Church’s Coincidences

Philip Wadler
University of Edinburgh

Princeton Turing Centennial
10 May 2012



VOLUME 22 PART 1 JANUARY 2012

CAMBRIDGE

UNIVERSITY PRESS







Part 1

About Coincidences



Two Kinds of Coincidence
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Coincidences are no Coincidence

e Sunspots:
Galileo, Scheiner, Fabricius, Harriott (1611)

e Calculus:

. Isaac Newton (1666) and . Gottfried Leibniz (1675)

e Conservation of Energy:
Mayer (1842), Joule, Thomson, Colding, Helmholz (1847)

e Evolution:

‘ Alfred Russel Wallace (1855) and [g Charles Darwin (1859)

e Telephone:

Alexander Graham Bell and ® Elisha Gray (1876)



Part 11

The First Coincidence:

Effective Computability



Effective Computability

e Alonzo Church: Lambda calculus
An unsolvable problem of elementary number theory
(Abstract) Bulletin the American Mathematical Society, May 1935

e Stephen C. Kleene: Recursive functions
General recursive functions of natural numbers
(Abstract) Bulletin the American Mathematical Society, July 1935

e Alan M. Turing: Turing machines
On computable numbers, with an application to the Entscheidungsproblem
Proceedings of the London Mathematical Society, received 25 May 1936

e Emil L. Post: Finite combinatory processes
Finite combinatory processes—Formulation 1
(Abstract) Bulletin the American Mathematical Society, November 1936



David Hilbert (1862-1943)




David Hilbert (1928) — Entscheidungsproblem
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David Hilbert (1930) — An Address

WIRMUSSEN WISSEN
WIR WERDEN WISSEN

mber 1930
Society of German Scientists and Physicians

Konigsberg, 8 Septe
“We must know! We will know!”
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Kurt Godel (1906-1978)
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Kurt Godel (1930) — Incompleteness

Konigsberg, 7 September 1930
Society of German Scientists and Physicians

ON FORMALLY UNDECIDABLE PROPOSITIONS OF PRINCIPIA
MATHEMATICA AND RELATED SYSTEMS I
(1931)

42. dz2(z) = Z-du(x) v A-Az(v) v Ly-Az(z) v Ly-Az(z) v R-Az{z) v M-Ax(z),
X I8 an AXIOM,

43. Fi{w,y,z) =y =zImpa v (Bv)r £ z & Var(e) & o = v Gen y],
2 18 an IMMEDIATE CONSEQUENCE of y and z.

44. Buw(x) = (n}{0 < n £ la) - da(n Gla) v (Ep, )0 < p,g < n &

Fliin Gla,p Gla, ¢ Gla)]} & lz) > 0,

T 18 a PROOF ARRAY (a finite sequence of ¥orRMULAS, each of which is either an axIoMm
or an IMMEDIATE CONSEQUENCE of two of the preceding rorMuULAs.

45. x By = Bw(z) &[l{z)) Glz = v,
x 18 a PROOT of the FoRMULA ¥,

46. Bew(x) = (Fy)y B x,
® 18 & PROVABLE FORMULA. {Bew(x) is the only one of the notions 1-46 of which we
cannoct assert that it is recursive.)
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Alonzo Church (1903-1995)
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Alonzo Church (1932) — A-calculus

f(x) =2+ x + 42

4
f=Av.z°+x+42

VoA =V (\z.A)
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Alonzo Church (1932) — A-calculus

Then Now
X X
Ax|N| (Az.N)

1Ly (M) (L M)
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Alonzo Church (1932) — Lambda Calculus

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By Avoxzo CeEUncH.”

applicatinn must be held irrelevant. There may, indeed, be other appli-
cations of the system than its use as a logic.

An occurrence of a variable X in a given formula is called an occurrence
of X as a bound variable in the given formula if it is an occurrence of X
in a part of the formula of the form Ax [M]; that is, if there is a formula M
such that AX[M] occurs in the given formula and the occurrence of X in
question is an occurrence in Ax [M]. All other oceurrences of a variable
in a formula are called occurrences as a free variable.

