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What are signals? 
A signal is a time (or space) varying quantity that can carry 
information. The concept is broad, and hard to define precisely. 

(Wikipedia)
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What is signal processing? 

Signal processing is the analysis, interpretation, and 
manipulation of signals.

Signals of interest include sound, images, biological signals such 
as ECG, radar signals, and many others. Processing of such 
signals includes storage and reconstruction, separation of 
information from noise (e.g., aircraft identification by radar), 
compression (e.g., image compression), and feature extraction
(e.g., speech-to-text conversion).

(Wikipedia)
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What is information? 

Information theory is a branch of applied mathematics and 
engineering involving the quantification of information. 
Historically, information theory developed to find fundamental 
limits on compressing and reliably communicating data.

Since its inception it has broadened to find applications in 
statistical inference, networks other than communication 
networks, biology, quantum information theory, data analysis , 
and other areas, although it is still widely used in the study of 
communication.

(Wikipedia)
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What is informatics? 
Informatics includes the science of information, the practice 
of information processing, and the engineering of information 
systems. Informatics studies the structure, behaviour, and 
interactions of natural and artificial systems that store, process 
and communicate information.

Informatics is broader in scope than information theory.

(Wikipedia)
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Part I: Sparse Representations 
and Coding
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What are signals made of?

The Frequency viewpoint (Fourier):
Signals can be built from the sum of harmonic functions (sine waves) 

Joseph Fourier
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Sampling and the digital revolution
Today we are more familiar with discrete signals (e.g. audio files, 
digital images). This is thanks to:

Whittaker–Kotelnikov–Shannon Sampling Theorem:

“Exact reconstruction of a continuous-time signal from 
discrete samples is possible if the signal is bandlimited and 
the sampling frequency is greater than twice the signal 
bandwidth.”

Sampling below this rate introduces aliasing
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Audio representations
Which representation is best: time or frequency?
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a Gabor ‘atom’

Time and

Audio representations

Frequency (Gabor)
“Theory of Communication,” J. IEE (London) , 1946

“… a new method of analysing signals is presented in which 
time and frequency play symmetrical parts…”
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Gabor and audio coding

Modern audio coders owe as much to Gabor’s notion of time-
frequency analysis as it does to Shannon’s paper of a similar title, 
two years later, that heralded the birth of information and coding 
theory.

“A Mathematical Theory of Communication,” Bell 
System Technical Journal, 1948.

C. E. Shannon

“Theory of Communication,” J. IEE (London) , 1946

“…In Part 3, suggestions are discussed for compressed 
transmission and reproduction of speech or music…”

Time and Frequency (Gabor)
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Image representations 

… Space and Scale: the wavelet viewpoint:

Images can be built of sums of wavelets. These are multi-
resolution edge-like (image) functions. 

“Daubechies, Ten Lectures on Wavelets,” SIAM 1992 
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Transform Sparsity
What makes a good transform?
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Good representations are efficient - Sparse!
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What is the difference between quantizing a signal/image in the transform 
domain rather than the signal domain?

Quantization in 
wavelet domain

Tom’s nonzero 
wavelet coefficients

Quantization in 
pixel domain

Coding signals of interest
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Coding can be done by covering the 
set with ε-balls.

Coding signals of interest
An important question is: what are the signals of interest?

If we digitize (via sampling) each signal is a point in a high dimensional 
vector space. e.g. a 5 Mega pixel camera image lives in a 5,000,000
dimensional space. What is a good signal model?

Geometric Model I

Consider the set of finite energy 
signals: the L2 ball (an n-sphere). 

The L2 ball is NOT a good signal model!

Almost all signals look like this…
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Efficient transform domain representations implies that our signals of 
interest live in a much smaller set.

These sets can be covered with much fewer ε-balls and require much 
fewer ‘bits’ to approximate.

Coding signals of interest

Sparse signal modelL2 ball (not sparse)
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For images (Olshausen and Field, Nature, 1996):For Audio (Abdallah & Plumbley, Proc. ICA 2001):

Learning better representations

      )(∑=
k

kk tcx(t) ϕ

Recent efforts have been targeted at learn better representations for a 
given set of signals, x(t):

That is, learn dictionaries of functions         that represent signals of 
interest with only a small number of significant coefficients, ck.

     )(tkϕ
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Build bigger dictionaries
Another approach is to try to build bigger dictionaries to provide more 
flexible descriptions. Consider the following test signal:

Heisenberg’s uncertainty principle implies that a Time-Frequency analysis 
has:
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Multi-resolution representations

+good frequency representation good time representation

Combined 
representation

New uncertainty 
principles for sparse 
representations

Heisenberg only applies to time-frequency analysis NOT time-frequency 
synthesis. Consider a TF synthesis representation with a combination of 
long (40 msec.) atoms and short (5 msec.) atoms. 

