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Not only speech, but all skilled acts seem to involve the same problems of

serial ordering, even down to the temporal coordination of muscular
contractions in such a movement as reaching and grasping. Analysis of

the nervous mechanisms underlying order in the more primitive acts may
contribute ultimately to the solution of even the physiology of logic.

Karl Lashley 1951:122

Edinburgh Computational Thinking Seminar, December 2005



Plans and the Structure of Language

e It’s rather odd that the dominant tradition in formal grammar has ignored the
active, situation-changing, aspects of meaning in favour of truth conditions.
e Language as action:
— I name this ship the Nice Work If You Can Get It.
— Do you take this woman to be your lawful wedded wife? I do.
— Everybody who has a face mask wears it. (Economist, 5 Apr 03, re SARS
in Hong Kong)

e Language as Computation. All of the above utterances:

99, ¢

— Access the current context (“this ship”; “take this woman to be your
lawful wedded wife”; dependent “‘a face mask™);

— Produce a value;

— Update the context for subsequent computation.



Is Natural Language Computational?

There 1s abundant evidence from neurology and child development that that
the language faculty 1s closely related evolutionarily and developmentally to
planning actions in the world, particularly planning involving tools (Freud

1891; Piaget 1936; Lashley 1951).

Computer Science and Artificial Intelligence offers interesting formalisms for
planning and dynamic state-change.

Natural language grammar exhibits some remarkable homologies to such
planner formalisms
Representing these homologies directly in the theory of language gives

— A more explanatory theory of grammar

— with efficient practical parsers

— a simpler account of human language processing

— and of child language acquisition



Plans and the Structure of This Talk
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I: Thinking Computationally about Action
e Basic Dynamic Logic:
(1) n>0=[aj(y=F(n))
“If n is positive, a-ing always sets y equal to F(n)”.
e In the real world, such rules are defaults, but they are still deterministic.

e The particular dynamic logic that we are dealing with here is one that includes
the following dynamic axiom (the operator ; 1s sequence, the composition of
functions of type situation — situation):

(2) [a}[B]P = [a;B|P

e Composition is one of the most primitive combinators, or operations
combining functions, which Curry and Feys (1958) call B, writing the above
sequence ;3 as BBa, where

(3) BBa =As.B(a(s))



Dynamic Logic: Actions as Accessibility

e The actions a,[3,... can be seen as defining the accessibility relation for a
modal logic with an S4 model:
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Figure 1: Kripke Model of Causal Accessibility Relation



Situation/Event Calculi and the Frame Problem

e The Situation Calculus (McCarthy and Hayes 1970) and its descendants can
be seen as versions of Dynamic Logic.

e These calculi are heir to the “Frame Problem,” which arises from the fact that

humans conceptualize events in terms of very localized changes to situations.

e For example, the effects of an event of My eating a hamburger are confined to
the hamburger and aspects of myself like hunger. The color of the walls, the
day of the week, the leadership of the Conservative and Unionist party, and
countless other aspects of the situation remain unchanged.

This character of the knowledge representation raises the Frame Problem in

two forms: the “Representational” and “Inferential” versions.



The Representational Frame Problem

e Since change is local, it is cumbersome to explicitly represent the input effect
of each event on each fact by innumerable rules such as

(4) color(wall,x) = [eat(hamburger)]|color(wall,x)

e Kowalski (1979) solved the representational problem using reified Frame
Axioms Equivalent in the present notation to the following:

(5) pA(p # hungry) A (p # here(hamburger)) = [eat(hamburger)|p

e This keeps rules defining the positive effects of eating hamburgers simple.
(Note that p is “overloaded,” standing for both the fact that p holds and for the
term P as an individual, as is standard in logic programming.)

But if we ever need to know what the color of the walls is after a sequence of,

say, five hamburger eating events, then we have to do costly theorem-proving
search. This is the Inferential form of the Frame Problem.



