
The Paradox of the Case Study

Alan Bundy

September 2004

1 Introduction

In order to demonstrate the scalability of automated reasoning techniques, it is
important to embark on large-scale case studies. As a field, we need to present
a reward system for the completion of such case studies. However, there is a
paradox at the heart of the case study. It is this paradox, and its resolution,
that I intend to explore in this note.

The classic example of the theorem proving case study is Shankar’s proof of
Godel’s incompleteness proof using the Nqthm theorem prover [Shankar, 1994].
Shankar’s reward for this case study was that he received a PhD. Note that
the theorem prover was developed by third parties: Shankar’s supervisors Bob
Boyer and J Moore.

2 The Paradox

It is my contention that any good piece of scientific or engineering research
develops a hypothesis and then provides evidence to support (or refute) that
hypothesis. What is the hypothesis in the case of a theorem-proving case study?
The obvious hypothesis, is that the theorem prover is capable of proving hard
theorems. The evidence supporting this hypothesis is the automated proof of a
hard theorem.

What would be the ideal such evidence? Presumably, that using the most
obvious and direct representation of the theory and the theorem, that the the-
orem prover could prove the theorem totally automatically and within minutes
if not seconds. Herein lies the paradox. If it was that easy, then this work
would scarcely be worthy of a PhD. However, if the work was so hard that it
was worthy of a PhD, then the evidence supporting the hypothesis would be
rather thin. If the student had had to work really hard to find an appropriate
representation of the theory and the theorem; if s/he had had to work even
harder to search a huge search space, guiding the prover at nearly every step,
then the prover would have been shown to be barely capable of proving the
hard theorem, and then only under the direction of an expert in the field. It
seems that the student’s success is inversely proportional to the success of the
theorem prover. This is the paradox of the case study. What industry wants

1



is push-button and fast technology, but it seems that we are unable to reward
case studies that demonstrate such technology1.

Of course, this analysis is superficial. Any theorem prover has a range of
application: from simple theorems that it can prove totally automatically, to
hard ones at the limit of its capacity, requiring expert guidance over multiple
steps. The case study typically explores the outer limits of this range: those
theorems that are barely reachable and then only under expert guidance. So a
more for sophisticated hypothesis is that the outer limits of the theorem prover
under test exceeds that of rival theorem provers. But then, of course, the evi-
dence should include unsuccessful experiments to prove the same theorem using
each of these rival provers. This is seldom demonstrated. Indeed, although the
experimenter will usually not attempt any case studies using rival provers, the
champions of many rival provers frequently take up the challenge, subsequently
showing that their provers are equally, if not more, capable of completing the
case study. This refutation of the implicit hypothesis often occurs after the
original student has been rewarded with a PhD.

A further problem with this kind of case study is it becomes an awful slog.
The student has to put his/her head down and push on relentlessly for weeks and
months, even years, overcoming one difficulty after another, until they finally
produce a huge proof, which no one else may ever study in detail. It is easy
to get disheartened, to wonder whether it is all worth it, or what the point is.
The attrition rate for case study students is much higher than for other kinds
of project.

3 Can we Find Another Hypothesis?

One way out of this paradox, is to seek an alternative hypothesis to those
presented in the last section. I propose that the case study be seen as an
analysis of the system under test. We are asking not just whether the system
can prove this hard problem, but how easy the prover makes producing this
proof: what kind of tools does it provide to support the representation of the
theory or the theorem; what kind of search-control tools help the user guide the
proof; what kind of visualisation tools help the user to understand the structure
of proof; what kind of analysis tools help the user to identify problems and solve
them. The student might also try to classify the types of intervention that were
required to guide the proof. For instance, was it enough to set the parameters
of existing heuristics or tactics, was it necessary to write new kind of tactics, or
was a major overhaul of the theorem prover necessary? In such an analysis, a
large part of the work will be in the development of an appropriate hypothesis.