Finding the sparse coefficients is now a nonlinear (and potentially expensive) 
operation.
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Analysis versus synthesis
For invertible representations (e.g. wavelets) Analysis is equivalent to 
Synthesis. For redundant representations they are not:

Analysis Synthesis

Invertible 
Representations∑∑ =⇔=

k
kk

n
kk tctxnx(n)c )()(                )( φϕ
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RepresentationsX

Sparse approximation in redundant dictionaries requires a nonlinear
operation.

This may require an exhaustive search of all possibilities (not practical).

So currently we use ‘greedy’ iterative methods.

Sparse signal set

Nonlinear 
Approximation

Linear synthesis 
transform
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Part I Review

Sparse Representations and Coding
• How we represent signals is very important;

• Sparse representations provide good compression;

• Recent efforts have targeted bigger and better 
representations; 

• Despite the linear representations nonlinear approximations 
play an important role.
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Part II: Sparse Representations and 
Sampling (compressed sensing)
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Compressed sensing
Traditionally when compressing a signal (e.g. speech or images) we take 
lots of samples (sampling theorem) move to a transform domain and 
then throw most of the coefficients away!

Why can’t we just sample signals at the “Information Rate”?

E. Candès, J. Romberg, and T. Tao, “Robust Ucertainty principles: Exact 
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, 2006

D. Donoho, “Compressed sensing,” IEEE Trans. Information 
Theory, 2006 

This is the philosophy of Compressed Sensing
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Compressed sensing
The Compressed Sensing principle:

1. Take a small number of linear observations of a signal 
(number of observations << number of samples/pixels)

2. Use nonlinear reconstruction to estimate the signal via a 
transform domain in which the signal is sparse

Theoretical results

We can achieve an equivalent approximation performance to using the 
M most significant coefficients for an signal/image (in a sparse domain) 
by a fixed number of non-adaptive linear observations as long as:

• No. of observations ~ M x log N (N, the size of full signal) and

• for almost all (random) observations and

• can be achieved with practical reconstruction algorithms
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Compressed sensing principle

sparse “Tom”
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Invert transform
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Linear analysis transform coefficients (Method of Frames) are generally not 
sparse. 

Sparse signal representations

Instead use sparse linear synthesis transform and invert – using various 
nonlinear methods

from Chen & 
Donoho 1995
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If we consider a oversampled subband analysis/synthesis model (e.g. STFT) 
then we ideally want to go from this to… something like this
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Part III: Open Research Problems in Compressed 
Sensing
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Let                      define our over-complete (redundant) dictionary (M 
> N). 

We want an approximate over-complete representation:

such that s is sparse and e is a small approximation error

One approach is to solve a penalized least squares problem (e.g. ‘Basis 
Pursuit De-Noising’ – Chen et al 1995)

Direct solution can be computationally expensive. 

Sparse signal representations

enforces 
sparsity

standard least 
squares term
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Overcomplete Sparse Approximations

Signal space ~ RM

Set of signals of 
interest, say, L1 ball

Transform domain ~ RN

N>M

Sparse Approximation uses a 
nonlinear Approximation to 
construct a sparse 
representation.

Nonlinear Approximation

Linear analysis 
transform

Linear synthesis 
transform
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Problems of Interest

Sparse Approximations

1. Overcomplete dictionary design - how overcomplete should/can a dictionary 
be, particularly when constrained for example to represent Time-Frequency 
tiling?

2. How efficient can overcomplete representations be for coding?

3. Provably good algorithms for finding optimal, or near optimal, sparse 
representations. 

We know L1 regularization and we know “Greedy” algorithms work under 
certain conditions. Also we know that the general problem is NP-hard. Is there 
a gap to be filled? For example, empirically stochastic search techniques work 
well, such as MCMC, however as far as I know there are no provable results 
for these within a given complexity. 

4. relationship between sparse redundant representations, compressed sensing 
and super-resolution.
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Current algorithms are provably good when a Restricted Isometry Property
holds…

For δk < ½ it has been shown that the following linear programme provides 
exact reconstruction (for k-exact sparse signals):

and random matrices have been shown to satisfy this when:

What are good observation matrices?
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Problems of Interest

Compressed Sensing

• What are good observation matrices (currently only random is provably good). 
How do we go about designing good CS observation matrices,  particularly 
when there may be constraints on the form of the observation (as in MRI).