A formula is said to be well-formed if it is a wariable, or if it is one
of the symbols I7, 2, &, ~, ¢, A, or if it is obtainable from these symbols
by repeated combinations of them of one of the forms {M} (N) and 2x [M],
where X is any variable and M and N are symbols or formulas which are
being combined. This is a definition by induction. It implies the following
rules: (1) a variable is well-formed (2) IT, Z, &, ~, ¢, and A are well-formed
(3) if M and N are well-formed then {M} (N) is well-formed (4) if x is
a variable and M is well-formed then Ax[M] is well-formed.
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Alonzo Church (1936) — Undecidability

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY !

By Avonzo CHURCH.

The purpose of the present paper is to propose a definition of effective
calculability ® which is thought to correspond satisfactorily to the somewhat
vague intuifive notion in terms of which problems of this class are often stated,
and to show, by means of an example, that not every problem of this class
is solvable.

We introduce at once the following infinite list of abbreviations,

1—Aab-a(b),
2 —dab-aa(b)),
8 — Aab -a(a(a(b))),

and so on, each positive integer in Arabic notation standing for a formula
of the form Aab-a(a(- - -a(b) - - *)).

18



Stephen Kleene (1909-1994)
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Stephen Kleene (1932) — Predecessor

In 1932, soon after returning to Church's
identification, one day late in January or early in
February while in a dentists office, it came to me
that I could A-define the predecessor function by

And a A-formula C is easily constructed to perform
the following operation on any n-tuple:

(n ,n ,n)
—1.772 73
(n ,n,S(n)).
2 73 3
So if A is (1,1,1), then An.n(G,A) A-defines the
sequence of number-triples
(3  (1,1,2), (1,2,3), (2,3,4), (3,4,5),

It is then easy by a A-formula H to erase all but
the first number of each triple so as to obtain

(4) 1, 1, 2, 3,

- 8 ® L

which is the sequence of values of the predecessor

abbreviate it "P". When I brought this result to
Church, he told me that he had just about convinced

himself that there is no A-definition of the
predecessor function.
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Stephen Kleene (1936) — Recursive Functions

General recursive functions of natural numbers?).

Von

8. C. Kleene in Madison (Wis., U.8.A.).

The substitution

1) @2, o Ta) = 000 (@ oo s @)y o oos m (B -2 o T)),

and the ordinary recursion with respect to one variable

{2) ’-;0(0:.3"3, ey Tp) = w(mis ce s T)

ply + 1,2, ..., 2,) = Z(y: QY gy o0y Tn)y Tgy ooy mn)v

where 0, %,, ..., Xms ¥, 7 are given functions of natural numbers, are
examples of the definition of a function ¢ by equations which provide a
step by step process for computing the value ¢(k,,..., &k,) for any
given set k,,..., %k, of natural numbers. It is known that there are
other definitions of this sort, e. g. certain recursions with respect to two
or more variables simultaneously, which cannot be reduced to a succession
of substitutions and ordinary recursions?). Hence, a characterization of
the notion of recursive definition in general, which would include all
these cases, is desirable. A defimition of general recursive function of
natural numbers was suggested by Herbrand to Godel, and was used by
Gédel with an important modification in a series of lectures at Princeton
in 1934. In this paper we offer several observations on general recursive
functions, using essentially Gédel’s form of the definition.
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Alan Turing (1912—-1954)
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Alan Turing (1936) — Turing Machine

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. Turixe.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ‘‘computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.

In §§9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally bhe
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, ¢, etc. The computable numbers do not, however, include

all cefinable numbers, and an example is given of a definable number
which is not computable.
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3. Examples of compuling machines.

I. A machine can be constructed to compute the sequence 010101 ....
The machine is to have the four m-configurations 0677, “¢’?, “P7, “¢?
and is capable of printing “0° and ““1”°. The behaviour of the machine is
described in the following table in which * B means ** the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously ”’. Similarly for < L. I means ‘the scanncc
symbol is erased ” and ““ P’ stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the sccond
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration 6 with a blank tape.

Configuration Behaviour
1m-config. symbol operations  final m-config.
b None £0, R ¢
c None R ¢
¢ None Pl, R g

£ None R b
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Robin Gandy (1988) — Turing’s Theorem

(2) By considering the limitations of our sensory and mental apparatus,
Turing arrives at the following restrictions on the actions of the computor.?*

(1) There is a fixed upper bound to the number of distinct symbols which
can be written in a cell.

