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Richard Hamming

e Hamming Numbers’®Y5* (Manhattan Project)
e Hamming Distance (Manhattan Distance)

e Hamming Problems
— What are the really important problems in your field?
— What are you working on?

— Why are you looking for your keys under the streetlight when you know
you dropped them at the Dark End of the Street?



A Brief History of Problems

o Until the mid-sixties, Computational Linguistics was dgigdocused on finite
state methods and the problem of Machine Translation. Thehmes were

tiny, slow, and expensive.
e The Georgetown Experiment 1956-1966.

e Cyclic Translation demo: English Russian English

Time flies like an arrow= Time flies enjoy arrows



A Brief History of Problems

¢ In the aftermath of the ALPAC report (1966), there was widead
agreement that the important problems were essentiathyigtic. The
emphasis was on full syntactic analysis, and the need foasgoally-based
“understanding” to resolve the huge degree of ambiguitytt@earlier work
had revealed. Entire research groups were running on aesiild Hz
processor and 1Mb of RAM (or less)

e By the mid '80s (by which time Moore’s Law had put several tenleat
computing power on every desktop), it was clear that the gram and
parsing techniques developed in the previous decade wegomg to scale
to wide-coverage.

— The grammars were too big to manage and mainly consisteccepénns.
— The degree of ambiguity was too great for exhaustive search.

— Linguistic semantics compounded the problem of ambiguiy failed to
support inference and understanding.



Where we are now

e Meanwhile, some novel algorithms for statistical modeineation had been
discovered. It became clear that finite-state methodsacaleh better than
more powerful methods, and that the most practical solubdhe problem of
syntactic ambiguity was to combine standard parsing algms with
probabilistic or information-theoretic models of theield, derived from
counts of their components in human-labeled corpora oflisadks—I.e.
“supervised” machine learning.

e A major boost to this method came from the discovery thatifpec
word-dependencies, as between a verb and the noun heaslsupject, were
particularly informative. Interestingly, such head-walependency models
can be seen as approximating a model of semantic predicaieant
relations.

e As an unexpected bonus, it turned out to be easier to demge rammars
automatically from treebanks than to engineer them by hand.



Where we are now

¢ In the present state of natural language processing régesdatistical models
are ubiquitous. Together with the exponential increas@mpuuting power
under Moore’s Law, they have driven the remarkable progoédise last 40
years in automatic speech recognition (ASR), informatemeval (IR), and
statistical machine translation (SMT).

e The most successful methods Wgervised Learningfrom data labeled by
humans.

— For parsers, the data are sets of sentences laborious|yaa@devith
syntactic trees or dependency graphs, the largest of winecbuarently
around 1M words in size.

— For SMT systems, the training data are parallel text produigehuman
translators, of which the largest set available is arour@V2@ords.

— For ASR it seems to be a few thousand hours of transcribed hspeech.
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e From Al Jazeera: Arabic human translation of Reuters neveswiEnglish:
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The State of the Art: Arabic-English SMT

e The German Franz Ouch which leads efforts Google translammputer
feeds hundreds of millions of words of parallel texts suciesbic, English,
using documents of the United Nations and the European Wkagrsources.
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The State of the Art: Arabic-English SMT

e The German Franz Ouch which leads efforts Google translammputer
feeds hundreds of millions of words of parallel texts suciesbic, English,
using documents of the United Nations and the European Wkagrsources.

e And how a new translation Ouch said that although the quealdyld not be
complete That was a good in the previous translation meshgrand that the
correct translation mostly might be good enough for somiestade stated
that more data be fed by the results were better.
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The State of the Art: Arabic-English SMT

“The German Franz Ouch which leads efforts Google tramstatomputer
feeds hundreds of millions of words of parallel texts suciesbic, English,
using documents of the United Nations and the European Wkagrsources.

And how a new translation Ouch said that although the quealdyld not be
complete That was a good in the previous translation meshgrand that the
correct translation mostly might be good enough for somiestade stated
that more data be fed by the results were better.

...He commendet¥iles Osborne Professor at the University of Edinburgh,
who died last year at work in the company’s efforts to Gophig he pointed
out that the software will not prevail over people skilledranslations as they
do in the game of chess and should use software to understanibato
complete documents.”
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The State of the Art: Arabic-English SMT

e “The German Franz Ouch which leads efforts Google trarmiatomputer
feeds hundreds of millions of words of parallel texts suciAgsbic, English,
using documents of the United Nations and the European Wkagrsources.

e And how a new translation Ouch said that although the quealdyld not be
complete That was a good in the previous translation meshgrand that the
correct translation mostly might be good enough for somiestade stated
that more data be fed by the results were better.

e ...He commended Miles Osborne Professor at the Univer§iBdmburgh,
who died last year at work in the company’s efforts to Goobid,he pointed
out that the software will not prevail over people skilledranslations as they
do in the game of chess and should use software to understanbato
complete documents.”

