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Systems Biology: Will it Work?

I Meeting held in Sheffield, January 2005 under the auspices of
the Biochemical Society.

I Varying degrees of optimism with respect to the topic of the
workshop.

I Equally wide spectrum of definitions of what systems biology
is and what it is trying to achieve....

I Perhaps not surprising for a new initiative?
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Systems Theory and Biology

I Meeting held in Columbus Ohio, October 1966, organised by
Mihajlo Mesarović.

I The third in a series of annual symposia: Systems Approach
in Biology.

I Stated objective — “To assess the past development and the
future potential of the application of the systems approach in
biology.”
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Outline

Systems Biology

A Role for Computational Thinking

Models, Formal Systems and Inference
A PEPA example

Future Perspectives
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What is Systems Biology?

“The principal aim of systems biology is to provide both a
conceptual basis and working methodologies for the scientific
explanation of biological phenomena” – Olaf Wolkenhauer
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Measurement, Observation and Induction

I Robot Scientist project — Kell, King, Muggleton et al.

I Combination of machine learning for hypothesis generation
and genetic algorithms for automatic experimental tuning.

I Experiments are carried out by a robot.

I Data is generated at rates which exceed what is possible when
there are humans in the loop.

I Moreover the intelligent experiment selection strategy is
competitive with (good) human strategies, and significantly
outperforms cheapest and random selection strategies.
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I No human intellectual input in the design of experiments or
the interpretation of data.

I Integrates scientific discovery software with laboratory
robotics.
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The Challenges

Systems biology modelling faces a number of challenges. In
particular:

I An excess of data, much of which is noisy and/or incomplete;

I The problem of infinite regress;

I Some observations can only be explained by multi-level
modelling.
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The problem of Infinite Regress
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The problem of multi-level modelling...

I Some characteristics of systems need to be studied at multiple
levels to be fully understood — e.g. lac operon in E. coli

I A sub-cellular or molecular model only exhibits one type of
behaviour.

I A population model is needed to explain the mix of
behaviours.

I A cellular model captures how switching alters the
reproductive characteristics of a cell.

I Thus population behaviour depends on cellular behaviour,
which is determined by molecular behaviour.

A proper account of experimental observations requires a model
which captures behaviour at all three levels.

Jane Hillston. LFCS, University of Edinburgh.
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Formal Models

The complexity of biological systems is not fundamentally different
from complexity in other forms.

Thus many of the techniques we have developed for modelling
complex software systems can be beneficially applied to the
modelling aspects of systems biology.

In particular:

I Abstraction

I Modularity and

I Reasoning

have a key role to play.

Jane Hillston. LFCS, University of Edinburgh.
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Formal Models for Systems Biology

When systems biology was emerging in the 1950s and 1960s the
role of computers, and computational thinking, was confined to
system analysis (largely simulation).

In the intervening period substantial developments have been made
in theoretical computer science with respect to formal system
description techniques.

With the current explosion of interest in systems biology the
application of many of theses techniques to biological systems has
been explored.

I will focus on the use of process algebras for signalling pathways
within cells.
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Process Algebras for Systems Biology

Process algebras have several attractive features which can be
useful for modelling and understanding biological systems:

I The primitives of the formalism are agents or components
which engage in activities.

I More complex behaviours are built up from interactions
between components; concurrency is assumed.

I Thus process algebraic formulations make
interactions/constraints explicit; structure can also be
apparent.

I Equivalence relations allow formal comparison of high-level
descriptions.

I There are well-established techniques for reasoning about the
behaviours and properties of models, supported by software.
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Process Algebra

I Models consist of agents which engage in actions.

α.P
���* HHHY

action type
or name

agent/
component

I The structured operational (interleaving) semantics of the
language is used to generate a labelled transition system.

Process algebra model Labelled transition system-
SOS rules
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Stochastic Process Algebra

I Models are constructed from components which engage in
activities.

(α, r).P
���* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative
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analysis

Gillespie’s

algorithm
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins
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interaction

Binding and
catalysis

Binding and
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Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

[Regev et al 2000]
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Alternative Mappings

In the PEPA modelling we have been doing we have experimented
with more abstract mappings between process algebra constructs
and elements of signal transduction pathways.

In particular we consider alternatives to the molecule as the basic
building block.

In our first mapping we focus on species (c.f. a type rather than an
instance, or a class rather than an object).

