglas@inf.ed.ac.uk

In this assignment, you will implement two algorithms in the context of the attica RDBMS. The first algorithm
is external merge-sort and the second algorithm is hash-based grouping. In what follows we will go through
the steps you need to carry out in order to complete the practical work.

Download the code-base
The first thing to do is to download the code-base from attica's location:

http://www.inf.ed.ac.uk/teaching/courses/adbs/attica

The system is a feature-complete relational query processor with added “hooks” in the code so you can
modify the system’s behaviour and implement a few extra algorithms that have not been implemented as of
now.

After downloading attica, and if you are familiar with the ant build system you can use an ant	 build file to
compile attica. The build system should be available for your platform, but in case it is not you can obtain
ant	 from:

http://ant.apache.org/

The attica distribution contains a build file that you can use to compile the system. If you decide to use ant
as your build system, these are (some of) the targets of the build file:

• ant	 build	 builds the system,
• ant	 dist	 builds the jar	 file and the javadoc's for distribution,
• ant	 clean	 cleans up the installation,
• ant	 cleanAll cleans up everything.

This functionality is also covered in the notes from the lab sessions so you can refer to them if necessary.

An alternative is to import the source files into your favourite IDE and use that to control the environment.
Regardless of your choice of environment and/or build system, however, your submitted work needs to run
on DICE.

Implementation
As a rough guide, the steps you have to follow are the following:

• Look into the files ExternalSort.java and HashGroup.java.
• Initialise all the temporary files you are going to need.
• Implement the external sort algorithm, and hash-based grouping.
• In the context of your implementation you will store the sorted /partitioned results in temporary files that you

will need to access in order to return results to the caller.
• Modify the optimiser (PlanBuilder.java) so that it will pick up your code.

More details about your implementations follow.

External merge-sort
Open ExternalSort.java under org/dejave/attica/engine/operators of your source installation.
This is the main class that you will have to modify. The class's constructor has the following signature:

mailto:sviglas@inf.ed.ac.uk
http://www.inf.ed.ac.uk/teaching/courses/adbs/attica
http://www.inf.ed.ac.uk/teaching/courses/adbs/attica

/**  
	 	 *	 Construct	 a	 new	 external	 sort	 operator.  
	 	 *	  
	 	 *	 @param	 operator	 the	 input	 operator.  
	 	 *	 @param	 slots	 the	 slots	 acting	 as	 sort	 keys.  
	 	 *	 @param	 buffers	 the	 number	 of	 buffers	 (i.e.,  
	 	 *	 output	 files)	 to	 be	 used	 for	 the	 sort.  
	 	 *	 @throws	 EngineException	 thrown	 whenever	 the	 sort	 operator  
	 	 *	 cannot	 be	 properly	 initialized.  
	 	 */  
public	 ExternalSort	 (Operator	 operator,	 StorageManager	 sm,  
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 int	 []	 slots,	 int	 buffers)	  
	 	 	 	 throws	 EngineException	 {	 ...	

The proper values of the first two arguments will be taken care of by the caller of the constructor—in this
case, attica's heuristics-based optimiser.

The third argument is an array of integers. These integers correspond to slots in the input relation of the
operator and designate the sort keys. For instance, if the array values are [1,	 0,	 2] that means that the
primary sort key is the value in the 1st slot of the tuple. The secondary sort key is the value in the 0th slot of
the tuple, while the third sort key is the value in the 2nd slot of the tuple. The optimiser will set these values
for you (you do not have to do any range-checking) but you will have to use these values to access the fields
of the tuple that you are sorting by.

The fourth argument is the number of buffer pool pages allocated for the sort. This number should be less
than the number of available buffer pool pages and the optimiser will ensure this is the case. There is a limit
to the number of open files you can have, but that is actually determined by the operating system and
depends on your local installation. As a guide, a 64-bit program using standard I/O can use up to 2 billion
descriptors. For all sensible uses of your code, you will not reach this upper bound.