The arabic words for “passed” and “died” are homographs,thadrabic
news-data model favors the latter
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2007: English-Arabic-English
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2007 English-Arabic-English

e Time flies like an arrow.

el st OLAL 3l
time-DEF flies-DEF resemble arrow-DEF
"Time flies like arrow."
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2007 English-Arabic-English

e Time flies like an arrow.

ol ey OLAUL 23
time-DEF flies-DEF resemble arrow-DEF
"Time flies like arrow."

Fruit flies 1like a banana.

sl e AUl oL

Flies-N fruit-N resemble banana-N
"Fruit flies like bananas."”

Soon after | published these results in 2007, some of thesgfgpexamples

were fixed by Google. However, there are still plenty more likem currently
out there for you to find for yourself.
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The View from the Long Tall

This 1s the bank that bought the company.
R CERAI NG BN R S CR | VY
"This 1s the bank that bought the company."
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The View from the Long Tall

This 1s the bank that bought the company.
VSl sl ol e Gkl sy
"This 1s the bank that bought the company."

This 1s the company that the bank bought.

NETA[QCHES R [ C g S RPN Y
"*This 1s the company that bought the bank."

This 1s the bank that wants to buy the company.

Sl i) by sl Goall e e
"This 1s the bank, which wants to buy the company."
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The View from the Long Tall

This 1s the bank that bought the company.
VS, il ol e ekl ey
"This 1s the bank that bought the company."

This 1s the company that the bank bought.

NETA[QCHES R [ C g S RPN Y
"*This 1s the company that bought the bank."

This 1s the bank that wants to buy the company.
Sl ) sy gl Gaall e s
"This 1s the bank, which wants to buy the company.”

This 1s the company which the bank wants to buy.

vl s wy A e s
"*This 1s the company that wants to buy the bank."
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More Long Tall
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More Long Tall

This 1s the company that said the bank bought bonds.
A US| [ - PR g [ R CHA | PN TS
"This 1s the company that said the bank bought the bonds."
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More Long Tall

This 1s the company that said the bank bought bonds.
ol sy bl JB A IS e e
"This 1s the company that said the bank bought the bonds."

This 1s the company that the bank said bought bonds.

ol sy bl JB A IS e e
"*This 1s the company that said the bank bought the bonds."
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More Long Tall

This 1s the company that said the bank bought bonds.
A US| [ - PR g [ R CHA | PN TS
"This 1s the company that said the bank bought the bonds."

This 1s the company that the bank said bought bonds.
ol sy bl JB A IS e e
"*This 1s the company that said the bank bought the bonds."

These are the bonds that the company said that the bank bought.

oAl ol WA Sl ss
"*These are the bonds that the bank bought the company."
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Who cares?

Not surprisingly, SMT is bad at non-subject relatives. So what?
There are around 1000 object relatives in the Penn Treebank.

Getting them right isn’t going to significantly affect youogal
dependency-recovery rate or Bleu score.

However, they are semantically crucial
Genres like Questions have higher rates.

Moreover, the more of the easy stuff we get right, the more Itklaid stuff will
matter.

— Q: What do frogs eat?
— A: Herons.

This is somewhat like what our colleagues in animation ¢edl“uncanny
valley”.
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What to Do?

e Keep on looking under the streetlight:

— Give thanks for Moore’s Law.
— Get more data, and hit it with the latest fashion in statdticodels.

e This may not work:

— Accuracy in most areas (WER in ASR, Bleu score in SMT, Evabib f
parsers) ist best linear in the logarithm of the training data.

— Extrapolation of learning curves suggests impracticah datjuirements
(Knight and Koehn 2004; Moore 2003; Lamel, Gauvain and Adaz2}.
+x NO-one is going to give us even 10M words of Penn treebank
x We can’t wait around for 2BN words of parallel text
x The amount of speech data that would be required to bring HVMBRA

up to human standard seems to be about 1M hours.

e Unsupervised learning of such systems from unlabeled dsartt seem to
work.
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Interpolating Higher Level Information

There is every indication that high level information frogngax and
semantics will help with this problem (Hassan, Sima’an aray\2009; Birch,
Osborne and Koehn 2007).

This claim is very hard to prove, because for applicatioks ASR and SMT
the syntax and semantics needs torfmeemental for this to work (Roark
2001).

Most of the available theories, including treebank gransnlack this
property.

Nevertheless, even speakers of verb-final languages Ipandse are
convinced that their interpretation is incremental.
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The Hamming Alternative

e “What are the most important problems in your field?”

Breaking the asymptote of approximate approaches to symax
semantics.

