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Physiological monitoring

Vital signs, literally ‘signs of life’, are used in neonatal intensive care to

help diagnose problems in babies who are in a critical condition. These

physiological measurements (e.g. heart rate or blood gas properties) are

affected by many possible factors, including interventions to the baby,

the operation of the monitoring equipment and the state of health. Our

main aim is to be able to infer the presence of these factors from the

observations automatically. We also aim to infer the times when there is

a change in the dynamics of which the cause is unknown, since if these

changes are not artifactual and not part of a common pattern they are

likely to have clinical significance.

Computerised monitoring in neonatal intensive care. Typically a

set of around ten measurements are taken once per second.
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The FSKF model applied to physiological condition monitoring.

We use a Factorial Switching Kalman Filter (FSKF) to model the physio-

logical data. This consists of three sets of variables which we call factors,

state and observations. The hidden factors are discrete variables and

model for example if the baby is in a normal respiratory state or not, or if

a probe is disconnected or not. The state of baby xt denotes continuous-

valued quantities; this models the true values of infant’s physiological

variables, but also has dimensions to model certain artifact processes.

The observations yt are the noisy readings obtained from the monitoring

equipment. For a given setting of the factors (a cross-product indexed

by st), the hidden continuous state and the observations are related by:

xt ∼ N
(

A(st)xt−1 + d(st),Q(st)
)

, (1)

yt ∼ N
(

H(st)xt,R
(st)

)

. (2)

With labelled training data, the dynamics for each regime can therefore

be trained as a Kalman filter with standard techniques.

Inference

Exact inference of the filtering distribution p(st,xt|y1:t) for the FSKF is

intractable. Inference can be made possible with an analytical approx-

imation (such as a Gaussian sum approximation) or with Monte Carlo

methods (such as Rao-Blackwellised particle filtering).

Unusual dynamics

Another factor (referred to as the ’X-factor’) can be added to the model,

representing ‘none of the above’. That is, it represents the periods in

which the variation is not normal and none of the known factors. This

is done by starting with a model for normal variation and inflating Q in

(1).

Operation of the X-factor. Lights represent which factors are

active; green is used where there is a known interpretation, blue

for the X-factor (where ‘something else’ is happening).

When the X-factor has the best predictive distribution of future values,

we can infer that something is happening which has not been explicitly

represented in our statistical model.

Results

Examples of the operation of the model are shown below. The horizontal

axes show times in seconds.
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A period of physiological instability being picked up by the

X-factor.

Quantitative results for five known patterns are shown in the following ta-

ble. GS denotes inference using the Gaussian sum approximation, RBPF

denotes Rao-Blackwellised particle filtering. A baseline for performance

is given by the factorial hidden Markov model (FHMM).

Blood sample TCP recal. Bradycardia TC disconnect Incu. open

AUC EER AUC EER AUC EER AUC EER AUC EER

FHMM 0.97 0.02 0.78 0.25 0.67 0.42 0.75 0.35 0.97 0.07

GS 0.99 0.01 0.91 0.12 0.72 0.39 0.88 0.19 0.97 0.06

RBPF 0.62 0.46 0.90 0.14 0.76 0.37 0.85 0.32 0.95 0.08
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