
Opportunity Knocks: Disruption in Computer
Systems

Michael O’Boyle

Institute of Computer Systems Architecture

School of Informatics
University of Edinburgh

UK

April, 2010

Talk Structure

◮ Computing Systems Architecture
◮ What is it?
◮ Why is it important

◮ Changing Landscape
◮ Past
◮ Present
◮ Future

◮ Challenges and Innovation areas
◮ Open area
◮ Work at Edinburgh

◮ Reflection on Hamming

Computing Systems Architecture: What is it?

Programming Language

Computer Architecture

Runtime System

Applications

Physical
Realisation

Compilation Floor 1

Floors 2−5

KB

◮ Mapping applications to hardware

◮ Compiler: ’C’ 7→ x86

Computing Systems Architecture: Is it important?

◮ Economically Significant hence high EPSRC/EC ICT budget

◮ Disruption in foundations is a cause for concern

Changing Landscape Technology Past

◮ Moore’s Law
◮ An observation in 1965
◮ Growth in transistors

◮ Still holds for 40+ years

Architecture Past

◮ Scaling of
transistors

◮ Translated into
clock speed

◮ Engine for new
products

◮ Onward and
upward!

◮ (Hard to find old
graphs!)

(Depressing) Compiler Past: Probesting’s Law

Technology

Compiler

◮ Compiler double computing power every 18 Years!

◮ Only marginal contributions.

◮ Should focus on programmer productivity instead!

Programming Language Past

◮ Performance delivered by technology
◮ Languages built for comfort not speed

◮ Rise of scripting languages
◮ Just too late compilation
◮ Focus on reducing programming effort

Changing Landscape Present: Technology Disruption

◮ Power stops clock scaling
◮ Parallelism only way to use the transistors
◮ Not the way we thought parallelism would become mainstream

Programming Panic

”The industry is in a little bit of a panic about how to program
multicore processors, especially heterogeneous ones,” said Moore.

“To make effective use of multicore hardware today you need a
PhD in computer science. That can’t continue if we want to
enable heterogeneous CPUs,” he said.

Chuck Moore, an AMD senior fellow

Changing Landscape Present: Programming Languages

◮ Wide range of programming paradigms

◮ No clear winners

Compilers +Architectures: Overwhelming Complexity

 0

 0.5

 1

 1.5

 2

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E
xe

cu
tio

n
tim

e
sp

ee
du

p

Code size improvement

2D optimization area frontier
compilation time speedup > 2

◮ Greater computing speeds and tools allow greater exploration

◮ Overwhelming complexity

Technology Future: Energy wall ahead

◮ Billions of Kilowatt hour/year y-axis 0-1400

◮ Data centres till 2017 (Source: Babak Falsafi)

◮ Technology trend: transistors for free, energy is the cost
◮ You can have your cake but not eat it!

◮ Heterogeneity and parallelism twin solutions

Programming Language Future $64k question

C++1xx
◮ Good vs Bad vs Something else

◮ The world is waiting for the next programming language

◮ Convergence of HPC vs General vs Embedded
◮ Redraw the programming language boundaries

Energy, Customisation, Parallelisation, Complexity and
Change

◮ These are the critical issues in Systems Research

◮ Energy efficiency: overarching driver

◮ Parallelism + Customisation
◮ Each new core is slower
◮ GPUs just the start

◮ Design space of new systems massive
◮ Deciding what to do with 1010+ transistors
◮ Different for different domains

◮ Complexity and Change
◮ Faster generations

◮ Examine issues in reverse order
◮ Start with Compilation
◮ A new methodology

Why do compilers fail to find the best optimisation?

◮ Fundamental reason for failure is complexity, undecidability
and change

◮ Minimise execution time over space all equivalent programs
◮ Solve halting problem over an unbounded space!

◮ The processor architecture behaviour is so complex that it is
almost impossible to determine the best code sequence a
priori.

◮ Although individual components are simple, together
impossible to derive realistic model

◮ O-O execution and cache have non-deterministic behaviour!

◮ Q: If your cache changed from LRU to random replacement
how would you rewrite your code.

Complexity and Change: Down with Logic Up with Data

◮ Hardware moves faster than applications
◮ System software always playing catch-up

◮ Complexity of design issues and design space
◮ Beyond our abilities
◮ Hand-crafted approaches no longer viable

◮ Industrial revolution of design methodology

Complexity and Change: Down with Logic Up with Data

∧,∨, ∀, ∃ 7→ σ, µ, E [x]

Current compiler approaches:

◮ Model optimisation as several smaller problems that are at
least NP hard and then develop approximate solutions.

◮ Evaluation based on how good it solves a model - not based
on evidence!

◮ Model always wrong and out of date - throw away the model

Start of fundamental change in how we approach design

◮ Will transform how we do our research

◮ Based on evidence not weak comparison. Automation.

Learning optimisations using nearest neighbour
classification

A

B

C

DE

New Program

◮ Features of program define neighbour
◮ Use neighbours distribution to select best opt
◮ Best opt depends on evidence.