Building the right kind of grammar at a large enough scaleétiable
parsers to support QA, IR, SMT etc.

Building statistical models large enough to drive thosespes.

Building a semantics that will support practical inferefesond the
sentencdor those purposes.

Doing all of this using unlabeled data.
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Problem 1: Fix the Grammars

e Most grammars (Chomskyassm, GPSG, HPSG, LFG) amile-based
NP — Det Noun

e Dbut there are alwaysxceptions
[[Whisky]noun [galorepet]np

Solexicalizethe grammar (TAG, CCG):
athe every =NP/N galore = NP\N

Restrict rules tadjacent operators with as much incrementality as possible
(Steedman 2000)
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Problem 2: Learn from Unlabeled Data

e Pure unsupervised learning is too hard.

e Partially unsupervised learning by generalizing from suised grammars
may be possible.

— Sentences in which we know everything with high confidenazpkone
word such as “galore” might allow us to bootstrap a lexicahefor the

unseen word which allows an analysis with high probabilitigmforde
2008).

— Sentences in which we think we know everything but the moalgs$ ®very

parse is low probability might allow us to bootstrap a newdakentry
such as causative transitive “walk” for seen intransitivelk”.

— Such methods might be boosted with tiny amounts of langsagetfic
data (Boonkwan).

Estimating the model for new lexical items is the hard part.
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Problem 3: Get Labeled Data Automatically

Children learn language with great facility from pairedrsfis and (noisy,
confounded) contextually available meanings, learningraipg model for
universal grammar in much the same way as a supervised parser
(Kwiatkowksi, Goldwater and Steedman 2009).

Human operators like travel agents map gueries onto dagapseies and
database returns onto answers. Can we learn from theseedgua#\{ 1S
Zettlemoyer and Collins 2007)?

show me information on american airlines from fort worthasxo
philadelphia

Ax.airline(x,americanairlines) A from(x, fortworth) A to(x, philadel phia)

Kwiatkowksi et al. (2010) shows how to do this using Highedér
Unification to produce all possible decompositions of thgedal form paired
with all possible substrings of the sentence.
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Figure 1: Learning SVO word order from the CHILDES depengdmank of child-
directed utterance using Variational Bayes (Kwiatkowia|dwater and Steedman
2009).
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Problem 4: Fix the Semantics

Understanding language always involves inference beyloaditeral meaning
of what is said.

Most semantics is expressed in some version of first ordec.log
Such interpretations are often non-isomorphic to syntahedow, where the
object has scope over the subject:
A silencer must be fitted to every vehicle
Multiple equivalent interpretations abound: Koller ancalér (2006) note that

In one popular version the following has 3960 distinct iptetations all of
which are equivalent:

For travelers going to Finnmark there is a bus service frono @sAlta
through Sweden.
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Problem 5: Fit the Semantics to Shallow Inference

e Logical form should be lexicalized, and projected monatahly by the same
adjacent operations as syntactic category (Lewis).

e As many expressions like “a silencer” as possible shoulcebtaced by in
situ dependent or independent individual descriptions amiain
Isomorphism between logical form.

e Shallow inference on the basis of taxonomies like WordNeeijsendent on
polarity, so polarity should be directly represented inlthgical language (cf.
MacCartney 2009):

Emmylou doesn’t keep a dog
F Emmylou doesn’t keep a poodle

¥ Emmylou doesn’t keep an animal
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Efficient Representation

e A representative of every company saw a sample

k(Y) k(Y)
vy | company’y — saw/( o samplée’)( o« AX.representative' x A of 'yx)

a. vy[(company'y A of 'y Skf)e/;))reﬁentative’ V\/Sk%lmp'e’ Y]

( ) —

b. Vy:(Companx/yA of'y Skrepreﬁentative’ ) — V\/Sksample/ y
( ) —
( ) —

c. Vy[(company'y A of 'y Skgg)amentative’

d. Vy[(company'y A of 'y Skrepreﬁentative’

Keample' Y|

V\/Sk%lmpl %Y
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Problem 6: Identify the Universal Language of Thought

Since a universal semantics must be directly hung onto awsalembodied
animal cognition (to which we have no access), and childeanhang any
language directly onto that semantics, we should keep draerits of the
logical language as close to the elements of Universal Ganasiwe can.

Linguists aren’t being as helpful as they might be in tellusgwhat UG is.

Could we machine-learn the elements from parallel text is &b more
analytic languages?

Say by unsupervised clustering of parts of speech (Chiestioghoulos,
Goldwater and Steedman 2010) and mapping CCG categorimasHrmlish.

Soon we should be into a virtuous cycle, where we can use asept build
more powerful resources than WordNet automatically, ahd leose to read
the web for us, because all the important problems have hweads
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