Moving on into ExternalSort.java, there is a method called initTempFiles(). You should insert your
own code here if you would like to generate any temporary files that will be used for sorting and that you
know of at this point in time. Notice that this is only for the initialisation phase. In reality, you will have to
generate more than one files, i.e., during the intermediate passes of the algorithm.

The following code, initialises a temporary file, monitored by attica's storage manager:

String	 filename	 =	 FileUtil.createTempFileName();  
sm.createFile(filename);	

where sm is a StorageManager instance.

If you want to have a look at how these files can be created inside an operator, look at the constructor
of NestedLoopsJoin.java under the directory attica/engine/operators of your source installation
(lines 74 through 77.)

The next step is implementing the external sort algorithm. For this, you will have to modify
the setup() method of class ExternalSort. Of course, not your entire implementation has to be in this
single method! But when the method exits, the sorted result should be stored in the designated output file.

To re-iterate from lectures, here is a rough sketch of the algorithm to sort a file using B buffer pool pages:

1. Read in the input file in batches of B pages, sort them in main memory and write them out to a temporary
file. If the file had X pages originally, this will generate X/B temporary sorted files on disk.

2. Read in B-1 temporary files and merge them into a new temporary file. Use one page for output (i.e.,
keep merging from the B-1 files into the output page, and as soon as the output page fills up, flush it to
disk.)

3. Read in the next B-1 files and merge them. Continue until the X/B files are exhausted.

4. Apply steps 2 and 3 for the new set of temporary files and iterate until you are left with one big sorted file.

An alternative to this is to use replacement selection with two heaps, the current heap and the next heap.
That is, instead of batching the input into chunks of B pages maintain two heaps of a combined size equal to
the number of tuples that can fit into these B pages and then:

1. Read in B pages and turn them into a heap. This is the current heap; the next heap is empty.
2. While the input is not exhausted, apply the following steps.

A. Output the minimum value from the current heap into the file for the current run.
B. Read the next value from the input and decide if it belongs to the current heap or the next heap.

Place it in the appropriate heap and resize the heaps if necessary.
C. If the current heap becomes empty, close the run, start a new run, and swap the heaps (that is, the

next heap becomes the current heap and the new next heap is empty).

To implement the algorithm you will have to do relation-level I/O, using attica's storage manager. This I/O can
be initialised with the following code:

Relation	 rel	 =	 getInputOperator().getOutputRelation();  
RelationIOManager	 man	 =  
	 	 	 	 new	 RelationIOManager(getStorageManager(),	 rel,	 inputFile);	

which initialises a relation I/O manager; input is read from inputFile, which is simply a file name (NB: this
should be a file monitored by the storage manager, e.g., the file you created previously through a call
to StorageManager.createFile()) and the tuples in the file are expected to conform to the relational
schema referred to by rel. You can use a RelationIOManager instance to read/write tuples, through
the nextTuple()/insertTuple() methods it provides.

You may also need to use the page-level functionality of RelationIOManager. The interface is very similar
to the tuple-level interface. The following code reads all the pages in a relation:

RelationIOManager	 manager	 =	 ... 
 
... 
for	 (Page	 page	 :	 manager.pages())	 { 
	 	 	 	 //	 manipulate	 the	 tuples	 in	 the	 page 
}	

You will have to determine yourselves when you need page-level and when tuple-level I/O functionality.

If you need to write a page out to disk you need to make a simple call to the StorageManager through the
method writePage(page)where page is the Page instance you need to write. You will be able to manipulate
the contents of the page by using the setTuple() and retrieveTuple() methods of the Page class.

When implementing the merge phase, you do not need to manipulate the buffer pool. Instead, you can
continuously write tuples to the output file designated in your call, by making continuous calls to the
insertTuple() method of the output RelationIOManager backing your output file. The storage manager
of attica will take care of the rest (i.e., pagination, outputting a page as soon as it becomes full and so on).

After you have implemented both the sort and the merge phases of external sort, the final, sorted result,
should be stored in the output file pointed to by the outputFile field
of ExternalSort (which outputManager writes to.) This file will then be scanned during the retrieval of the
sorted relation. Again, you might want to take a look at NestedLoopsJoin.java to see how this is done in
the context of a different operator.

