Applied Databases

Lecture 1
Introduction, Basics of XML

Sebastian Maneth

Univeristy of Edinburgh - January 16", 2017

Applied Databases

> Apply database technology (e.g. MySQL) in varying contexts
—~ Together with other technologies:
- XML

- Lucene (full-text search)
- RDF

Applied Databases

> Apply database technology (e.g. MySQL) in varying contexts
—~ Together with other technologies:
- XML

- Lucene (full-text search)
- RDF

WARNING Course Catalogue mentions

- Similarity Search
- Data Analytics

Unfortunately, these will NOT be covered this year

Course Organization

Lectures Monday 14:10-15:00

G.07, Medical School

Thursday 14:10-15:00

Lecture Theatre 2, Appleton Tower
Lecturer Sebastian Maneth (smaneth@inf.ed.ac.uk)
TA Fabian Peternek
Assessment Exam (60%)

Assignment 1 (20%)
due 17th February, 4:.00pm

Assignment 2 (20%)
due 24th March, 4:00pm

20 Lectures

Assignments

Course Format

All material covered in the lectures
IS examinable

Lectures 1-12 cover material
relevant to the Assignments

Assignments

- taken, with consent and warm thanks,
from UCLA lecture “CS144: Web Applications”

Assignments 1 & 2
- Programming assignments, in Java & SQL

- Pair programming:
you are allowed to program in pairs of two persons

Rules:

= either alone or with partner

- may change partner for 2" assignment
—> submit one solution

—> same mark for both in the team

Assignment 1

1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Assignment 1

1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Requires
- XML parsing (DTDs, DOM, SAX)

- basic DB knowledge (schema design, basic SQL queries)

Assignment 1

1) design a relational schema for EBAY data
2) convert EBAY data from XML into relational tables (csv files)
3) import csv files into a MySQL database

4) execute some SQL queries over the database

Lectures 1 -4

Requires /

- XML parsing (DTDs, DOM, SAX)

- basic DB knowledge (schema design, basic SQL queries)

N

Lectures 5-8

Assignment 1

Pair programming
- together design database schema
= individually write load functions for different tables

Ideally together find abstractions that
make the code small, elegant, and readable

10

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

10km

11

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

10km

12

Requires Lecture 9

- spatial search /

- basic knowledge of Lucene / text-indexing

T~

Lectures 10-12

Assignment 2

1) create a Lucene full-text Index (from Java)
2) implement a basic keyword search function
3) build a spatial index in MySQL

4) implement spatial search

5) create web interface for keyword & spatial search
and for display of results

Assignments 1 & 2

- hands-on experience to implement a web store
such as EBAY or similar!

10km

13

Applied Databases

Main Topics

- XML

DB schema design, SQL
Lucene

String Matching

NN ZR T

XPath, XSLT, RDF, SPARQL

Lectures 1 -4

Lectures 5-8

Lectures 9 — 12

Lectures 13 — 16

Lectures 17 — 19

14

Lecture 1

Basics of XML

15

Outline

1. Motivations for XML
2. Well-formed XML

3. Parsing / DTD Validation:

Introduction

16

XML

- Similar to HTML (Berners-Lee, CERN - W3C)
use your own tags

= XML is the de-facto standard for data exchange on the web

17

1. XML

Motivation

to have one language to speak about data

18

1. XML Motivation

- XML is a Data Exchange Format

1974

1989

1994

1996

SGML Standardized Generalized Markup Language
(Charles Goldfarb at IBM Research)

HTML (Tim Berners-Lee at CERN/Geneva)
Berners-Lee founds Web Consortium (W3C)

XML (W3C draft, v1.0 in 1998)

~\

http://www.w3.0rg/TR/REC-xml/

20

XML = data

Philip Wadler
U. of Edinburgh
wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

21

XML = data + structure (mark-up)

Philip Wadler
U. of Edinburgh
wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich
seidl@inf.tum.de

Text file

“mark
it
up!”

