
Sharing Programs and Data
in the DICE Environment

by Paul Anderson <dcspaul@inf.ed.ac.uk>

School of Informatics
University of Edinburgh

1 Introduction

The DICE environment provides a standard set of soft-
ware which is managed in a sustainable way, and dis-
tributed to all DICE workstations. However, groups,
or individuals, may have requirements to share other
software, or data, which it is not appropriate to include
in the core DICE distribution. This note outlines the
different approaches available, and explains the advan-
tages and disadvantages – this represents general sys-
tem administration experience, and is not specific to
DICE in any way.

2 Local vs Remote

In the early days of local networks, most data and
application code was stored on central servers, and
mounted directly by the clients using a remote filesys-
tem. This was mainly due to the cost of disk space.
Now that disk space is much cheaper, there is a ten-
dency to distribute application code (at least) to the
local workstation disks, rather than mounting remote
filesystems. The technology for this is well established
and it has the following advantages:

❑ It avoids the possible performance bottlenecks,
single-point-of-failure, and problems such as stale
filehandles, associated with a central server (if the
server fails, the clients will continue to operate).

❑ The data is available, when the remote filesystem
is not - for example, to disconnected laptops (on
that long flight), and (currently) to self-managed
DICE-machines.

This may be less appropriate for non-code data, es-
pecially for large datasets, or where the data changes
frequently, in which case a remote filesystem may be
necessary. Other solutions may also be appropriate, de-
pending on how the data is used – for example, CVS is
a good choice for collaborative development of source
code or documents – keeping a local “checked out”
copy of relevant modules avoids the above problems
except at commit time, and provides the additional
benefits of version control.

3 Managed Repositories vs Ad-hoc
Filesystems

Again, in the early days of local networks, shared soft-
ware was simply installed directly into a common di-
rectory. However, over time, it has become clear that
this is not a sustainable solution – software directories
fill with “rotting” files, and quickly become unmanage-
able, especially when multiple people are involved in
their maintenance. We have seen many examples of
this, including huge repositories where it is impossible
to tell exactly what is installed, or what any individ-
ual file is for, and impossible to remove or upgrade any
packages with any degree of confidence.

Initially , most sites developed their own ad-hoc so-
lutions to this problem (including us – see [And91]).
However, this is now largely addressed by standard
package management software, of which RPM (see
[Bai97]) is a good example (this is the standard for
Redhat Linux, as used by DICE). The package man-
age system provides:

❑ The ability to know which packages are installed
at any time, and to know which files belong to
which packages.

❑ The ability to add or remove new packages at any
time.

❑ Tracking of dependencies, so that packages are
not accidentally removed when some other pack-
age depends on them.

❑ A convenient way of specifying and sharing pack-
ages between installations.

❑ And other benefits ...

Package management tools are most appropriate for
distributing software packages, or small, read-only
datasets. Large or frequently changing datasets will
probably require different treatment, and CVS may be
useful in some cases.

Repository management is a particularly insidious
problem, because the simple directory solution has
a very low startup cost (compared with the learning
curve required for package management), but the neg-
ative consequences may not be apparent for several
years, by which time re-organisation becomes a seri-
ous difficulty.

Revision: 1.0 14 December 2004



(2)

If simple software repositories are created without any
use of tools, then it essential to have good manual pro-
cedures and strong discipline in their management.

4 Access Control

It is important to consider access control to any shared
repository.

Access control to shared NFS filesystems will proba-
bly be handled by the simple Unix group mechanism -
this is very crude, and the limitations on group mem-
bership restrict the number of groups to which users
can belong.

CVS provides better access control, and it is planned to
implement a simple RPM repository with fine-grained
access control, as part of the DICE developments men-
tioned below.

5 DICE Restrictions

Mainly due to security issues with the existing NFS
filesystem, there are currently restrictions on the soft-
ware that can be installed on DICE clients. However:

❑ We hope that it will soon be possible to install
user-created RPM packages on standard DICE
clients, providing that the RPMS only install files
into a specific part of the filesystem hierarchy
(such as/contrib ).

❑ The new “DIY DICE” proposals will allow users
to have “partially managed” DICE machine which
will have some limitations, but will allow soft-
ware to be installed anywhere on the client (auto-
matically, if the standard RPM distribution mech-
anism is used).

6 Producing Software for Export

If groups, or individuals, are creating software for ex-
port – either for use simply within Informatics, or for
wider distribution – we would very much like to en-
courage consideration of the distribution phase. Poor
understanding of modern packaging requirements can
make it very difficult for other people to install and use
the software and often creates a bad impression of the
quality of the software itself.

Modern, industry-standard tools make this process rel-
atively straightforward, and we are happy to offer ad-
vice on these. Making software widely available in the
external community will also provide valuable feed-
back.

7 Conclusions

There are several different ways of providing shared
software and data. Most of these are available in the
DICE environment, but they have different character-
istics, and it is worthwhile considering how the soft-
ware/data will be used, and choosing appropriate tech-
nologies. Note that this may involve different pro-
cesses for different types of data.

By way of example, the source code for local DICE
software is stored in a remotely-accessible CVS repos-
itory. The build process for these modules automati-
cally creates RPM packages of the program binaries.
These binaries are stored on central repository, and
the individual clients download the required packages
(over HTTP) and install them on the local filesystem.
This represents current “best-practise” and is appropri-
ate for large amounts of core software which must be
sustained long-term on a production service.

In many cases, such an engineered solution will not
be appropriate for more restricted collections of shared
data. However, we would strongly encourage consid-
eration of the various options, and adoption of good
management practises where possible – this will help
to contribute to the overall sustainability and usability
of the Informatics computing environment.

References

[And91] Paul Anderson. Managing program bina-
ries in a heterogeneous Unix network. In
Proceedings of the 5th Large Installations
Systems Administration (LISA) Conference,
pages 1–9, Berkeley, CA, 1991. Usenix
Association.
http:// ...

homepages.inf.ed.ac.uk/ ...

dcspaul/publications/ ...

LISA5 Paper.pdf .

[Bai97] Edward C Bailey.Maximum RPM. Redhat
Software Inc., 1997.
http://www.rpmdp.org/ ...

rpmbook/ .

Paul Anderson

http://homepages.inf.ed.ac.uk/dcspaul/publications/LISA5_Paper.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/LISA5_Paper.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/LISA5_Paper.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/LISA5_Paper.pdf
http://www.rpmdp.org/rpmbook/
http://www.rpmdp.org/rpmbook/

	Introduction
	Local vs Remote
	Managed Repositories vs Ad-hoc Filesystems
	Access Control
	DICE Restrictions
	Producing Software for Export
	Conclusions
	Bibliography