STRIPS and the Inferential Frame Problem

e The STRIPS program (Fikes and Nilsson 1971) solved both representational
and inferential problems by representing change as sets of preconditions and
localized database updates, as in the following definition of the operator eat:

e PRECONDITIONS: hamburger(x)

here(x)
hungry
DELETIONS: here(x)
hungry
ADDITIONS: thirsty

Such representations were initially derided by logicians (because of their

nonmonotonicity) . ..

e ...but then Girard (1995) came along with Linear Logic, and update was
logically respectable after all!



The Linear Dynamic Event Calculus (LDEC)

e We can represent events involving boxes in this notation.

e The preconditions of putting something on something else can be defined as
follows using standard implication and an affords predicate:

(6) box(x) Abox(y) A—on(z,x) A—on(w,y) A (X #Yy) = affords(puton(x,y))

e A situation affords an action (in the sense of Gibson 1966 discussed below) if

1t satisfies its preconditions.

e To define the update consequences of putting something on something else in
a situtaion that affords that action we need a different, linear implication —e :

(7) {affords(puton(x,y))} Aon(x,z) — [puton(X,y)]on(x,y)

e Linear implication, —e , treats positive ground literals or “facts” in the
antecedent as consumable resources, removing them from database and
replacing them by the consequent.
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STRIPS updates as Linear Implication (Contd.)

e The braces in marks {affords(puton(x,y))} mark the affordance as a
nonconsumable precondition: the truth of this condition after a puton event is

not defined by the linear implication, and is a matter for further inference, via
rules like (6).

e It is related to Girards ! exponential (“Of course!”).

e Thus we use the {affords(...)} notation to “fibre” the intuitionistic and linear

components of the logic.
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STRIPS Planning in LDEC

e The transitivity axiom of the affordance relation is defined as follows:
(8) affords(a) A [alaffords(3) = affords(a; )
e Consider the following initial situation:
(9) block(a) Ablock(b) Ablock(c) Aon(a,table) Aon(b,table) Aon(c,table)

e The following conjunctive goal (10), given a search control, can be made to
deliver a constructive proof that (11) is one such plan:

(10) goal(affords(a) A [a](on(a,b) Aon(b,c)))
(11) a = puton(b,c);puton(a,b)

e The result of executing this plan in situation (9) is that the following
conjunction of facts is directly represented by the database:

(12) block(a) A block(b) A block(c) Aon(a,b) Aon(b,c) Aon(c,table)

12



LDEC Avoids a Ramification Problem

e If durative events like the agent moving are represented as instantaneous
transitions to and from a progressive state represented as a fluent
In_progress(move(me,there)), LDEC is well behaved with respect to standard
examples of the ramification problem such as the one that arises from moving
through a paint-spray.

e In event calculi in which intervals are primitive, it is hard to specify frame
axioms that capture the common-sense knowledge that if you move, your
color is unaffected, and if someone sprays you with paint your color is
affected, and that if you move through a paint-spray, your color is affected.

e Because in LDEC durative events are represented in terms of initiating and
terminating instants and intervening states, such knowledge 1s easy to
represent. Suppose the situation is at(me,here) A color(me,green):
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LDEC Avoids a Ramification Problem

e Axioms for events of spraying someone some color:
(13) affords(start(spray(y,c)))

(14) {affords(start(spray(y,c)))} A color(x)
—o [start(spray(y,c))]in_progress(spray(y,c))
(15) in_progress(spray(y,c)) = affords(stop(spray(y,c)))

(16) {affords(stop(spray(y,c)))} Ain_progress(spray(y,c)))
—o [stop(spray(y,c))]color(y,c)

14



LDEC Avoids a Ramification Problem

For a situation in which at(me, here) A color(me,green), we correctly prove
the following without encountering inconsistency:

(17) [start(move(me,there));start(spray(me, pink));
stop(spray(me, pink)); stop(move(me,there))|color(me, pink)

)
]
(18) [start(spray(me, pink));start(move(me,there));
stop(move(me, there)); stop(spray(me, pink))|at(me, there)
)
]
)
]

(19) [start(spray(me,pink));start(move(me,there));
stop(spray(me, pink)); stop(move(me,there))|color(me, pink)

(20) [start(move(me,there));start(spray(me, pink));
stop(move(me,there));stop(spray(me, pink))|at(me,there)
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I1: How Animals and Humans Make Plans

e Some animals can make plans of this kind, involving tools (Kohler 1925).
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Figure 2: From Kohler 1925
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Figure 3: From Kohler 1925
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How Animals and Humans Make Plans (contd.)