<Related>

<colleague>

<name>Philip Wadler</name>
<affil>U. of Edinburgh</affil>
<emall>wadler@inf.ed.ac.uk
</email>

</colleague>

<friend>

<name>Helmut Seidl</name>
<affil>TU Munich</affil>
<emalil>seidl@inf.tum.de
</email>

</friend>

</Related>

XML document

22

XML = data + structure (mark-up)

Philip Wadler
U. of Edinburgh

wadler@inf.ed.ac.uk

Helmut Seidl
TU Munich

seidl@inf.tum.de

“mark
it
up!”

Text file

<Related>

<colleague>

<name>Philip Wadler</name>
<affil>U. of Edinburgh</affil>
<emall>wadler@inf.ed.ac.uk
</email>

</colleague>

<friend>

<name>Helmut Seidl</name>
<affil>TU Munich</affil>
<emalil>seidl@inf.tum.de
</email>

</friend>

</Related>

XML document

Is this a “good” structure?

23

XML Documents

>

Ordinary text files (UTF-8, UTF-16, US-ASCII ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

Allows applications from different vendors to exchange data!

standardized, extremely widely accepted!

24

XML Documents 25

2 Ordinary text files (UTF-8, UTF-16, US-ASCII ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

\

Social Implications!
All sciences (biology, geography, meteorology, astrology...)
have own XML “dialects” to exchange their data optimally

XML Documents

2 Ordinary text files (UTF-8, UTF-16, US-ASCII ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

26

Problem highly verbose, lots of repetitive markup

XML Documents

2 Ordinary text files (UTF-8, UTF-16, US-ASCII ...)
Originates from typesetting/DocProcessing community

|dea of labeled brackets (“mark up”) for structure is not new!
(already used by Chomsky in the 1960’s)

Brackets describe a tree structure

Allows applications from different vendors to exchange data!

= standardized, extremely widely accepted!

27

Contra.. highly verbose, lots of repetitive markup

Pro.. we have a standard! A STANDARD!
- © You never need to write a parser again! Use XML! ©

XML: Validation & Parsing 28

... instead of writing a parser, you simply fix your own “XML dialect’,
by describing all “admissible structures” (+ maybe even the specific

data types that may appear inside).

You do this, using an XML Type definition language such
as DTD, XML Schema, or Relax NG.

- type definition languages must be SIMPLE, because you
want the parsers to be efficient!

They are similar to EBNF - context-free grammar with reg. expr’s in
the right-hand sides. ©

XML Documents

Example DTD (Document Type Description)

Related > (colleague | friend | family)*
colleague > (name,affil*,email*)

friend > (name,affil*,email*)

family > (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

29

XML Documents

Example DTD (Document Type Description)

Related > (colleague | friend | family)*
colleague > (name,affil*,email*)

friend > (name,affil*,email*)

family > (name,affil*,email*)

name - (#PCDATA)

\ N

Element names and their content

Related

T

friend ... colleague family

SN N

name affil email name email email

Helmut ..

30

ordered,
unranked tree

XML Documents
Example DTD
Related > (colleague | friend | family)*
colleague > (name,affil*,email*)
friend > (name,affil*,email*)
family > (name,affil*,email*)
name - (#PCDATA)

\ N

Element names and their content

Related

/ l “Element node”

: /
friend ... colleagu =@

name affil email name email email

Helmut ..

31

XML Documents

Example DTD

Related
colleague
friend
family
name

“Text node”

N

222\ 2 \Z

\

name,affil*,email*)
#PCDATA)

AN

Element names and their content

Related

]

friend

e

name affil email

Helmut ..

/
colleagu =@

name email email

(colleague | friend | family)*
(name,affil*,email*)
(name,affil*,email*)
(
(

“Element node”

32

XML Documents

Example DTD

Related
colleaqgue
friend
family
name

“Text node”

N

222\ \Z

\

name,affil*,email*)
#PCDATA)

N

Element names and their content

Related

]

friend

e

name affil email

Helmut ..