(i1) There is a fixed upper bound to the number of contiguous cells whose
contents the computor can take in (‘at a glance’, one might say) when
he is deciding, at a given stage, what to do. Turing shows by an example
that for a normal human being-—the reader—this bound, for a linear
arrangement, is less than 15.

(iii) At each step the computor may alter the contents of only one cell, and
there is a fixed upper bound to the distance the computor can move to
get to this cell from the scanned cells; so we may as well suppose it is
one of them.

(iv) There is a fixed upper bound to the distance through which the scan
can be moved between steps. (Turing’s argument is rather indirect).
Moving the scan is part of the action.

(v) There is a fixed upper bound to the number of ‘states of mind’ of the
computor; his state of mind, together with the contents of the scanned
cells, determine the action he takes and his next state of mind. In place
of a ‘state of mind’ Turing admits that the computor might leave an
instruction as to how to continue (p.253). Thus the computor must
follow a fixed, finite set of instructions.

Theorem: Any function which can be calculated by a human being can be
computed by a Turing Machine.
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Alan Turing (1937) — Equivalence

COMPUTABILITY AND A-DEFINABILITY

A. M. TORING

The identification of ‘effectively calculable’ functions with computable func-
tions is possibly more convincing than an identification with the A-definable or
general recursive functions. For those who take this view the formal proof of
equivalence provides a justification for Church’s calculus, and allows the
‘machines’ which generate computable functions to be replaced by the more
convenient A-definitions.
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Alan Turing (1946) — Automatic Computing Engine

PROFCSED ELZCTARONIC CALCULATOR.

PART 1.

Descriptive Acoount.

1. Introductory.

Caloulating machinery in the past has been desipgned to ocarry out
sccuratoly and moderately quiockly amell parts of calculations whioh
frequently recur, The four processes addition, subtraction,
mltiplication and division, togother perhaps with sorting and
interpolation, cover all that could be done wntil quite rocently, if wo
except maohines of the nature of the differential analyscr and wind
tunnols, eto, which oporate by measurcment rether than by caleulation.

“Instruction tables will have to be made up by mathematicians with com-
puting experience and perhaps a certain puzzle-solving ability. There need
be no real danger of it ever becoming a drudge, for any processes that are
quite mechanical may be turned over to the machine itself.”
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Emil Post (1897-1954)
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Emil Post (1936) — Finite Combinatory Processes
FINITE COMBINATORY PROCESSES—FORMULATION 1

EMIL L. POST

In the present formulation the symbol space is to consist of a two way infinite
sequence of spaces or boxes, i.e., ordinally similar to the series of integers - - -,
-3,-2,-1,0,1,2,3,- - -. The problem solver or worker is to move and
work in this symbol space, being capable of being in, and operating in but one
box at a time. And apart from the presence of the worker, a box is to admit of
but two possible conditions, i.e., being empty or unmarked, and having a single
mark in it, say a vertical stroke.

The worker is assumed to be capable of performing the following primitive
acts:*

(a) Marking the box he is in (assumed empty),

(b) Erasing the mark in the box he is in (assumed marked),

(c) Moving to the box on his right,

(d) Moving to the box on his left,

(e) Determining whether the box he is in, is or is nol marked.
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Part 111

The Second Coincidence:

Propositions as Types

30



Gerhard Gentzen (1909-1945)
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Gerhard Gentzen (1935) — Natural Deduction

&I &—FE v—1 v—E
[A] [%]
A B A&B A&D A B AvB € €
A & B 9 B AvB AvD ¢
VeI V-E 3.1 I-E
[Fa]
5 VL L 5 B ©
Vi & 5a 3t L ¢
=1 >-E ] .,
A [A]
B A A>B A A-A A
=15 B ——|—91 A -‘5 .
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Gerhard Gentzen (1935) — Natural Deduction

[A]*
: ADB A .
D_
B
O-I1* b
ADB

A B A& B A& B

&-1 E— &—E() - &‘El

33



Gerhard Gentzen (1935) — Natural Deduction

A
B A
D-I* :

