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Dynamic Bayesian Networks

EMA

Electromagnetic
articulograph
records posi-
tion of tongue,
lips and velum
during speech.
Insights into
speech pro-
duction.
Informs mod-
els of speech.

Phonetic features

Graphemes

Avoid the problems of creating a lexicon. Poor linguistic motivation, yet
they seem to work! Why are phonemes no better than graphemes?

Posterior-based featuresArticulatory measurements

Structure learning
Too many network struc-
tures to try! As well as us-
ing linguistic intuition, we
have methods for learning
optimal structure.

Learnt units

Lots of evidence to suggest
that phonemes are not the
ideal unit for speech recog-
nition. As well as using
other units (see right), we
are attempting to use ma-
chine learning to discover
an optimal unit inventory.

Multilingual

Audio search

Speech recognisers
have fixed vocabularies
– how can we search
for words not known to
the system? Cannot
pre-recognise the audio
into words. Instead,
label audio with lattices
of sub-word units.

If we use phonemes,
then have to guess
pronunciation of search
term: this is error
prone.

Why not use
graphemes instead?

Audiovisual

PFs

More universal
than phonemes.

Graphemes

Avoid writing lexi-
con for each new
language.

Tandem

Train neural net
on some other
language(s) that
have more data.
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Phonetic features are a factored rep-
resentation of speech: they have mul-
tiple streams such as the manner of
articulation (vowel, fricative, nasal,...)
or the place in the mouth where the
sound is articulated.
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DBNs allow us to model underlying
structure in speech. Linguistic knowl-
edge guides our choice of network
structures: the variables in the network
have specific linguistic meanings.

9 frame window

ality reduction
linear dimension−phone−discriminant

non−linear mapping

P
LP

 acoustic feature

tandem
 feature

phone posteriors

Harness power of neural networks (large in-
put context windows, discriminative training,...),
and conventional Hidden Markov Models (sta-
tistical modelling, adaptation, parameter shar-
ing,...): use the net to perform a classifica-
tion task – from speech into phoneme poste-
rior probabilities – then derive features from
that distribution and feed to an HMM. But is
phoneme classification the best task?