/
colleagu =@

name email email

33

(colleague | friend | family)*
(name,affil*,email*)
(name,affil*,email*)
(
(

Terminology

document is
valid wrt the DTD

“It validates”

“Element node”

XML Documents

What else: (besides element and text nodes)

- attributes

—> processing instructions

- comments

- namespaces

- entity references (two kinds)

34

XML Documents

What else: (besides element and text nodes)

- attributes

—> processing instructions

- comments

- namespaces

- entity references (two kinds)

<entry date="2017-01-16">
<name>

</entry>

35

XML Documents

What else: (besides element and text nodes)

- attributes

—> processing instructions

- comments

- namespaces

- entity references (two kinds)

<entry date="2017-01-16">
<name>

at most one date-attribute
</entry> — No substructure possible
versus: <date>2017-01-16</date>
<date>
<year>2017</year>
<month>01</month>
<day>16</day>
</date>

36

XML Documents

What else;:

- attributes

—> processing instructions

- comments

- namespaces

- entity references (two kinds)

<?php sq1 (“SELECT * FROM ..”) ..?>

intended to carry instructions to
the application

<entry date="2017-01-16">

<name>

</entry>

37

XML Documents

What else:

-> attributes

<?php sql (“SELECT * FROM .") .7>

intended to carry instructions to
the application

—> processing instructions

- comments
- namespaces

<!-- some comment -->

= entity references (two kinds)

<entry date="2017-01-16">

<name>

</entry>

38

39
XML Documents
<?php sq1 (“SELECT * FROM ..”) ..7>

What else: intended to carry instructions to
the application

- attributes

—> processing instructions

<2 comments <!-- some comment -->

- namespaces

= entity references (two kinds)

<entry date="2017-01-16">
<name>
</entry>

<!-- the 'price' element's namespace 1is http://ecommerce.org/schema -->
<edi:price xmlns:edi='http://ecommerce.org/schema' units='Euro'>32.18</edi:price>

Namespaces provide unique element and attribute names

40
XML Documents
<?php sq1 (“SELECT * FROM ..”) ..7>

What else: intended to carry instructions to
the application

- attributes

—> processing instructions

<2 comments <!-- some comment -->

- namespaces

~ entity references (two kinds) ——> character reference

Type <key>less-than</key>
(<:;) to save options.

<entry date="2017-01-16">

<nhame> Name | Character Unicode code point (decimal) Standard Description
quot " U+0022 (34) XML 1.0 double quotation mark
amp & U+0026 (38) XML 1.0 ampersand
</entry>
apos |' U+0027 (39) XML 1.0 apostrophe (apostrophe-quote)
It < U+003C (60) XML 1.0 less-than sign
gt > U+003E (62) XML 1.0 greater-than sign
<!-- the 'price' element's namespace 1is http://ecommerce.org/schema -->

<edi:price xmlns:edi="http://ecommerce.org/schema’ units="Euro'>32.18</edi:price>

Namespaces provide unique element and attribute names

41
XML Documents
<?php sq1 (“SELECT * FROM ..”) ..7>

What else: intended to carry instructions to
the application

- attributes

—> processing instructions

<2 comments <!-- some comment -->

- namespaces

> entity references (two kinds) —— character reference

Type <key>less-than</key>
(<:;) to save options.

<entry date="2017-01-16">

<hame>
</entry> This document was prepared on &docdate; and
<!-- the 'price' element's namespace 1is http://ecommerce.org/schema -->

<edi:price xmlns:edi="http://ecommerce.org/schema’ units="Euro'>32.18</edi:price>

Namespaces provide unique element and attribute names

XML: not tree but Graph 42

attributes of type ID: must be unique, i.e., no duplicate values

may be referenced via attributes of type IDREF

Related

i

UID=“173478” «—friend ... colleague family

SN - ENTT—

name affil email name email email friend > uidREF=173478"

Helmut ..

— |D-attributes are similar to keys in relational DBs

XML, typical usage scenario

Document structure _
Def. of price, gst, ... Presentation /'

Format info
DTD, XML Schema

XML Stylesheet

<Product> XML

<product_id> m101 </product_id> Stylesheet

<name> Sony walkman </name> .