ADB A
O-E = B

B
A B
&-1
A& B
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A proof

B & A)? B & A)?
&-Eq &-Eq

A B
A& B
D)
(B& A) > (A& B)
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Simplifying a proof

(B & A]? (B & A]”

&-E, &-Eq
A B
&-1
A& B (B]Y [A]®
517 &-1
(B& A) > (A& B) BGA
D_

A& B
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Simplifying a proof

(B & A]? (B & A]”

&-Eq

A B

A& B

D
(B& A) > (A& B)
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Simplifying a proof

B & A7 B & AJ?
p &-Eq - &-Eq
&-1
A& B (B]Y [A]®
-1# &-1
(B& A) > (A& B) B& A
D-E
A& B
Y
BlY  |A]|* BlY  |A]|*
B Ly B Af
B& A B& A
—— &-Eq — &-Ey
A B
&-1
A& B
Y
Al* |BlY
A By
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Alonzo Church (1903-1995)
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Alonzo Church (1940) — Typed A-calculus

x: A)*
: L:ADRB M: A .
) 5.
N : B :
NG LM:B
M. N:ADB
M: A N : B L: A& B L:A& B
&-1 &-Eq &-Eq

(M,N): A& B Lo: A L,:B
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Alonzo Church (1940) — Typed A-calculus

[z A)*
N:B ; M: A
I . :
M. N :ADB M: A .
>-E = N{M/z}:B
(\z.N)M : B
M: A N:B
&-1
(M,N): A& B
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Alan Turing (1942)

AN EARLY PROOF OF NORMALIZATTON
BY A.M, TURING

R.0. Gandy

Mathematical Institute, 24-29 St. Giles,
Oxford 0X1 3LB, UK

ludicated to H.B. Curry on the occasion of his 80th birthday

In the extract printed below, Turing shows that every
lormula of Church's simple type theory has a normal form.
The extract is the first page of an unpublished (and incomgete)
Lypeseript entitled 'Some theorems about Church's system',
(Turing left his'manuscripts to me; they are deposited in the
. tibrary of King's College, Cambridge). An account of this
~fyitem was published by Church in 'A formulation of the simple
theory of types' (J. Symbolic Logic 5 (1940), pp. 56-68).

ilsiitady lasad masameed o LT
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A program

2 B & AJ? 2 B& AJ?
&-Eq &-Ey
21 A 20 - B
&-1
<Zl, Zo> A& B
D-17

Az (z1,20) : (B& A) D (A& B)
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Evaluating a program

1z : B & AJ? |z : B& AJ?
&-E4 &-Eq
21 - A 20 - B
&-1
(z1,20) : A& B ly: BlY |z A"
D-I7 &-1
Az.(z1,20) : (B& A) D (A& B) (y,z): B& A

D-E

(Az.{(z1,20)) (y,z): A& B
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Evaluating a program

1z : B & AJ? |z : B& AJ?
&'El &-EO
21 - A 20 - B

&-1

(z1,20) : A& B ly: BlY |z A"
D-17 &-1
Az2.(z1,20) : (B& A) D (A& B) (y,z): B& A

(Az.{(z1,20)) (y,z): A& B

Y
Y B]y. [z j]"”’ o1 [y B]y. [z . A]* o
<y7$> :B& &—El <y,:13> - B& A &_EO
(y,z)1 + A (y,x)o : B

{y, z)1, (y,z)o) : A& B

D-E
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Evaluating a program

1z : B& A)? 2 : B & A]?
&_El &'EO
<1 - A 20 B
&-1
(z1,20) : A& B [y: BlY [x: A"
o-IF &-1
Az2.(z1,20) : (B& A) D (A& B) (y,z): B& A .
D_
(Az.(z1,20)) (y,x) : A& B
Y
: BJY - AlF - B - Al®
ly : Bl | gf& A] o ly ]y ;x& A] o
<y7$> . &_El <y,$> . &_EO
(y,z)1 - A (y,2)0 - B o
((y, )1, (y, x)o) : A& B
J

[z Al® ly: BJY
(r,y) : A& B

&-1
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Haskell Curry (1900-1982) / William Howard (1926-)
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Howard 1980

THE FORMULAE-AS-TYPES NOTION OF CONSTRUCTION

W. A. Howard

Department of Mathematice, University of
Illinois at Chicago Cirele, Chicago, Illinois 60680, U.S.A.