In our second we focus on sub-pathways.
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Alternative Mappings illustration
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Alternative Mappings illustration
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Alternative Mappings illustration

Reagent mapping: Each species is a distinct component in the model
with local states to capture differing levels of concentration

Jane Hillston. LFCS, University of Edinburgh.
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Alternative Mappings illustration

Pathway mapping: Each sub-pathway is a distinct component in the
model with local states to capture progress through the pathway
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Alternative Mappings illustration

Reasoning based on bisimulation equivalence is able to prove that
the two representation are equivalent.
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Alternative Mappings illustration

Different parts of the system may use different mappings, reflect-
ing perhaps the level of knowledge (data) available, or the primary
interests of the modeller.
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Abstraction

I Process algebras offer abstraction in both their style of
modelling, and as a formal operation which can be applied to
models after construction (e.g. hiding or restriction).

I Our aim when modelling a system is to capture sufficient
information to be able to carry out useful (quantitative)
analysis — not necessary to create the most faithful
representation of the system possible.

I Suitable equivalence relations can confirm that our
abstraction is valid.
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Modularity

I Compositionality is an inherent feature of process algebras
giving all such models modularity.

I As well as the clear advantages that this has for model
construction (c.f. software engineering), it also offers potential
benefits for multi-level modelling.

I Moreover, in the Markovian setting, work has already been
done to identify forms of interaction in a process algebra
which are amenable to decomposed quantitative analysis.
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Reasoning

I Process algebras are equipped with equivalence relations, and
partial relations.

I These allow reasoning about the relationships between
models: either alternative representations (as we have seen) or
models which result from simplification or elaboration of an
original model.

I Additionally for some process algebras there are
complementary modal logics which allow system properties to
be formally expressed and automatically checked.
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A PEPA example

A simple circadian clock

clock gene
transcription

nuclear
protein

cytosolic
protein

mRNA
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A PEPA example

Handcrafted ODEs
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d [PC ]

dt
= ks [M]− vd

[PC ]

kd + [PC ]
− k1[PC ] + k2[PN ]

d [PN ]

dt
= k1[PC ]− k2[PN ]
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A PEPA example

Representing the circadian clock in PEPA

I Some of the “steps” in the biological representation (diagram)
and the corresponding ODEs do not correspond to elementary
reaction steps:

I To use our current mappings we need to decompose the
enzyme-substrate and gene-repressor reactions into elementary
steps.

I PEPA does not have combinators to express repression or
catalysis:

I We introduce additional abstract components to the PEPA
model which do not correspond to species but to transcription
and repression.
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A PEPA example

Repression mechanism

gene−protein
complexrepressor

protein

G + P  GPN on

off

gene

Transcription

{
T h def

= (transcribe, vs).T
h + (off,>).T l

T l def
= (on,>).T h

Repression

{
Rh def

= (on, von).R
l

R l def
= (off,>).Rh

Ph
N

def
= (off, voff).P l

N + . . .

Only PN is explicitly modelled; T and R are abstract entities.
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A PEPA example

PEPA model of the circadian clock

T h BC
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(
R l BC

{off}

((
M BC
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A PEPA example

Results of quantitative analysis
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A PEPA example

Reasons to be cheerful

Previous work on PEPA in the performance modelling domain
gives various reasons to be optimistic:

I PEPA allowed rigorous development of the underlying
mathematical models and formalised model manipulations and
reductions;

I Process algebras and other formal modelling techniques
became integrated into performance modelling methodology,
although sometimes embedded rather than on the surface
(UML etc).

I This work stimulated a lot of other work on formal approaches
to performance modelling such as the development of suitably
quantified modal logic and model checking.

Jane Hillston. LFCS, University of Edinburgh.
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Systems Biology: Will it Work?

Two quotes from Mesarović (1968):

The real advance in the application of systems theory to biology
will come about only when the biologists start asking questions
which are based on the systems-theoretic concepts rather than
using these concepts to represent in still another way the
phenomena which are already explained in terms of biophysical or
biochemical principles.

The fundamental question for the community of biologists is
whether an explanation on the systems theoretic basis is acceptable
as a true scientific explanation of the biological inquiry.

Jane Hillston. LFCS, University of Edinburgh.
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What’s life got to do with it?

“Life is a relationship among molecules and not a property of any
molecule”

[Linus Pauling]
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Thank you!

Jane Hillston. LFCS, University of Edinburgh.
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