<currency> AUD </currency> X

<price> 200.00 </price>

<gst> 10% </gst> M
</Product> L T XML

Stylesheet ===

One data source - several

dynamically generated views

XML: has it succeded?

Yes and No:
has become *very* popular and adopted
technically it is still (!) challenging:

(*) standard too complex

(*) causes, e.g., slowness of XML parsers
(a “threat to databases™)

44

- JSON - invented in 2001 by Douglas Crockford
- took off since 2005/2006

JavaScript Object Notation

45

XML vs JSON

<ReTated> Related = {

<colleague> “colleague”: {

<name>Philip Wadler</name> “name” :”’Philip Wadler”,
<affil>U. of Edinburgh</affil> “affi1”:”U. of Edinburgh”,
<email> “email”:”wadler@inf.ed.ac.uk”
wadler@inf.ed.ac.uk }

</email> .

</colleague> “friend”: {

. “name” :”Helmut Seidl”,
<friend> “affil”:”TU Munich”,
<name>Helmut Seidl</name> “email”:”seidl@inf.tum.de”}
<affil>TU Munich</affil> }

<email>seidl@inf. tum.de

</email>

</friend>

</Related>

mailto:seidl@inf.tum.de

XML vs JSON

46

- 7 node types
- DTDs are built in

Very rich schema languages, e.g.,

- XML Schema
(e.g., XHTML schema: >2000 lines)

6 data types:

- number

- string

- boolean (true/ false)

- array

- object (set of name: value pairs)
- empty value (null)

47

2. Well-Formed XML

From the W3C XML recommendation

http://www.w3.0rg/TR/REC-xml/

“A textual object is well-formed XML if,

(1) taken as a whole, it matches the production labeled document
(2) it meets all the well-formedness constraints given in this specification ..”

document = start symbol of a context-free grammar (“XML grammar”)

- (1) contains the contex-free properties of well-formed XML
- (2) contains the context-dependent properties of well-formed XML

There are 10 WFCs (well-formedness constraints).
E.g.: Element Type Match “The Name in an element’s end tag must match

> Why is this not context-free? ~ the element name in the start tag.”

[1] document

[2] Char
[3] S
[4] NameChar
[5] Name

[22] prolog
[23] XMLDecl

[24]VersionInfo

[25] Eq
[26]VersionNum

[39] element

[40] STag
[41] Attribute
[42] ETag

[43] content

[44]EmptyElemTag ::

[67] Reference
[68] EntityRef
[84] Letter
[88] Digit

XML Grammar - EBNF-style 48

ES

a Unicode character
SR BN S B N
(Letter | Digit | “." | “-" | “:")
(I D I) *
? * | *)7?
'<?xml' ? 77 !
S'version' (""" "t '"'VersionNum'""')
S? '=' S?
'1.0°
EmptyElemTag

STag content Etag

'<' Name (S Attribute)* S? '>'
Name Eq AttValue

'</"' Name S? '>‘

(element | Reference | CharData?)*
'<' Name (S Attribute)* S? '/>!

EntityRef | CharRef
‘&' Name '; ¢
[a-zA-Z]

[0-9]

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

XML Parsing: A Threat to Database Performance

Matthias Nicola
IBM Silicon Valley Lab
555 Bailey Avenue
San Jose, CA 95123, USA
mnicola@us.ibm.com

ABSTRACT

XML parsing is generally known to have poor performance char-
acteristics relative to transactional database processing. Yet, its
potentially fatal impact on overall database performance is being
underestimated. We report real-word database applications where
XML parsing performance is a key obstacle to a successful XML
deployment. There is a considerable share of XML database appli-
cations which are prone to fail at an early and simple road block:
XML parsing. We analyze XML parsing performance and quan-
tify the extra overhead of DTD and schema validation. Comnari-
son with relational d:

Jasmi John
IBM Toronto Lab
8200 Warden Ave
Markham, ON L6G 1C7, Canada
jasmij@ca.ibm.com

tially because processing of XML requires parsing of XML
documents which is very CPU intensive.