The final step you should take: open PlanBuilder.java under org/dejave/attica/engine/optimiser of
your source installation. Go to line 1232 under method imposeSorts(). Notice that a few lines are
commented out—the system right now does no sorting at all. You should uncomment that block of code and
comment out lines 1265 and 1266, which implement what the system is doing right now when the user

requests a sort—which is, simply, nothing. After you have made these substitutions and re-compiled, then
the next time you start the server and you issue an order	 by query, the optimiser will pick up your code and
use it to sort the output. If you do not make this change your code will never run!

Notice that in the example call, external sort is implemented using half the buffer pool pages. However, you
may want to experiment with various values for the number of buffer pool pages to ensure your code works
in various boundary conditions.

Hash-based grouping
For the second part of the assignment, you will need to implement hash-based grouping. For this to be the
case you will need to access HashGroup.java under org/dejave/attica/engine/operators. The
signature of the constructor of the operator is as follows:

/**	
	 *	 Constructs	 a	 new	 hash	 grouping	 operator. 
	 *	  
	 *	 @param	 operator	 the	 input	 operator. 
	 *	 @param	 sm	 the	 storage	 manager. 
	 *	 @param	 slots	 the	 indexes	 of	 the	 grouping	 keys.  
	 *	 @param	 partitions	 the	 number	 of	 partitions	 (i.e.,	 files)	 to	 be  
	 *	 used	 for	 grouping. 
	 *	 @throws	 EngineException	 thrown	 whenever	 the	 grouping	 operator  
	 *	 cannot	 be	 properly	 initialized. 
	 */ 
public	 HashGroup(Operator	 operator,	 StorageManager	 sm,  
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 int	 []	 slots,	 int	 buffers)	  
	 	 	 	 throws	 EngineException	 {	 ...	

Where, as was the case for ExternalSort the first two parameters will be set for you by the optimiser, and the
last two parameters you will need to use in your implementation.

The third parameters, slots, is an array containing the grouping attributes that appear in the group by clause
of the query. The semantics is similar to the ones for sorting: these are the indexes of the tuple slots you are
grouping by. So if the array values is [1,	 0,	 2] then you are grouping by the attributes in the 1st, 0th, and
2nd slot of the tuple.

The fourth parameters is the number of buffers that you have available for hash grouping in the buffer pool.
This means that the size of any partition you create should not exceed this memory budget.

Your implementation should work as follows:

• Scan the input and store it locally so you know how many pages there are in it.
• Given your budget, decide on the number of partitions that you need to create. If the input is N pages and

you only have B pages available, then you should generate at least N/B partitions. To keep things safe,
aim to double that number.

• Generate as many partition files as needed (one per partition).
• Scan the local input and apply a hash function on each tuple. Your hash function should access the

designated slots of the tuple and decide which partition the tuple belongs to. A simple way to compute a
hash value would be to take the results of calling hashCode() on each slot, combine them, and then take
the results of the combined hash value modulo K where K is the number of partitions.

• You will now have as many files on disk as there are partitions. But your job is not done just yet! The
reason is that the number of partitions may well be smaller than the cross product of the key cardinalities of
the grouping attributes. That means that the results within each partition will be completely random and
not grouped in any way.

• To rectify this, you will need to access each partition again and regroup it. To do that you have two options.
• You can either load the partition into main memory, and sort it using a main memory algorithm. You

should access the partition page-by-page and sort the contents across the pages—similarly to sorting the
contents of a run of pages. You already know how to do that from external sorting.

• Or, you can scan the partition file a tuple at a time and build a hash table for the partition that uses all
grouping attributes as a key. You can then scan the hash table to generate the grouped version of the
partition.

• Rehardless of which option you choose above, you will need to write out the new partition and delete the
(ungrouped) partition.

• The rest of the implementation will iterate over all partition files to propagate the results.

In terms of your implementation in the context of the existing code in HashGroup.java, the first thing to note
is a field called partitionFiles that is a list of RelationIOManagers for storing partitions. These should
be the final partitions (i.e., the fully grouped results). You may need to allocate more files for the
intermediate partitions.