As an exemplar of what I have in mind, I will describe the kind of analysis
that we did in Francisco Cantu’s PhD project, in which he used our Clam
inductive proof planner to verify various hardware algorithms and systems

1Unless the case studies are carried out by the system’s developers. A short evaluation

section within a system description would work.

2



[Cantu et al, 1996]. He kept a record of the kind of intervention that was neces-
sary to guide the proofs. He classified these interventions by the kind of person
who would be needed to make such interventions. For instance, choices be-
tween existing tactics might be made by the hardware developer within a user
company without any deep knowledge of the theorem prover. However, if new
tactics were required, then it might be necessary to call in the company’s local
expert. Finally, if a major overhaul of the prover was needed, then it would
probably be necessary to ask the prover’s supplier to issue a new version. Fran-
cisco tried to demonstrate that most interventions were of a simple nature that
could be handled by the user or, at least, within the user’s company, and did not
require supplier intervention. He further demonstrated that the interventions
were front-loaded and lumpy. That is to say, most interventions were required at
the beginning of a series of experiments on a new class of algorithms or systems.
After tuning the prover to this new class, most subsequent proofs required little
or no human guidance. In this way, he was able to develop a usage scenario for
the prover, showing that it could be a practical tool within a company doing
hardware development.

This kind of analysis is both more sophisticated and more interesting than
testing the simple hypotheses that this prover can prove hard theorems, or
harder ones than its rivals. It avoids the case study paradox since the effort
required from the student is now directly proportional to the value of the analysis
that is produced from the case study. Moreover, it is much more interesting
work, since the student must continually pay attention not only to the course
of the proof, but to the experience of proving and to the assistance provided (or
not provided) by the theorem prover. It is this analysis, rather than the proof,
that is the product of the case study. This is much more likely to be useful
to the developers of the theorem prover and to the user community, so, unlike
the gory details of the proof itself, the analysis will be widely disseminated and
appreciated.

4 Conclusion

In this note, we have argued for a more sophisticated hypothesis to underlie
case study research. The simplistic hypothesis that the prover can prove hard
theorems — or harder ones than its rivals — leads to a paradox in which the
success of the student is inversely proportional to the success of the prover, and
where the proof process becomes a relentless and unrewarding slog. The more
sophisticated hypothesis consists of an analysis of the strengths and weaknesses
of the prover. It consists of a series of small hypotheses: the prover provides
good visualisation or analysis tools, the prover provides good automatic search
control guidance, etc. It leads to more interesting research because the student
must demonstrate awareness at multiple levels simultaneously: at the object-
level of guiding the search for a proof and at the meta-level of the experience of
the proof process. It also leads to research that will be more useful to both the
developers of the prover and their user community.

3



Superficially, this discussion seems relevant only to the interactive theorem-
proving community. This is not correct. Case studies are also carried out
within the totally automated theorem proving community, for instance, EQP’s
proof of the Robbins Algebra Conjecture [McCune, 1997]. Note that this proof
was not produced from a single run of the prover on the problem. Rather,
it took place over a decade in which: the proof was divided up into lemmas,
the theorem prover was developed and refined, and a series experiments was
tried with a wide variety different parameter settings. The kind of analysis
proposed above is just as relevant to this kind of case study as to those using
explicitly interactive provers. Indeed, we badly need such analytical case studies
of automated provers, to better understand and improve their usability.

References

[Cantu et al, 1996] Cantu, Francisco, Bundy, Alan, Smaill, Alan and Basin,
David. (1996). Experiments in automating hardware veri-
fication using inductive proof planning. In Srivas, M. and
Camilleri, A., (eds.), Proceedings of the Formal Methods for

Computer-Aided Design Conference, number 1166 in Lec-
ture Notes in Computer Science, pages 94–108. Springer-
Verlag.

[McCune, 1997] McCune, W. (1997). Solution of the Robbins problem. J.

Automated Reasoning, 19(3):263–276.

[Shankar, 1994] Shankar, N. (1994). Metamathematics, Machines, and

Gödel’s proof. Cambridge University Press.

4