Such search seems to be reactive to the presence of the tool and
forward-chaining, rather than backward-chaining (working from goal to tool).
That 1s, the animal can make a plan in the presence of the tool, but has
difficulty with plans that require subgoals of finding tools.

It implies that actions are accessed via perception of the objects that mediate
them—in other words that actions are represented as the affordances of
objects, in Gibson’s (1966) terms.

This seems a good way for an animal to plan. If there IS a short plan using
available resources, forward chaining will find it.

Backward chaining requires the evolution of tools with very general
affordances, like credit cards and mobile phones.

19



Formalizing Affordance in LDEC

e We can define the affordances of objects directly in terms of LDEC
preconditions like (6)

e Thus the affordances of doors are pushing and going through:

push
(21) affordances(door) =

go-through

e This provides the basis for Reactive, Affordance-based, Forward-Chaining
plan construction that 1s characteristic of primate planning.

20



Formalizing Affordance in LDEC (Contd.)

e The Gibsonian affordance-based door-schema can then in turn be defined as a
function mapping doors into (second-order) functions from their affordances
like pushing and going-through to their results:

(22) door’ = AXdoor -APaffordances(door) - PX

e The operation of turning an object of a given type into a function over those
functions that apply to objects of that type 1s another primitive combinator
called T or type raising, so (22) can be rewritten door’ = AXgoor. TX, Where

(23) Ta=Ap.p(a)

21



LDEC and Human Cognition

e The dynamic axioms of LDEC can be viewed as a representation of Miller et
al’s TOTE units, Piaget (1936)’s Circular Reactions , or of the Behaviorists’
notion of operant.

e The “Test-Operate/Test-Exit” loop of TOTE units is necessary for the
execution of the plan in the world, and is also represented in the dynamic
logic.

e For example the following LDEC rules represent what a 1-4 month infant has
learned about the breast (simplifying somewhat). First, a breast “affords”
sucking, in Gibson’s sense, where = 1s standard implication:

(24) breast = affords(suck)

And the following rule represents the effects of sucking using Kleene +
iteration of a test and an elementary action:

(25) {affords(suck)} A hungry — [(hungry?;suck)™]=hungry
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Languages that Lexicalize Affordance

e Many North American Indian languages, such as the Athabascan group that
includes Navaho, are comparatively poorly off for nouns. Many nouns for
artefacts are morphological derivatives of verbs.

e For example, “towel” is bee "adit’oodi, glossed as “one wipes oneself with it”,
and “towelrack” is bee ’adit’oodi baah dah nahidiiltsos—roughly “one wipes
oneself with it is repeatedly hung on it”.

e Such languages appear to lexicalize nouns as a default affordance.

Of course, we should avoid crassly Whorfean inferences about

Navaho-speakers abilities to reason about objects. Though productive, these
lexicalizations are as conventional as our own.

e Navaho-speakers probably think English is totally weird in allowing
denominal verbs, like “shelve” and “pocket” with equal productivity. We shall
return to this question.
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[11: Thinking Computationally about Grammar

e Categorial Grammar replaces PS rules by lexical categories and general
combinatory rules (Lexicalization):

(26) — NPVP
VP V. NP
—  {pMayed, finds, ...}

e Categories:

(27) proved := (S\NP) /NP : prove’

24



Combinatory Categorial Grammar (CCG)

e Combinatory Rules:
XY :f Y:qg Y:g X\ Y:f
>

X:f(9) X:f(0)

X\Y:f Y/Z:9 Y\,Z:9 X\)Y:f
>B <B

XLZ:Nz.T(9(z)) X\ ,Z:Az2.1(9(2))

XY f Y\, Z:0 YLZ:9 X\)Y:f

X\ Z D) o X[Zaf) B

e All arguments are type-raised via the lexicon:

X X T X X
T/(T\X): Aff(x) ~ " T\(T/X): Af.F(X)

<

<T
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Combinatory Derivation

(28) Marcel proved completeness

NP : marcel’ (S\NP) /NP : prove’ S\(S/NP) : Ap.p completeness’
T
S/(S\NP) : Af . marcel

S/NP : Ax.prove’x marcel’

>B

S : prove’completeness’marcel’

(29) Marcel proved completeness

NP : marcel’ (S\NP) /NP : prove’ (S\NP)\((S\NP)/NP)
: Ap.p completeness’

>T
S/(S\NP) : Af.f marcel’

S\NP : Ay.prove’completeness’y

S : prove’completeness’marcel’

26



Linguistic Predictions: Unbounded “Movement”

e The combination of type-raising and composition allows derivation to project
lexical function-argument relations onto “unbounded” constructions such as
relative clauses and coordinate structures, without transformational rules:

(30) a man who I think you like arrived
(TL/(TANP)/N N (N\N)/(S/NP) T2/(T2\NP) (S\NP)/S T3/(sT\NP) (S\NP)/NP S\NP
sis SNP
S/NP -
N\N g
N

T1/(TA\NP)

27



Predictions: Argument-Cluster Coordination

e The following construction is predicted on arguments of symmetry.

(31) give a teacher an apple and apoliceman a flower
(VP/NP)/NP T2\(T1/NP) T2\(To/NP) CONI T\ (Ts/NP) Tal (Ta/NP)
T2\((T2/NP)/NP) Ta\((Ta/NP)/ NP2¢>
Te\((Te/NP)/NP) _
VP

e The derivation of utterance(31) is isomorphic to the process of composing a
plan for another’s action from the affordances of teachers, apples, (etc.), in a
situation affording the plan by a speaker who desires its side-effects.

e The parallel involvement of type-raising T and composition B in planning and
grammar suggest that the latter 1s evolutionarily and developmentally a
transparent attachment to the former.

28



These Things are Out There in the Treebank

e Full Object Relatives ( 570 in WSJ treebank)
e Reduced Object Relatives ( 1070 in WSIJ treebank)

e Argument Cluster Coordination ( 230 in WSJ treebank):

(S (NP-SBJ It)
(VP (MD could)
(VP (VP (VB cost)

(NP-1 taxpayers)
(NP-2 $ 15 million))

(CC and)

(VP (NP=1 BPC residents)
(NP=2 $ 1 million)))))

29



These Things are Out There (contd.)

e Parasitic Gaps (at least 6 in WSJ treebank):

(S (NP-SBJ Hong Kong’s uneasy relationship with China)
(VP (MD will)
(VP (VP (VB constrain)
(NP (-NONE- *RNR*-1)))
(PRN (: --)
(IN though)
(VP (RB not)
(VB inhibit)
(NP (-NONE- *RNR*-1)))
(: =-))
(NP-1 long-term economic growth))))

30



CCG i1s Just Trans-Context Free

e CCQG i1s provably weakly equivalent to Linear Indexed Grammar (LIG) Joshi
et al. (1991).

e Hence it is not merely “Mildly Context Sensitive” (Joshi 1988) but rather just
Trans-Context Free, or “Type 1.9” in the Extended Chomsky Hierarchy.

Language Type Automaton Rule-types Exemplar
Type 0: RE Universal Turing Machine a — B
Type 1: CS Linear Bound Automaton (LBA) Ay —  @ay a2
“Type 1.99: LI” Embedded PDA (EPDA) Ay, — B, a'bc”
Type 2: CF Push-Down Automaton (PDA) A — a a"b"

Type 3: FS Finite-state Automaton (FSA) A — { a"

31



A Trans-Context Free Natural Language

e CCG can capture unboundedly crossed dependencies in Dutch:

...omdat ik Ceciliade nijlpaarden zag voeren.
... because| Ceciliathe hippopotamuses saw feed

... because | saw Ceciliafeed the hippopotamuses.’
...omdat 1k Ceciliade nijlpaarden zag voeren.

