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Performance Modelling

Performance modelling aims to construct models of the dynamic
behaviour of systems in order to support the fair and efficient
sharing of resources.

It has been applied to computer systems since the mid-1960s and
communication systems since the early 20th century.

Originally queueing networks were primarily used to construct
models, and sophisticated analysis techniques were developed often
based on product form results.

But as computer systems have developed these techniques are no
longer widely applicable for expressing the dynamic behaviour
observed in distributed systems.
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Performance Modelling: Motivation

Capacity planning

How many clients can the
existing server support and
maintain reasonable response
times?
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Performance Modelling: Motivation

............

Mobile Telephone Antenna

System Configuration

How many frequencies do
you need to keep blocking
probabilities low?
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Performance Modelling: Motivation

System Tuning

What speed of conveyor belt
will minimize robot idle time
and maximize throughput
whilst avoiding lost widgets?
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Does timeliness matter...?

There is sometimes a perception in software development that
performance does not matter much, or that it is easily fixed later
by buying a faster machine.

On the contrary — studies have shown that response time is a key
feature in user satisfaction and trust in systems.

In a recent study by Amazon they artificially delayed page loading
times in increments of 100 milliseconds. Even such very small
delays were observed to result in substantial and costly drops in
revenue.

Gary Linden, Amazon, quoted on http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency

AOL, Bing and Google report similar findings.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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Performance Modelling using CTMC
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A negative exponentially distributed duration is associated with each transition.
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these parameters form the entries of the infinitesimal generator matrix Q
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Performance Modelling using CTMC

..... .....

MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS
DIAGRAM

TRANSITION
STATE

sm

s i
s

k

sl

sj

DIAGRAM
TRANSITION

STATE

pi
p

k

pl

pm

pj

q(i,j) q(j,k)

q(j,l)
q(m,j)

q(m,i)

In steady state the probability flux out of a state is balanced by the flux in.

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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e.g. throughput, response time, utilisation
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PERFORMANCE MEASURES
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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DIAGRAM
TRANSITION

STATE

e.g. throughput, response time, utilisation

e.g. queueing networks and
stochastic Petri nets

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES

HIGH−LEVEL
MODELLING FORMALISM

High-level modelling languages are used to automatically generate
the state transition diagram/infinitesimal generator matrix Q, lifting
the description to a level closer to the system behaviour.
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Process Algebra

Models consist of agents which engage in actions.

α.P
�
��*

H
HHY

action type
or name

agent/
component

The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).
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Stochastic Process Algebra

Models are constructed from components which engage in
activities.

(α, r).P
��
�* 6 H

HHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

SPA
MODEL

LABELLED
MULTI-

TRANSITION
SYSTEM

CTMC Q- -
SOS rules state transition

diagram
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Reachability analysisModel checking

How long will it take
for the system to arrive

in a particular state?

e ee e e eiee e
- - -

?
����

���

-

���
Does a given property φ
hold within the system

with a given probability?

For a given starting state
how long is it until

a given property φ holds?
φ �

��
��

��
�

PPPPPPPP

e ee e e eee e
- - -

?
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Performance Evaluation Process Algebra (PEPA)

(α, f ).P Prefix
P1 + P2 Choice
P1 ��

L
P2 Co-operation

P/L Hiding
X Variable

P1 ‖ P2 is a derived form for P1 ��∅ P2.

When working with large numbers of entities, we write P[n] to
denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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A simple example: processors and resources

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0 ��
{task1}

Res0

Proc0 ��
{task1}

Res0

?
(task1, R)

Proc1 ��
{task1}

Res1

�
�
�	

(reset, r4)
@
@
@R
(task2, r2)

Proc1 ��
{task1}

Res0
�
�
�
�
�
�
��(task2, r2)

Proc0 ��
{task1}

Res1
A
A
A
A
A
A
AK (reset, r4)

R = min(r1, r3)

Q =


−R R 0 0

0 −(r2 + r4) r4 r2
r2 0 −r2 0
r4 0 0 −r4


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SPA Languages

SPA

SPA �
�
�
�

@
@
@
@@

integrated timeintegrated time

orthogonal timeorthogonal time

�
�
�
�

@
@
@
@

�
�
�
�

Q
Q
Q
Q

exponential onlyexponential only
PEPA, Stochastic π-calculus

exponential + instantaneousexponential + instantaneous
EMPA, Markovian TIPP

general distributionsgeneral distributions
TIPP, SPADES, GSMPA

exponential onlyexponential only
IMC

general distributionsgeneral distributions
IGSMP, Modest
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Why use a process algebra?

High level description of the system eases the task of model
construction.