◮ Changes with time
◮ Automatically updated

Finding the needle : Adpcm on TI C6713

Change and Complexity: Challenges

◮ Statistical and Evidence based techniques rapidly taking over

◮ Guaranteeing authentic data -
◮ Data providence in systems

◮ Modelling Challenges
◮ What are the right features?
◮ Managing unbounded structures
◮ What are the best models?

◮ Evidence of Generalisation
◮ Did you just get lucky?
◮ Task transference

◮ Finding the right question to ask

◮ Going beyond correlation to discovering structure
◮ Explaining why something works/fails
◮ Driving innovation

Change and Complexity:Our approach

Configurations

qsort
tiff2rgba

rawcaudio
basicmath

patricia
gs

djpeg
fft_i

lout
fft

susan_s
susan_c

ispell
toast

tiffmedian
pgp

tiffdither
bf_e

bf_d
rawdaudio

madplay
pgp_sa

cjpeg
tiff2bw

lame
susan_e

untoast
dijkstra

bitcnts
sha

say
rijndael_d

rijndael_e
crc

search

Programs

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

Configurations

qsort
tiff2rgba

rawcaudio
basicmath

patricia
gs

djpeg
fft_i

lout
fft

susan_s
susan_c

ispell
toast

tiffmedian
pgp

tiffdither
bf_e

bf_d
rawdaudio

madplay
pgp_sa

cjpeg
tiff2bw

lame
susan_e

untoast
dijkstra

bitcnts
sha

say
rijndael_d

rijndael_e
crc

search

Programs

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

◮ Automatically building a compiler across configurations
◮ Deliver a compiler that achieves 67% of maximnum

◮ Across all progs/archs With just one profile run

◮ Automating compiler construction - within a small space

Parallelism: A massive challenge

◮ How to program a parallel machine has been around a long
while

◮ Ex-WCS occam programmer 1986

◮ In past - just wait 18 months
◮ True for Supercomputing too. Write MPI once - wait
◮ Now - will get SLOWER each generation!

◮ Debate has often broken down into who has control
◮ Going beyond expert programmer vs auto-paralleliser

◮ Realisation that
◮ Programmers cost !
◮ Static analysis of pointer rich C code is doomed
◮ Parallelism going mainstream

◮ Changes everything

Parallelisation Challenge : Programming Languages

◮ Major hurdle to innovation is APIs: C and x86

◮ Crying out for the new Java for parallelism

◮ Languages are critical but hardest to influence

◮ Fashion not science
◮ Sisal in the 90s

◮ Convergence of Embedded, HPC and general-purpose
◮ Redraw Architecture and Language map
◮ No longer Fortran+MPI (HPC) vs C (embedded) vs Java

(general)
◮ Allows creative thinking for new domains

◮ A new language should describe parallelism not mapping
◮ Work with emerging new systems software approaches

◮ Domain specific

Parallelisation Challenges Compiler Perspective

◮ A hot area for years to come!

◮ New transformations for parallelism
◮ ML only good at predicting within a space - we must define

space

◮ Dynamic analysis in its infancy
◮ Need to make cheaper
◮ Combine with static analysis
◮ Use in on-line context - drive on-line parallelisation

◮ Dynamic parallelism
◮ Pre-canned mappings from off-line knowledge

◮ Data dependent parallelisation

◮ Combine speculation support in hardware and runtime systems

Parallelism: Dynamic Analysis +ML

Sequential
Code

Code with
Parallel

Annotations

Code with
Extended

Annotations

Profiling Based
Analysis

Machine-Learning
Based Mapping

◮ Split into 2 fundamental problems
◮ Determining/Discovering parallelism
◮ Mapping that parallelism to an arbitrary machine

◮ Use profile information to discover parallelism
◮ Inherently unsafe! However in our (limited) experience it works
◮ Associate memory usages with source code
◮ Currently limited to loop parallelism

◮ Select and predict best loops to parallelise
◮ Based on off-line learnt model
◮ Focus on thread number and schedule

Performance vs ICC and OpenMP on Intel Xeon 2x4 cores

B
T

.S

B
T

.W

B
T

.A

B
T

.B

C
G

.S

C
G

.W

C
G

.A

C
G

.B

E
P

.S

E
P

.W

E
P

.A

E
P

.B

F
T

.S

F
T

.W

F
T

.A

F
T

.B

IS
.S

IS
.W

IS
.A

IS
.B

L
U

.S

L
U

.W

L
U

.A

L
U

.B

M
G

.S

M
G

.W

M
G

.A

M
G

.B

S
P

.S

S
P

.W

S
P

.A

S
P

.B

a
m

m
p
.t

e
s
t

a
m

m
p
.t

ra
in

a
m

m
p
.r

e
f

a
rt

.t
e
s
t

a
rt

.t
ra

in

a
rt

.r
e
f

e
q
u
a
k
e
.t

e
s
t

e
q
u
a
k
e
.t

ra
in

e
q
u
a
k
e
.r

e
f

A
V

E
R

A
G

E

0
1
2
3
4
5
6
7
8
9

S
p
e
e
d
u
p

 ICC Manual Parallelization Prof-driven Parallelization

◮ Took sequential NAS and Spec ’C’ code - upto 7k lines long
◮ Auto-parallelised and generated OpenMP code
◮ Compared against ICI on Intel 8 core and hand-parallelised

