(1,1) -1- ICTogsa.indd 30/11/2006 12:52:29

OGSA-DAI: Open Grid Services Architecture Data

Access and Integration

OGSA-DAI demonstrates the University of Edinburgh’s ability to combine research on data access and integration using grid and web
service technology and in-house software engineering expertise to create outputs which benetit international research.

Request
L — 7 : OGSA-DAI
S[e)lf\i;i?:e * DB Figure 1:
« The basic OGSA-DAI data
Response 1 service model

sglQueryStatement deliverFromURL

SELECT * FROM Bands
WHERE name = Bangles;

ehttp://www.someplace.org/sty

Figure 2: A pictoria]
lesheets/webRowSetToHTML.xsI

representation qf a Simple

perform document Sbowz'ng ResultSet

a query about the Bangles !
sglResultsToXML XSL

being pe1f0rmed which is then
transformed into HTML, based WebRowsSet

on d St)/]esbeet provided via] !

xslTransform
an URL, and uploaded to a
website. l HTML

deliverToURL

ftp://www.musicplace.org/bands/Bangles.html

Introduction

OGSA-DAI [1,2] is an extensible framework for data access and integration providing consistent interfaces to heterogeneous data
resources in a grid/web environment with an emphasis on flexibility, functionality, performance and scalability. It allows interaction

with these resources and provides additional processing functionality which can efficiently handle the data exposed. The University of
Edinburgh has worked closely with database vendors (IBM, Oracle) and other research groups (University of Manchester, University of
Newcastle) to lead a project which has both defined standards through the Open Grid Forum, and produced an implementation which is
being used to support further research and e-Science.

Seen at a high level (Figure 1), an OGSA-DAI data service accepts a request (called a perform document) specified in XML and produces
a response according to the instructions in the request. A perform document contains activities (the base unit of work in OGSA-DAI) that
specify the required functionality. Activities can be chained together, thus creating a pipeline where data is streamed between activities
and iteratively processed in small, manageable blocks. Once the activities have completed, a response document is sent containing details
of the completion status. Results can be delivered in the response, or via a separate delivery method. OGSA-DAI provides a powerful,
data-centric workflow for e-Science, which in turn can be nested in higher-level workflow languages such as BPEL [3]. This architecture [4]
was developed from the outputs of the UK Database Task Force [5] and, in particular, the perform document model was evolved following
discussions and a scenario pattern evaluation with IBM, which pointed to the need for a more powerful interface than the simple Remote
Procedure Call (RPC) style utilised by many web services.

A perform document (see Figure 2 for pictorial representation) will typically contain instructions to: access a data resource; perform
transformations on the data acquired; and deliver the results (either through the response document or via OGSA-DAI’s delivery activities
to an alternative destination). This highlights three of the four sets of operations which are useful for data services, the fourth being
management operations.

OGSA-DAI is based on the Web Services Resource Framework (WS-RF) model [6]. An OGSA-DAI execution service (Figure 3) contains
a Data Request Execution Resource that is associated to many Data Resources which each expose an underlying data source. General
purpose integration activities exploit this model, and are implemented as parameterised activities with java methods that provide
functionality like sorting, joining, and selecting relational structures. Activities may combine common patterns of several operations to
improve efficiency e.g.: TupleGenericSort, TupleGenericSelectProject, TupleGenericJoinSelectProject, TupleGenericProductSelectProject.

Efficient intra-service data transfer

The Activity Framework (Figure 4) is a core component of OGSA-DAI, responsible for enacting activities and streaming the data between
them. When two activities are connected, one will usually produce some data blocks and pass them to a pipe object. When the other
activity wants to consume a data block, it will ask for one from the pipe. The pipes between activities act as buffers for the data blocks that
have to be exchanged. Activities and pipes are initialised once. Activities execute in their own threads, producing and sending blocks to
the pipe for buffering and subsequent consumption and retrieval by other activities. This approach maximises utilisation between consumer
and producer.

- National
e-Science
O Centre

One
T
| Data | .
''''' Resource Eti
MyDRER .~ Two Figure 3:The OGSA-DAI
pata Data Request * >
Request : Data | . —
Exe((:]:utlon — . - Executlon '!: oooooooooooooooo Resource Data Resource Mode]
i Resource —
sevice | L —/—— 1 T Three
.... Data = . —
Resource Data
Client Perform Document

myQuery(One) myQuery(Two)
mylintegrateData
deliverGridFTP

J

Client-server interaction

== == . Service-resource association
-------- Resource-resource association
== = == Resource-database association

Called Activity A
Once process()
-)

O
® brocess l l lputBIock
Processing Pipe
! e
Service initialise

block
showing a Pipe being utilised to getBlock as result

process

Figure 4: The Activity Framework,

transfer data between activities

Activity B

process()

Because of the way that the activity framework has been designed, it is easy to supplement the generic activities provided with custom
activities based on the application or research domain. These activities can utilise the entire framework, reducing the barrier to extending
OGSA-DAI functionality. Developers can also write their own Data Resources to expose any kind of resource that they may have available,
allowing data virtualisation.