Then, note the initTempFiles() method. This method currently generates a file prefix for all partition file
names. You will need to manage the files you create.

Finally, in the innerGetNext() method, the current code assumes that the partitions are contained in the
partitionFiles list of RelationIOManagers. You may need to modify this depending on your
implementation (the code currently loops over the partitions in the list, so if you put more or fewer partitions
there that may cause a problem).

Once you are finished with your implementation you need to connect it with the rest of the system. To do
that, you will need to modify PlanBuilder.java again. Open the file and go to line 1288 and method
imposeGroups(). Starting in line 1308 there is a block of commented out statements that you will need to
uncomment and then you will need to comment out lines 1327 and 1328 that are the current grouping
implementation of the system (which does nothing for the time—as was the case for sorting this is the null
operator).

Note here that hashing algorithms are not enabled by default. What you need to do is issue the following
instruction to the command line interpreter in order to use hash based-grouping:

aSQL>	 enable	 hash;	

Doing that ensures that hashing is enabled for your grouping implementation. Otherwise, sorting will be
used as the default grouping mechanism. If you want to disable hash-based algorithms, then issue:

aSQL>	 disable	 hash;	

Testing your implementation
For that purpose, please go to

http://www.inf.ed.ac.uk/teaching/courses/adbs/attica/WBGen.java	 	

and download the linked data generator. The generator builds arbitrarily large synthetic datasets that
conform (for the most part) to the logical/physical layout of the relations in the Wisconsin Benchmark.
Compile the source file, and you will have the corresponding class file which can be executed as follows:

java	 WBGen	 <table-‐name>	 <number-‐of-‐tuples>	

This command line will output into standard output the SQL commands to create a table by the name
of <table-‐name> containing <number-‐of-‐tuples>	 tuples. The schema of the generated file is shown in
Table 1 below.

You can redirect the output of the generator to a text file and use that text file to feed attica with tuples. For
instance, the following sequence of commands generates the SQL statements for a table of 1,000 tuples
named sort_data, stores the statements in a text file called sort_data.sql	 and then uses the text file as
input to attica in order to actually store the table.

http://www.inf.ed.ac.uk/teaching/courses/adbs/attica/WBGen.java

$	 java	 WBGen	 sort_data	 1000	 >	 sort_data.sql 
$	 java	 org.dejave.attica.server.Database	 attica.properties	 <	 sort_data.sql  
... 
[a	 whole	 bunch	 of	 successful	 insertion	 messages]	

You can then use the generated table for your tests.

Table 1. The schema of the relation generated by the test data generator.

Marking guidelines
The assignment is marked out of a possible 100 marks. Each of the two implementations is worth 50 marks
for the assignment. Of these 50 marks per implementation:

25 marks are for a faithful implementation of the algorithm.
10 marks are for code cleanliness
15 marks are for code efficiency of the standard algorithm.

What you need to hand in
The minimum set of files you will have to hand in are:

• the compiled version of your entire source tree as a single jar file, and
• the source code for your implementation of ExternalSort.java and HashGroup.java and any other files

you have modified apart from the optimiser (PlanBuilder.java).

The submission is electronic only and the deadline is

Friday, 13 February, 12:00 pm.

Column Type

unique1 long

unique2 long

two long

four long

ten long

twenty long

onepercent long

tenpercent long

twentypercent long

fiftypercent long

unique3 long

even long

odd long

stringu1 string

stringu2 string

stringu4 string

Use the submit program to make the submission. For instance, to submit the compiled version of the source
tree, use:

submit	 adbs	 1	 attica.jar

You get the idea for the source files. If you have modified any other source files of the code base, please
submit them as well. You might also think of handing in a description (a text file will do) of what you did if you
think something is worth mentioning. It is not compulsory, but it might make marking the assignment easier.
You can write whatever you want in that file, ranging from implementation issues and problems you faced
(hopefully, along with the solutions you provided!) to comments about the code in general.