... because| Ceciliathe hippopotamuses saw feed

. because | saw Ceciliafeed the hippopotamuses.’

32



CCG is Just Trans-Context Free (contd.)

e [t has polynomial parsing complexity (Vijay-Shanker and Weir 1990)

e Hence it has nice “Divide and Conquer” algorithms, like CKY, and Dynamic
Programming.

e For real-life sized examples like parsing the newspaper, such algorithms must
be statistically optimized.

33



V. Thinking Computationally about Parsing

e No handwritten grammar ever has the coverage that is needed to read the daily

newspaper.

e Language 1s syntactically highly ambiguous and it 1s hard to pick the best
parse. Quite ordinary sentences of the kind you read every day routinely turn
out to have hundreds and on occasion thousands of parses, albeit mostly
semantically wildly implausible ones.

e High ambiguity and long sentences break exhaustive parsers.

34



For Example:

e “In a general way such speculation 1s epistemologically relevant, as
suggesting how organisms maturing and evolving in the physical environment
we know might conceivably end up discoursing of abstract objects as we do.”
(Quine 1960. 123).

e —yields the following (from Abney 1996), among many other horrors:

«W

Inageneral way RC epistemologically relevant PP organisms maturing and evolving 'we  know S
in the physical envirmnment

such speculation is as suggesting how NP VP

might AP Ptcpl objects aswe do

coneivably end up discoursing of abstract
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Wide Coverage Parsing: the State of the Art

Early attempts to model parse probability by attaching probabilities to rules of
CFG performed poorly.

Great progress as measured by the ParsEval measure has been made by
combining statistical models of headword dependencies with CF
grammar-based parsing (Collins 1999; Charniak 2000; Bod 2001)

However, the ParsEval measure is very forgiving. Such parsers have until now
been based on highly overgenerating context-free covering grammars.
Analyses depart in important respects from interpretable structures.

In particular, they fail to represent the long-range “deep” semantic
dependencies that are involved in relative and coordinate constructions, as in
A company; that; | think IBM bought;, and IBM; bought; j and sold; j Lotus;.
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The Anatomy of a Parser

e Every parser can be identified by three elements:

— A Grammar (Regular, Context Free, Linear Indexed, etc.) and an
associated automaton (Finite state, Push-Down, Embedded Push-Down,
etc.);

— A search Algorithm characterized as left-to-right (etc.), bottom-up (etc.),
and the associated working memories (etc.);

— An Oracle, to resolve ambiguity.

e The oracle can be used in two ways, either to actively limit the search space,
or in the case of an “all paths” parser, to rank the results.

e In wide coverage parsing, we have to use it in the former way.

37



The Architecture of the Human Sentence Processor

e “Garden path” effects are sensitive to semantic content
(Bever 1970) and context (Altmann and Steedman 1988) requiring a “cascade’:

Inference

A
Yes?

v Yes!/No!

Semantics

A

Yes? v Yesl/No!

Syntax

Y&G?T l Yesl/No!

Speech Recognition

Th{fl owerg sent for the patient died
doctor.
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Head-dependencies as Oracle

Head-dependency-Based Statistical Parser Optimization works because it

approximates an oracle using semantics and real world inference.
Its probably as close as we will get to the real thing for the foreseeable future.

In fact, the knowledge- and inference- based psychological oracle may be
much more like a probabilistic relational model than like traditional logicist
representations, especially if embedded in associative knowledge
representations, augmented by ontologies and integrated with a dynamic
context model.

Many context-free processing techniques generalize to the mildly context
sensitive class.

The “nearly context free” grammars such as LTAG and CCG—the least
expressive generalization of CFG known—have been treated by Xia (1999),
Hockenmaier and Steedman (2002), and Clark and Curran (2004).
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Supervised CCG Induction by Machine

e Extract a CCG lexicon from the Penn Treebank: Hockenmaier and Steedman
(2002), HQckenmaier (2003) (cf. Buszkowski and Penn 1990; Xia 1999).