Formal language allows for unambiguous interpretation and
automatic translation into the underlying mathematical
structure.

Properties of that mathematical structure may be deduced by
the construction at the process algebra level.

Formal reasoning techniques such as equivalence relations and
model checking can be used to manipulate or interrogate
models.

Compositionality can be exploited both for model construction
and (in some cases) for model analysis.
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What has been the impact?

The interplay between performance modelling/quantitative
modelling and formal methods has stimulated a lot of exciting
work.

Major conferences in the field now regularly include probabilistic
and stochastic model checking, stochastic logics, bisimulations and
other equivalence relations.

Most benefit is gained when properties of models can be
established in terms of the model language and its semantics,
allowing techniques to be applied without recourse to having to
prove applicability on a model-by-model basis.



Introduction Stochastic Process Algebra 63/ 223

What has been the impact?

The interplay between performance modelling/quantitative
modelling and formal methods has stimulated a lot of exciting
work.

Major conferences in the field now regularly include probabilistic
and stochastic model checking, stochastic logics, bisimulations and
other equivalence relations.

Most benefit is gained when properties of models can be
established in terms of the model language and its semantics,
allowing techniques to be applied without recourse to having to
prove applicability on a model-by-model basis.



Introduction Stochastic Process Algebra 64/ 223

What has been the impact?

The interplay between performance modelling/quantitative
modelling and formal methods has stimulated a lot of exciting
work.

Major conferences in the field now regularly include probabilistic
and stochastic model checking, stochastic logics, bisimulations and
other equivalence relations.

Most benefit is gained when properties of models can be
established in terms of the model language and its semantics,
allowing techniques to be applied without recourse to having to
prove applicability on a model-by-model basis.



Introduction Stochastic Process Algebra 65/ 223

Benefits of process algebra

For example,

The correspondence between the congruence, Markovian
bisimulation, in the process algebra and the lumpability
condition in the CTMC, allows exact model reduction to be
carried out compositionally.

Characterisation of product form structure at the process
algebra level allows decomposed model solution based on the
process algebra structure of the model.

Stochastic model checking based on the CSL family of
temporal logics allows automatic evaluation of quantified
properties of the behaviour of the system.
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Solving discrete state models

Under the SOS semantics a
SPA model is mapped to a
CTMC with global states
determined by the local states
of all the participating
components.
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Solving discrete state models

When the size of the state
space is not too large they are
amenable to numerical solution
(linear algebra) to determine a
steady state or transient
probability distribution.

Q =


q1,1 q1,2 · · · q1,N

q2,1 q2,2 · · · q2,N

...
...

...
qN,1 qN,2 · · · qN,N



π(t) = (π1(t), π2(t), . . . , πN(t))
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Solving discrete state models

Alternatively they may be
studied using stochastic
simulation. Each run generates
a single trajectory through the
state space. Many runs are
needed in order to obtain
average behaviours.
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State space explosion

As the size of the state space becomes large it becomes infeasible
to carry out numerical solution and extremely time-consuming to
conduct stochastic simulation.
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Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish
a partition of the state space of a model, and replace each set
of states by one macro-state

This is not as straightforward as it may seem if we wish the
aggregated process to still be a Markov process — an arbitrary
partition will not in general preserve the Markov property.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.
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Lumpability

In the early 1960’s Kemeny and Snell established the
conditions under which it was possible to lump a Markov
chain and still have a Markov chain afterwards.

In particular these conditions were characterised by conditions
on the rates which are straightforward to check.

However checking the conditions did involve constructing the
complete Markov chain first.

This is something of a catch-22 situation when the problem is
that the state space of the Markov chain is too large to
handle.
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Strong Equivalence in PEPA

Strong equivalence in PEPA is a bisimulation in the style of Larsen
of Skou.

Observability is assumed to include the ability to record timing
information over a number of runs.

Two processes are equivalent if they can undertake the same
actions, at the same rate, and arrive at processes that are
equivalent.

Expressed as rates to equivalence classes of processes.
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Strong Equivalence and Lumpability

We can establish that if we consider strong equivalence of
states within a single model, it induces a lumpable partition
on the state space of the underlying Markov chain.

Moreover it can be shown that strong equivalence is a
congruence.

This means that aggregation based on lumpability can be
applied component by component, avoiding the previous
problem of having to construct the complete state space in
order to find the lumpable partitions.
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Modelling at the level of individuals
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Counting abstraction to generate the Lumped CTMC
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Counting abstraction to generate the Lumped CTMC
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Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states.

More recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



Tackling State Space Explosion Lumpability and Bisimulation 104/ 223

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states.

More recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



Tackling State Space Explosion Lumpability and Bisimulation 105/ 223

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states.

More recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.



Tackling State Space Explosion Lumpability and Bisimulation 106/ 223

Using this result in practice

There are well-known algorithms such as Paige and Tarjan for
finding the maximal partition of a graph according to some
equivalence.

However in practice we would much rather construct the
aggregated state space directly.

The first approach to this used canonical forms but still worked
syntactically to identify states.

More recent approaches shift to a counting abstraction and a
numerical representation of states and transitions.
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Aggregation is not enough!

Unfortunately, many models still suffer from state space explosion
even after aggregation.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:
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Aggregation is not enough!

Unfortunately, many models still suffer from state space explosion
even after aggregation.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Large scale software systems
Issues of scalability are important for user satisfaction and
resource efficiency but such issues are difficult to investigate using
discrete state models.
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Aggregation is not enough!

Unfortunately, many models still suffer from state space explosion
even after aggregation.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Biochemical signalling pathways
Understanding these pathways has the potential to improve the
quality of life through enhanced drug treatment and better drug
design.
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Aggregation is not enough!

Unfortunately, many models still suffer from state space explosion
even after aggregation.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Epidemiological systems
Improved modelling of these systems could lead to improved
disease prevention and treatment in nature and better security in
computer systems.



Tackling State Space Explosion Fluid approximation 112/ 223

Aggregation is not enough!

Unfortunately, many models still suffer from state space explosion
even after aggregation.

This is particularly a problem for population models — systems
where we are interested in interacting populations of entities:

Crowd dynamics
Technology enhancement is creating new possibilities for directing
crowd movements in buildings and urban spaces, for example for
emergency egress, which are not yet well-understood.
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A conundrum

Process algebras are well-suited to constructing such models:

Developed to represent concurrent behaviour compositionally;

Represent the interactions between individuals explicitly;

Stochastic extensions allow the dynamics of system behaviour
to be captured;

Incorporate formal apparatus for reasoning about the
behaviour of systems.

But solution techniques which rely on explicitly building the state
space, such as numerical solution, are hampered by space
complexity...

...whilst those that use the implicit state space, such as simulation,
run into problems of time complexity.
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Population statistics: emergent behaviour

A shift in perspective allows us to model the interactions between
individual components but then only consider the system as a
whole as an interaction of populations.

This allows us to model much larger systems than previously
possible but in making the shift we are no longer able to collect
any information about individuals in the system.

To characterise the behaviour of a population we count the
number of individuals within the population that are exhibiting
certain behaviours rather than tracking individuals directly.

Furthermore we make a continuous approximation of how the
counts vary over time.
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Continuous Approximation

Use continuous state variables to approximate the discrete state
space.

d ddd dd-� � -d dd d-� -� -� -�d d d dd d d d-� -� -� -� -� -� -� -�d d d d d d d dd d d d d d d d-� -� -� -� -� -� -� -� -� -� -� -� -� -� -� -�d d d d d d d d d d d d d d d dd d d d d d d d d d d d d d d d
Use ordinary differential equations to represent the evolution of
those variables over time.
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New mathematical structures: differential equations

1 Use a counting abstraction rather than the CTMC complete
state space.

2 Assume that these state variables are subject to continuous
rather than discrete change.

3 No longer aim to calculate the probability distribution over
the entire state space of the model.

4 Instead the trajectory of the ODEs estimates the expected
behaviour of the CTMC.

Appropriate for models in which there are large numbers of
components of the same type, i.e. models of populations and
situations of collective dynamics

.
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Models suitable for counting abstraction

In the PEPA language multiple instances of components are
represented explicitly — we write P[n] to denote an array of n
copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

The impact of an action of a counting variable is

decrease by 1 if the component participates in the action
increase by 1 if the component is the result of the action
zero if the component is not involved in the action.
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]
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def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

task1 decreases Proc0 and Res0

task1 increases Proc1 and Res1

task2 decreases Proc1

task2 increases Proc0

reset decreases Res1

reset increases Res0
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1

task1 decreases Proc0

task1 is performed by Proc0

and Res0

task2 increases Proc0

task2 is performed by Proc1
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Simple example revisited

Proc0
def
= (task1, r1).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r3).Res1

Res1
def
= (reset, r4).Res0

Proc0[NP ] ��
{task1}

Res0[NR ]

ODE interpretation
dx1
dt = −min(r1 x1, r3 x3) + r2 x2

x1 = no. of Proc1
dx2
dt = min(r1 x1, r3 x3)− r2 x2

x2 = no. of Proc2
dx3
dt = −min(r1 x1, r3 x3) + r4 x4

x3 = no. of Res0
dx4
dt = min(r1 x1, r3 x3)− r4 x4

x4 = no. of Res1
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Scalable Differential Semantics

Whilst fluid approximation has been used for many years in large
scale performance models, e.g. fluid queues as an abstraction of
routers in communication networks, in general the validity of the
abstraction and convergence result must be proved on a
case-by-case basis.