An Authorization Model for Data Services

Most security research related to Grid computing has concentrated on protecting job submission systems. Data services such as OGSA-DAI
require a general framework that can support a variety of technologies and allows finer grained access control [7,8]. In particular, as well
as providing policy execution points (PEPs) at the resource and activity level, the security infrastructure should allow the authorisation model
to pass restrictions (obligations) on how a request is executed to activities. One example may be that a client is allowed to execute an SQL
query so long as it does not return more than 1000 rows. There is a design trade off between fine and coarse grained approaches. With
a fine grained approach an activity must specify all the details regarding how the resource can be accessed, including what activities can
run on it. This can place a large burden on how the system administrator configures the activity. A more coarse grained approach may
associate permission groupings with resources.

Scalability and Robustness

The OGSA-DAI architecture provides the basis for future provision of clustering and load balancing (Figure 5), including a monitoring
service which could provide information such as load and utilisation. This provides better scalability since the number of concurrent
requests that can be handled increases with the number of OGSA-DAI services in the cluster. Moreover, these services can be monitored,
and in case of node failures requests could be seamlessly migrated to other OGSA-DAI services.

To allow configuration and state to persist between container shutdowns and restarts there is a mechanism for storing this data in
databases and allowing the reconfiguration of new services from that persistent information. Persistence could also be used for caching to
reduce overheads of OGSA-DAI to database communications.

Research using OGSA-DAI

The OGSA-DAI project started in 2002 and now has over 2500 registered users. In this time, several other research projects have built on
top of OGSA-DAI as a base platform, including:

e OGSA-DQP (Distributed Query Processing) [?] provides a query planning and evaluation framework which allows complex queries to
be split into sub-queries which are executed in parallel across many OGSA-DAI services.

e GridMiner [10] has developed tools to support data mining of medical infosets using OGSA-DAI, including a BPEL enactment engine
and a data mediation component.

e DatabaseGrid [11] extends the uniform view of heterogeneous database resources in grid environments to WebDBs and RDF stores.

www.ogsadai.org.uk

OGSA-DAI cluster

Figure 5: Clusterin g

services to provi de

—

scalability
Client Fromtene OGSA-DAI
Router h State
k -
FH \ Monitor &
Restart
)
W . Another OGSA-DAI Server
—_—y -~ -
OGSA-DAI Server ! TS
I
DEiE Data —
/ Resource = = = posource 4
Informfatlon ——
Service i
pata Data R t
Figure 6: Increasing service Request | _ | “F2 "= oS
_ Client Execution Xecutio
robustness through persistence Service Resource
N Session LL L OGSA-DAI
" Management = = Session State
Service
\ Request H
Management |= = Request
Service

Across the world, a number of large collaborative projects have made OGSA-DAI a part of their software environment. Some examples
include:

e OntoGrid, the provision of semantics in the Grid in a principled manner.

e caBIG, a network to connect the entire USA cancer community;

e NAREGI, a large-scale computing environment for widely-distributed advanced research and education;

e SIMDAT, federation of problem solving environments for industry;

e UNIDART, a uniform data request interface for the access to meteorological data and products.

References

[1] M. Antonioletti et al., The Design and Implementation of Grid Database Services in OGSA-DAI. Concurrency and Computation: Practice and
Experience, Volume 17, Issue 2-4, p 357-376, 2005.

[2] K. Karasavvas et al., An Introduction to OGSA-DAI Services. LNCS Volume 3458, p1-12, 2005.
[3] T. Andrews et al., Business Process Execution Language for Web Services. (BPELAWS,). Version 1.1. May 2003.
[4] M. Atkinson et el., A New Architecture for OGSA-DAI in UK e-Science All Hands Meeting, 2005.

[5] M.P. Atkinson et al., Grid Database Access and Integration: Requirements and Functionalities. Global Grid Forum Informational Document
(GFD.13), 2003.

[6] S. Graham et al., Web Services Resource 1.2 (WS-Resource). OASIS, January 2006.
[7] D. Power et al., A Secure Wrapper for OGSA-DAI. LNCS Volume 3470, p 485-494, 2005.

[8] A.L. Pereira et al., Role-Based Access Control for Grid Database Services. First DIALOGUE Workshop: Applications-Driven Issues in Data
Grids, Columbus, Ohio, 2005.

[9] N. Alpdemir et al., OGSA-DQP: A grid service for distributed querying on the grid. LNCS Volume 2992, p 858-861, 2004.

[10] P. Brezany et al., GridMiner: A Fundamental Infrastructure for Building Intelligent Grid Systems. Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI'05), p 150-156, 2005.

[11] S. Mirza et al., OGSA-WebDB: An OGSA-Based System for Bringing Web Databases into the Grid, Journal of Digital Information
Management, Vol.2. No.2., 2004.

This work has been supported by the UK eScience Core Programme, EPSRC and the DTI.

Newcastle
University

IEEE ORACLE

The University of Manchester

CPCC|