The Treebank Mark constituents: Assign categories The lexicon
- heads
- complements
- adjuncts
S l S(H -} S -} :
/ \ / \ / \ John: NP
NP VP NP(C) VP(H NP S\NP loves: (S\NP)/NP
| VRN | /N | /N Mary: NP
John V?Z l\lP John VB|Z( H) l\lP( O John (S\ITIP)/NP I\fP
loves Mary loves Mary loves Mary

e This trades lexical types (500 against 48) for rules (around 3000 instantiated
binary combinatory rule types against around 12000 PS rule types) with
standard Treebank grammars.
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Overall Dependency Recovery

LP LR UP UR cat

Clark et al. 2002 81.9 81.8 90.1 899 90.3
Hockenmaier 2003 | 84.3 84.6 91.8 922 922
Log-linear 86.6 863 925 921 93.6
Hockenmaier (POS) | 83.1 83.5 91.1 915 91.5
Log-linear (POS) 848 845 914 910 925

Table 1: Dependency evaluation on Section 00 of the Penn Treebank

e To maintain comparability to Collins, Hockenmaier (2003) did not use a
Supertagger, and was forced to use beam-search. With a Supertagger
front-end, the Generative model might well do as well as the Log-Linear
model. We have yet to try this experiment.
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Recovering Deep or Semantic Dependencies

P\

Clark et al. (2002)

respect and confidence which most Americans previousy  had
\\% w
lexical_item category slot head_of_arg
which (NPx\NPy,)/(S[dcl],/NPyx) 2 had
which (NPx\NPy,)/(S[dcl],/NPyx) 1 confidence
which (NPx\NPy,)/(S[dcl],/NPyx) 1 respect
had (S[dcl]naa \NP;) /NP) 2 confidence
had (S[dcl]pea \NP1) /NPy) 2 respect
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Full Object Relatives in Section 00

e 431 sentences in WSJ 2-21, 20 sentences (24 object dependencies) in
Section 00. 1. Commonwealth Edison now faces an additional court-ordered refund on its summerwinter
rate differential collections that the Illinois Appellate Court has estimated at DOLLARS.
2. Mrs. Hills said many of the 25 countriesthat she placed under varying degrees of scrutiny have made
genuine progress on this touchy issue.
y/ 3. It’s the petulant complaint of an impudent American whom Sony hosted for a year while he was on a Luce
Fellowship in Tokyo — to the regret of both parties.
\/ 4. Tt said the man, whom it did not name, had been found to have the disease after hospital tests.
5. Democratic Lt. Gov. Douglas Wilder opened his gubernatorial battle with Republican Marshall Coleman
with an abortion commercial produced by Frank Greer that analysts of every political persuasion agree was a
tour de force.
6. Against a shot of Monticello superimposed on an American flag, an announcer talks about the strong
tradition of freedom and individual liberty that Virginians have nurtured for generations.
v/ 7. Interviews with analysts and business people in the U.S. suggest that Japanese capital may produce the
economic cooperation that Southeast Asian politicians have pursued in fits and starts for decades.
8. Another was Nancy Yeargin, who came to Greenville in 1985, full of the energy and ambitions that
reformers wanted to reward.
9. Mostly, she says, she wanted to prevent the damage to self-esteem that her low-ability students would suffer
from doing badly on the test.
v/ 10. Mrs. Ward says that when the cheating was discovered, she wanted to avoid the morale-damaging public
disclosurethat a trial would bring.
v/ 11. In CAT sections where students’ knowledge of two-letter consonant sounds is tested, the authors noted that

43



Scoring High concentrated on the same sounds that the test does — to the exclusion of other sounds that fifth
graders should know.

v/ 12. Interpublic Group said its television programming operations — which it expanded earlier this year — agreed
to supply more than 4,000 hours of original programming across Europe in 1990.

13. Interpublic is providing the programming in return for advertising time, which it said will be valued at more
than DOLLARS in 1990 and DOLLARS in 1991.

v/ 14. Mr. Sherwood speculated that the leeway that Sea Containers has means that Temple would have to
substantially increase their bid if they’re going to top us.

v/ 15. The Japanese companies bankroll many small U.S. companies with promising products or ideas, frequently
putting their money behind projects that commercial banks won’t touch.

y/ 16. In investing on the basis of future transactions, a role often performed by merchant banks, trading
companies can cut through the logjamthat small-company owners often face with their local commercial banks.
17. A high-balance customer that banks pine for, she didn’t give much thought to the rates she was receiving,
nor to the fees she was paying.