In his recent thesis, Mirco Tribastone developed a novel
operational semantics for PEPA which can be used to prove the
convergence result for all suitably scaled PEPA models.

Moreover the set of ODEs are automatically derived from the
semantics.
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Extraction of the ODE from f

Generator Function

f (ξ, (−1, 1,−1, 1), task1) = min (r1ξ1, r3ξ3)
f (ξ, (1,−1, 0, 0), task2) = r2ξ2
f (ξ, (0, 0, 1,−1), reset) = r4ξ4

Differential Equation
dx

dt
= FM(x) =

∑
l∈Zd

l
∑
α∈A

f (x , l , α)

= (−1, 1,−1, 1) min (r1x1, r3x3) + (1,−1, 0, 0)r2x2

+ (0, 0, 1,−1)r4x4
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= −min (r1x1, r3x3) + r4x4
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dt
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Consistency results

The vector field F(x) is Lipschitz continuous i.e. all the rate
functions governing transitions in the process algebra satisfy
local continuity conditions.

The generated ODEs are the fluid limit of the family of
CTMCs generated by f (ξ, l , α): this family forms a sequence
as the initial populations are scaled by a variable n.

We can prove this using Kurtz’s theorem:
Solutions of Ordinary Differential Equations as Limits of Pure
Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.
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Jump Markov Processes, T.G. Kurtz, J. Appl. Prob. (1970).

Moreover Lipschitz continuity of the vector field guarantees
existence and uniqueness of the solution to the initial value
problem.
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Spatial Challenge: capturing logical space

Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.
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Mobile devices and mobile computation
The location of components of a software system can have
dramatic effect on the performance, particularly as
communication is often slow compared with computation. Thus
capturing whether components are co-located or communicating
over a distance became important.
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Whilst stochastic process algebras are well-suited to model
concurrent systems, there is an implicit assumption that all
components are co-located.

10-15 years ago we started modelling systems which broke this
assumption and demanded more careful thought about the location
of components, and how location influences the dynamic evolution
of the system.

Biochemical signalling pathways
Far from being a well-mixed soup, the inside of a cell is highly
structured and divided into distinct compartments. This physical
organisation can have a strong impact on the dynamic behaviour.
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Mobile computation: PEPA nets

The PEPA nets formalism uses the stochastic process algebra
PEPA as the inscription language for coloured Petri nets.

The combination naturally represents applications with two
classes of change of state (global and local).

For example, in a mobile code system PEPA terms are used to
model the program code which moves between network hosts
(the places in the net).
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Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.
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Petri nets

Petri nets provide a graphical presentation of a model which
has an easily accessible interpretation and like process algebras
they are supported by an unambiguous formal interpretation.

Coloured Petri nets are a high-level form of classical Petri
nets. The plain (indistinguishable) tokens of a classical Petri
net are replaced by arbitrary terms which are distinguishable.

In stochastic Petri nets the transitions from one marking to
another are associated with a random variable drawn from an
exponential distribution.

PEPA nets are coloured stochastic Petri nets where the
colours used as the tokens of the net are PEPA components.



Further Adventures in Space Spatial Challenge: Capturing logical space 169/ 223

Global and local state changes

Firings in a PEPA net (at the Petri net level) model
macro-step changes of state such as a mobile software agent
moving from one network host to another.

A token/PEPA component will move from one place/context
to another.

Firings have global effect because they involve components at
more than one place in the net.

A transition occurs whenever an action (individual or shared)
of a PEPA component can occur.

Since only co-located components can cooperate all
transitions have local effect because they involve only
components at one place in the net.
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Example: a mobile agent system

A roving agent visits three sites. It interacts with static
software components at these sites and has two kinds of
interactions.

When visiting a site where a network probe is present it
interrogates the probe for the data which it has gathered on
recent patterns of network traffic.

When it returns to the central co-ordinating site it dumps the
data which it has harvested to the master probe. The master
probe performs a computationally expensive statistical analysis
of the data.