The performance of many XML operations is often determined by
the performance of the XML parser. Examples are converting
XML into a relational format, evaluating XPath expressions, or
XSLT processing. Our experiences from working with companies,
which have introduced or are prototyping XML database applica-
tions, show that XML parsing recurs as a major bottleneck and is
often the single biggest performance concern seriously threatening
the overall success of the nroiect. This observation is general to

49

response times and 1N Proceedings of the 2003 ACM CIKM International Conference

achieved without maj

ozy. Thus, we idenit. ON [Nformation and Knowledge Management,
New Orleans, Louisiana, USA, November 2-8, 2003

for XML parser perfot

Categorles and LJ“UJ\./\al AFUONVL ll.l wiLo
H.2.4 [Database Management]: Systems—transaction processing.

General Terms: Algorithms, Measurement, Performance,
Design.

Keywords: XML, Parser, Database, Performance, SAX,
DOM, Validation.

1. INTRODUCTION

XML has become much more than just a data format for informa-
tion exchange. Enterprises are keeping large amounts of business
critical data permanently in XML format. Data centric as well as
document and content centric businesses in virtually every indus-
try are embracing XML for their data management and B2B needs
[8]. E.g. the world’s leading financial companies have been work-
ing on over a dozen major XML vocabularies to standardize their
industry’s data processing [9].

All major relational database vendors offer XML capabilities in

their products and numerous “native” XML database systems have
e 1 T Tt mse ot Tn e 4lin VAT mom T T A senl ot mon] e

(£ 10 O UIes e 81£€ 01 U1€ AlvilL, AOCUIIICIlL, nence unsuidnic 10r
large documents). Lazy DOM parsers materialize only those parts
of the document tree which are actually accessed, but if most the
document is accessed lazy DOM is slower than regular DOM.
SAX parsers report parsing events (e.g. start and end of elements)
to the application through callbacks. They deliver an event stream
which the application processes in event handlers. The memory
consumption does not grow with the size of the document. In gen-
eral, applications requiring random access to the document nodes
use a DOM parser while for serial access a SAX parser is better.

XML parsing allows for optional validation of an XML document
against a DTD or XML schema. Schema validation not only
checks a document’s compliance with the schema but also deter-
mines type information for every node of the document (aka #ype
annotation). This is a critical observation because database sys-
tems and the Xquery language are sensitive to data types. Hence
most processing of documents in a data management context not
only requires parsing but also “validation”.

Depending on an XML database system’s implementation, there
are various operatlons which require XML parsing and p0551b1y

S Bk PRV s ol T A Y T DY Y D - & P

How expensive is XML Parsing?

= DTD is part of XML
- DTDs may contain (deterministic) regular expressions

- How expensive is it to match a text of size n
against a regular expression of size m?

- DTDs allow recursive definitions

- DTDs allow ID and IDREF attributes
(ID: check uniqueness, IDREF: check existence)

50

How expensive is XML Parsing?

- DTD is part of XML
- DTDs may contain (deterministic) regular expressions

- How expensive is it to match a text of size n
against a regular expression of size m?

- DTDs allow recursive definitions

- DTDs allow ID and IDREF attributes
(ID: check uniqueness, IDREF: check existence)

51

Compare this to parsing complexity of

- JSON
= csv files (csv = “comma-separated values”) [IBM Fortran, 1967]

	Applied Databases
	Slide 2
	Slide 3
	Course Organization
	Course Format
	Assignments
	Assignment 1
	Slide 8
	Slide 9
	Slide 10
	Assignment 2
	Slide 12
	Slide 13
	Slide 14
	PowerPoint Presentation
	Outline
	Slide 17
	1. XML
	Slide 19
	1. XML Motivation
	XML = data
	XML = data + structure
	Slide 23
	XML Documents
	Slide 25
	Slide 26
	Slide 27
	XML: Validation & Parsing
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	XML: not tree but DAG (Directed Acyclic Graph)
	XML, typical usage scenario
	XML: has it succeded?
	XML vs JSON
	Slide 46
	2. Well-Formed XML
	XML Grammar - EBNF-style
	Slide 49
	How expensive is XML Validation?
	How expensive is XML Validation/Parsing?
	Slide 52