\/ 18. The events of April through June damaged the respect and confi dence which most Americans previously
had for the leaders of China.

v/ 19. He described the situation as an escrow problem, a timing issue, which he said was rapidly rectified, with no
losses to customers.

v/ 20. But Rep. Marge Roukema (R., N.J.) instead praised the House’s acceptance of a new youth training wage, a
subminimum that GOP administrations have sought for many years.

Cases of object extraction from a relative clause in 00; the extracted object, relative
pronoun and verb are in italics; sentences marked with a 4/ are cases where the parser
correctly recovers all object dependencies
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V: Thinking Computationally about Acquisition

e The child’s problem is similar but a little harder.

— They have unordered logical forms, not language-specific ordered
derivation trees.

— So they have to work out which word(s) go with which element(s) of
logical form, as well as the directionality of the syntactic categories (which
are otherwise universally determined by the semantic types of the latter).

e They do not seem to have to deal with a greater amount of error than the Penn
WSJ treebank has (McWhinnie 2005).

— But they may need to deal with situations which support a number of
logical forms.

— And they need to be able to recover from temporary wrong lexical
assignments.

— And they need to be able to handle lexical ambiguity.
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Example

e The Stage VI child has encountered a dog. Then she encounters more dogs.

(32) a. Child: (thinks:) more’dog’
b. Adult: “More doggies!”
c. Child’s lexical candidates:

more :=NP/NP : Ax.x  doggies := NP/NP : AX.X
more :=NP\NP : Ax.x doggies := NP\NP : Ax.X
more :=NP/N : more’ doggies := NP/N : more’
more :=NP\N : more’ doggies := NP\N : more’
more :=N : dog’ doggies := N : dog’

more :=NP : more’dog’ doggies := NP : more’dog’

more doggies := more’dog’

e She might get it wrong, starting to use “doggies” to mean “more”. But she
soon corrects in the light of further evidence.

e Where more’dog’ came from is a different question—see Quine (1960).
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Computational Accounts

Siskind (1993, 1996), Villavicencio (2002), and Zettlemoyer and Collins
(2005) offer computational models of this process, the latter two explicitly
using CCG.

All of these models depend on availability to the learner of short sentences
paired with logical forms, since complexity is determined by a cross-product
of powersets both of which are exponential in sentence length.

A number of techniques are available to make search efficient including
association of incrementally adjusted Bayesian priors with category-types.

No notion of “triggers” distinct from reasonably short string-meaning pairs 1s
necessary.

It 1s possible to use the statistics of the lexicon itself to implicitly represent
“parameters” such as verb-finality, via incrementally adjusted prior
probabilities on the members of the set of universally available category types.
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Conclusions: for a Cognitive Informatics

Since the grammar describes language as action to start with:
e [anguage production is planning (and planning is derivation in the grammar)

e [anguage understanding is plan recognition (this also 1s just derivation in the
grammar)

e Dialogue management 1s plan-based collaboration (applying directly to the
representations delivered by NLG and NLU)

e Competence grammar = syntax, denotational semantics, dynamic semantics

(but all processing integrates context and pragmatics)
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Conclusions (contd.)

e It’s not surprising that the language faculty 1s grounded in this way in
planning, tool use, and action as a group. These skills have been evolved over
a long period, and are what distinguishes primate evolution, and among
primates, our own. There is evidence of this at the level of:

— Representation: The existence of “mirror neurons” in macaques in areas
homologous to Broca’s in humans shows the lineage of the ability to
represent own and other’s actions identically, and infer from action to goal.

— Inference: Mechanisms that take account of object-oriented information
when planning and recognizing plans, including such information about
others’ abilities in this regard (tool concepts, including potentially

recursive propositional attitude concepts)

— Learning: Reward mechanisms for successful knowledge coordination

(“peekaboo” games)
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