The structure of the system allows this computation to be
overlapped with the agent’s communication and data
gathering.
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PEPA components

Agent
def
= (go, λ).Agent ′

Agent ′
def
= (interrogate, ri ).Agent ′′

Agent ′′
def
= (return, µ).Agent ′′′

Agent ′′′
def
= (dump, rd).Agent

Master
def
= (dump,>).Master ′

Master ′
def
= (analyse, ra).Master

Probe
def
= (monitor , rm).Probe +

(interrogate,>).Probe
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Bio-PEPA

Bio-PEPA is a stochastic process algebra closely related to PEPA,
but specifically designed for capturing biochemical network and
systems with large interacting populations.

The language contains some constructs to model locations, and
particularly pathways involving multiple compartments.
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Modelling biological locations

Bio-PEPA considers locations which can be either compartments
or membranes.

Reactions can then be considered to be

internal to one compartment or membrane

involving elements in one compartment and one membrane

transport between compartments.

A location tree is used to represent the hierarchy of locations.
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Locations in Bio-PEPA

Components in Bio-PEPA are known as species, and in essence, a
species in a different location is treated as a distinct species.

However to ease the representation of models, high-level syntax
allows some compact representations e.g.

S
def
= (γ[L1 → L2], κ)� S for transport from location L1 to location L2

S
def
= (α, κ)opS@L1 for reaction α at location L1
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Analysing models with logical locations

Both PEPA Nets and Bio-PEPA allow logical locations to be
captured within a process algebra model.

However, for analysis they currently rely on an expansion that
treats each component, at each location, as distinct.

This exacerbates the problem of state space explosion and can
limit the size of models that can be analysed.

In particular, fluid approximation techniques can only be used when
the population at each location is sufficiently large to justify the
continuous approximation.
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Moving on to physical space

As we begin to witness informatic environments as Robin Milner
defined them, with computational capacity embedded in our
physical environment, it is going to become increasingly important
to be able to model them and predict their behaviour.

In many of these cases, logical location will not be enough and real
physical location will need to be incorporated into our modelling
techniques.

This poses significant challenges both of model expression and
model solution.
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QUANTICOL Examples

The most expensive aspect

of the Paris bike sharing

system is relocating bikes to

where they are needed.

In smart grids and sustain-
able energy production with
limited storage capacity the
location of production and
demand become important.
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Hybrid process algebra HYPE

The hybrid process algebra HYPE captures both continuously
varying values and discrete changes in behaviour.

Cartesian coordinates can be represented as continuous variables
with appropriate functions to capture movement.
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Hybrid process algebra HYPE

The hybrid process algebra HYPE captures both continuously
varying values and discrete changes in behaviour.

Cartesian coordinates can be represented as continuous variables
with appropriate functions to capture movement.

MSc student Cheng Feng used
this approach in HYPE to
model ZebraNET, a sensor net-
work in which RFID tags are at-
tached to zebras.

Unfortunately based on hybrid simulation only six zebras could be
simulated on a standard machine and fluid techniques are not
applicable.
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Success of stochastic process algebra

A high level description of the system eases the task of model
construction and use of a formal language allows
unambiguous interpretation and automatic translation into the
underlying mathematical structure.

Moreover properties of that mathematical structure may be
deduced by the construction at the process algebra level.

Furthermore formal reasoning techniques such as equivalence
relations and model checking can be used to manipulate or
interrogate models.

Compositionality can be exploited both for model construction
and (in some cases) for model analysis.

As a side effect, the performance modelling community has
been introduced to (and adopted) some additional rigour.
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Major challenges

Future work will also consider exploiting more of the formal
structure of the process algebras to assist in the manipulation
and analysis of the ODEs.

Whilst fluid approximation has proved useful for deriving
performance measures from models, its full power has yet to
be realised for formal interrogation of models using model
checking.

Both logical and physical space pose significant challenges for
scalable analysis techniques. Initial work is exploring the use
of time scale decompositions, partial differential equations and
diffusion models but much more work is needed.
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Some reasonable advice....

“Say to yourself, “Yes, I would like to do first-class work”.”

“One of the characteristics of successful scientists is having
courage.”

“It’s not the consequence that makes a problem important, it
is that you have a reasonable attack.”

Don’t let success make you feel you can only work on great
problems.

Look on the positive side and not on the negative side.

“...it is not sufficient to do a job, you have to sell it too.”
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...but, reflecting on Hamming from an Athena perspective

He is very much a product of his generation, and says some things
that I find quite uncomfortable:

He says “...most great scientists have tremendous drive”, and sees
it as an inevitable consequence that he sometimes neglected his
wife.

Even more strongly, he says it is not sufficient to “dabble” which
he interprets as “...work during the day and go home and do other
things and come back and work the next day...”

Unfortunately this seems to condemn most of us with family
responsibilities to being mere “dabblers”!
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