NAS-PB and Spec OMP2001 also in OpenMP

◮ Achieve 96% of hand parallelised version
◮ Even when Spec OMP2001 have been retuned
◮ Spec OMP sequential performance double standard SPEC

Performance vs OpenMP on Cell

C
G

.S

C
G

.W

C
G

.A

E
P

.S

E
P

.W

E
P

.A

F
T

.S

F
T

.W

F
T

.A

IS
.S

IS
.W

IS
.A

L
U

.S

L
U

.W

L
U

.A

M
G

.S

M
G

.W

M
G

.A

S
P

.S

S
P

.W

S
P

.A

a
rt

.t
e
s
t

a
rt

.t
ra

in

a
rt

.r
e
f

a
m

m
p
.t

e
s
t

a
m

m
p
.t

ra
in

a
m

m
p
.r

e
f

e
q
u
a
k
e
.t

e
s
t

e
q
u
a
k
e
.t

ra
in

e
q
u
a
k
e
.r

e
f

A
V

E
R

A
G

E

0

1

2

3

4

5

6

S
p
e
e
d
u
p

 Manual Parallelization Prof-driven Parallelization

◮ Similar comparison
◮ No auto-paralleliser available on Cell
◮ Not all OpenMP programs passed through xlc compiler

◮ On average Hand-parallelised code gives a slow down
◮ We achieve a speedup of 2

◮ Shows that hand parallelised code ill-fitted for Cell
◮ Room for improvement for Cell OpenMP library

◮ ML works around this

Energy and Customisation: Challenges

◮ The gap between a general-purpose processor and an ASIC is
1000x in terms of energy

◮ Specialised hardware such as GPUs driven by this

◮ One direction, specialise hardware at design/compiler/runtime

◮ Compiler challenge
◮ Pick the best ISA: PASTA project
◮ Select the right hardware components for the job
◮ Transform the code to fit

◮ Prior knowledge of compiled code
◮ Allows ahead of time powerup /down
◮ Just turn on what you’ll use

◮ Alternatively focus on critical path
◮ and slow down the rest

Challenges and Innovation areas: Hardware Specialisation

Gather features on hardware behaviour via hardware counters

◮ Send to a trained hardware model

◮ Predict and change hardware configuration on the fly

Challenges and Innovation areas: Hardware Specialisation

◮ Achieves 70% of the max energy/perfom available in space

Challenges and Innovation areas: Beyond Silicon

◮ All this work assumes a (new) business as usual
◮ What happens when technology scaling stops?

◮ Quantum computing
◮ Looks unlikely to be general purpose

◮ Carbon nanotubes
◮ Don’t know

◮ Biologically Inspired
◮ Vague at best

◮ Designing and programming such systems is a major challenge

Challenges and Innovation areas: Summary

◮ Compilers
◮ Golden times ahead
◮ Silver bullet ?

◮ Language
◮ Most important: High Risk though!

◮ Hardware
◮ Customisation and Replication

◮ Runtime
◮ Symbiosis with compiler blurring with JIT

◮ Beyond Silicon
◮ Wide open

Reflection on Hamming: Effort

“I spent a good deal more of my time for some years trying to
work a bit harder and I found, in fact, I could get more work done.
I don’t like to say it in front of my wife, but I did sort of neglect
her sometimes; I needed to study. You have to neglect things if
you intend to get what you want done. There’s no question about
this.”

BUT

“drive, misapplied, doesn’t get you anywhere”

◮ Be smart with effort

◮ More to life than work!

Reflection on Hamming: Selling

“I have now come down to a topic which is very distasteful; it is
not sufficient to do a job, you have to sell it. ‘Selling’ to a scientist
is an awkward thing to do. It’s very ugly; you shouldn’t have to do
it. The world is supposed to be waiting, and when you do
something great, they should rush out and welcome it. But the
fact is everyone is busy with their own work. You must present it
so well that they will set aside what they are doing, look at what
you’ve done, read it, and come back and say, “Yes, that was good.”

◮ As true as it ever was

◮ Means to an end. Not an end in itself

Reflection on Hamming: Vision thing

“ When you are famous it is hard to work on small problems. This
is what did Shannon in. After information theory, what do you do
for an encore? The great scientists often make this error. They fail
to continue to plant the little acorns from which the mighty oak
trees grow. They try to get the big thing right off. And that isn’t
the way things go. “

◮ Important is not the same as grandiose!

◮ Beware of the vision thing as you age!

Opportunity knocks!