• provably good decoding/approximation schemes for Compressed 
Sensing/Sparse Approximation (same as for Sparse Approximations)

• Faster good reconstruction algorithms.

• Extensions of CS theory beyond sparsity
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Part IV: Applications (Measurements and Bits)
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Compressed sensing applications

Compressed Sensing provides a new way of thinking about signal 
acquisition. 

Applications areas include:

• Medical imaging

• Distributed sensing 

• Remote sensing

• Very fast analogue to digital conversion 
(DARPA A2I research program)

Still many unanswered questions… Coding efficiency? Restricted 
observation domains? Etc.
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Compressed Sensing Hallmarks
Compressed Sensing changes the rules of data acquisition game by exploiting a-

priori signal sparsity information (signal is compressible)

• Hardware: Universality
– same random projections / hardware for any compressible signal class
– simplifies hardware and algorithm design

• Processing: Information scalability
– random projections ~ sufficient statistics
– same random projections for range of tasks

• reconstruction > estimation > recognition > detection
– far fewer measurements required to detect/recognize

• Next generation data acquisition
– new imaging devices and A/D converters [DARPA]
– new reconstruction algorithms
– new distributed source coding algorithms [Baron et al.]
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Compressed Sensing example: Magnetic Resonance Imaging

Compressed Sensing ideas can be applied to reduced sampling in Magnetic 
Resonance Imaging:

• MRI samples lines of spatial frequency

• Each line takes time and Energy

• Each line heats up the patient!

The Logan-Shepp phantom image illustrates this:

Logan-Shepp phantom We sample in this domain

Spatial Fourier 
Transform

Haar Wavelet Transform

Logan-Shepp phantom Sparse in this domain

Haar Wavelet 
Transform

Logan-Shepp phantom

Sub-sampled Fourier 
Transform

≈ 7 x down sampled 
(no longer invertible)

…but we wish to sample here
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Compressed Sensing in Practice: Magnetic Resonance Imaging
– Original MRI of a Mouse
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Compressed Sensing in Practice: Magnetic Resonance Imaging
–MRI of  Mouse with 25% Nyquist sampling and an L2 reconstruction
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–MRI of  Mouse with 25% Nyquist sampling and CS reconstruction

Compressed Sensing in Practice: Magnetic Resonance Imaging
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Single Pixel Camera
• Encoder integrates sensing, compression, processing

Directly acquires random projections of a scene without first collecting the 
pixels/voxels,  employing a digital micromirror array to optically calculate linear 
projections of the scene onto pseudorandom binary patterns. Ability to obtain an 
image or video with a single detection element while measuring the scene fewer times 
than the number of pixels/voxels. Since the camera relies on a single photon detector, 
it can also be adapted to image at wavelengths where conventional CCD and CMOS 
imagers are blind. 
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Second Image 
Acquisition
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A/D Conversion Below Nyquist Rate
• Challenge:

– wideband signals (radar, communications..)
– currently impossible to sample at Nyquist rate

• Proposed CS-based solution:
– sample at “information rate”
– simple hardware components
– good reconstruction performance reported
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Slepian-Wolf Theorem (Distributed lossless coding)

• Consider a communication system with two correlated signals, X and Y Assume 
they come from separate sources that cannot communicate, so the signals are 
encoded independently or are “distributed”. The receiver can see both encoded 
signals and can perform joint decoding.

• A sensor system composed of low-complexity spatially separated sensor nodes, 
sending correlated information to a central processing receiver, is an example of 
such system. 

• What is the minimum encoding rate required such that X and Y can still be 
recovered perfectly? 
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Slepian-Wolf Theorem (Distributed lossless coding)
• The Slepian-Wolf Theorem, established in 1971, shows it is possible to 

transmit X and Y without any loss if all of the following hold true:
R1 > H(X1|X2) (conditional entropy)
R2 > H(X2|X1) (conditional entropy)
R1+R2 > H(X1,X2) (joint entropy)
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CS Approach- Measure separately, reconstruct jointly

• Zero collaboration, trivially scalable, robust
• Low complexity, universal encoding
• Ingredients

– models for joint sparsity
– algorithms for joint reconstruction
– theoretical results for measurement savings

• The power of random measurements
– single-signal: efficiently capture structure without 

performing the sparse transformation
– multi-signal: efficiently capture joint structure without

collaborating or performing the sparse 
transformation
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Summary

Sparse representations provide a powerful mathematical model 
for many natural signals in signal processing and are a basis for:

• good compression;

• good source separation and;

• efficient sampling

There is an interesting interplay between linear representations
and nonlinear approximation

Compressed sensing is only in its infancy…

For more info see:
http://www.dsp.ece.rice.edu/cs/
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