Dedicated to H. B. Curry on the occasion of his 80th birthday.

The following consists of notes which were privately circu-
lated in 1969. Since they have been referred to a few times in
the literature, it seems worth while to publish them. They have
been rearranged for easier reading, and some inessential correc-

tions have been made.
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Curry-Howard correspondence

propositions as types
proofs as programs

normalisation of proofs as evaluation of programs
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Curry-Howard correspondence
Natural Deduction <+ Typed Lambda Calculus
Gentzen (1935) Church (1940)

Type Schemes <« ML Type System
Hindley (1969) Milner (1975)

System F <  Polymorphic Lambda Calculus
Girard (1972) Reynolds (1974)

Modal Logic <+ Monads (state, exceptions)

Lewis (1910) Kleishi (1965), Moggi (1987)

Classical-Intuitionistic Embedding <«  Continuation Passing Style

Godel (1933) Reynolds (1972)
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Functional Languages

e Lisp (McCarthy, 1960)

e Iswim (Landin, 1966)

e Scheme (Steele and Sussman, 1975)

e ML (Milner, Gordon, Wadsworth, 1979)

o Haskell (Hudak, Peyton Jones, and Wadler, 1987)
o O’Caml (Leroy, 1996)

e Erlang (Armstrong, Virding, Williams, 1996)

e Scala (Odersky, 2004)

o F7* (Syme, 2006)
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Language Popularity Index

C
Java
C++
PHP
JavaScript
Python
Cc#
Perl
50L
Ruby
Shell
Visual Basic
Assembly
Actionscript
Objective C
Lisp
Delphi
Pascal
Scheme
Haskell
Tel
Fartran
Ada
Lua
ColdFusion
Cobal
Erlang
D
Scala
Smalltalk
OCaml
Farthjf-
Rexx

0.20 0.40 0.60
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Language Popularity Index—Discussion

C++
C
lava |
Python J
Haskell
JavaScript i
Ruby |
C# i ]
PHP |
Lisp
Perl
Shell
Scheme

Erlang
Scala

s50L

Lua
Assembly
oCam
Smalltalk
Objective C
Ada

D

Visual Basic
Farth

Tel

Cobol
Fartran

Pasca
Delphi
Actionscript

JJJJJJJJ_JJJJIJ‘ |

ColdFusion

Rexx

2
]
=]

0.40 0.60 0.80 1.00
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Proof systems

e Automath (de Bruijn, 1970)

e Type Theory (Martin Lof, 1975)

e Mizar (Trybulec, 1975)

e ML/LCF (Milner, Gordon, and Wadsworth, 1979)
e NuPrl (Constable, 1985)

e HOL (Gordon and Melham, 1988)

e Coq (Huet and Coquand, 1988)

e [sabelle (Paulson, 1993)

e Epigram (McBride and McKinna, 2004)

e Agda (Norell, 2005)

55



Propositions as sessions

e Samson Abramsky, Proofs as Processes, 1994
Prax: AT QFvy:B, A
(ve,y)=(x,9).(P | Q) F 2: A® B, T, A

e Luis Carres and Frank Pfenning, Session types as intuitionistic linear
propositions, 2010

Pry: AT QFx:B, A
(vy)a) (P Q) Fz: A2 B, T, A

e Philip Wadler, Propositions as Sessions, 2012
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Part IV

Conclusion:

Philosophy
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Two Kinds of Coincidence
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How to talk to aliens

HYPERFINE TRANSITION OF SILHOUETTE OF BINARY EQUIVALENT
MEUTRAL HYDROGEN SPACECRAFT OF DECIMAL &

POSITION OF SUN PLANETS OF SOLAR

RELATIVE TO 14 SYSTEM AND BINARY
PULSARS AND THE RELATIVE DISTANCES

CENTER OF THE GALAXY
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Independence Day

g

INDEPERDENCE DAY
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A universal programming language?
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Multiverses
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[Lambda 1s Omniversal
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