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Abstract. Proof planning is an approach to the automation of theorem
proving in which search is conducted, not at the object-level, but among
a set of proof methods. This approach dramatically reduces the amount of
search but at the cost of completeness. We critically examine proof planning,
identifying both its strengths and weaknesses. We use this analysis to explore
ways of enhancing proof planning to overcome its current weaknesses.

Preamble

This paper consists of two parts:

1. a brief ‘bluffer’s guide’ to proof planning1; and
2. a critique of proof planning organised as a 4x3 array.

Those already familiar with proof planning may want to skip straight to the critique
which starts at §2, p4.

1 Background

Proof planning is a technique for guiding the search for a proof in automated theo-
rem proving, [Bundy, 1988,Bundy, 1991,Kerber, 1998,Benzmüller et al, 1997]. The
main idea is to identify common patterns of reasoning in families of similar proofs,
to represent them in a computational fashion and to use them to guide the search for
a proof of conjectures from the same family. For instance, proofs by mathematical
induction share the common pattern depicted in figure 1. This common pattern has
been represented in the proof planners Clam and λClam and used to guide a wide va-
riety of inductive proofs [Bundy et al, 1990b,Bundy et al, 1991,Richardson et al, 1998].

1.1 Proof Plans and Critics

The common patterns of reasoning are represented using tactics: computer programs
which control proof search by applying rules of inference [Gordon et al, 1979]. These
tactics are specified by methods. These methods give both the preconditions under
which the tactics are applicable and the effects of their successful application. Meta-
level reasoning is used to combine the tactics into a customised proof plan for the
current conjecture. This meta-level reasoning matches the preconditions of later
tactics to the effects of earlier ones. Examples of such customised proof plans are
given in figure 2.

⋆ The research reported in this paper was supported by EPSRC grant GR/M/45030. I
would like to thank Andrew Ireland, Helen Lowe, Raul Monroy and two anonymous
referees for helpful comments on this paper. I would also like to thank other members of
the Mathematical Reasoning Group and the audiences at CIAO and Scottish Theorem
Provers for helpful feedback on talks from which this paper arose.

1 Pointers to more detail can be found at http://dream.dai.ed.ac.uk/projects/proof planning.html
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Inductive proofs start with the application of an induction rule, which reduces the
conjecture to some base and step cases. One of each is shown above. In the step
case rippling reduces the difference between the induction conclusion and the induc-
tion hypothesis (see §1.2, p3 for more detail). Fertilization applies the induction
hypothesis to simplify the rippled induction conclusion.

Fig. 1. ind strat: A Strategy for Inductive Proof

Proof planning has been extended to capture common causes of proof failure
and ways to patch them [Ireland, 1992,Ireland & Bundy, 1996b]. With each proof
method are associated some proof critics. Critics have a similar format to methods,
but their preconditions specify situations in which the method’s associated tactic
will fail and instead of tactics they have instructions on patching a failed proof.
Each of the critics associated with a method has a different precondition. These are
used to decide on an appropriate patch. Most of the critics built to date have been
associated with the ripple method, or rather with its principle sub-method, wave,
which applies one ripple step (see §1.2, p3). Among the patches these critics suggest
are: a generalisation of the current conjecture, the use of an intermediate lemma, a
case split and using an alternative induction rule. The use of a critic to generalise
a conjecture is illustrated in figure 8.

Proof planning has been tested successfully on a wide range of inductive and
other theorems. These include conjectures arising from formal methods, i.e. from the
verification, synthesis and transformation of both software and hardware. They in-
clude, for instance: the transformation of naive into tail recursive programs [Hesketh et al, 1992],
the verification of a microprocessor, [Cantu et al, 1996], the synthesis of logic pro-
grams [Kraan et al, 1996], decision procedures [Armando et al, 1996] and the rip-
pling tactic [Gallagher, 1993], resolution completeness proofs [Kerber & C. Sehn, 1997],
proofs of limit theorems [Melis, 1998] and diagonalization proofs [Huang et al, 1995,Gow, 1997].
Critics are especially useful at coming up with, so called, ‘eureka’ steps, i.e. those
proof steps that usually seem to require human intervention, for instance construct-
ing appropriate induction rules, intermediate lemmas and generalisations [Lowe et al, 1998]
and loop invariants [Ireland & Stark, 1997].

Proof planning has also been applied outwith mathematics to the computer
games of bridge [Frank et al, 1992] and Go [Willmott et al, 1999] and also to prob-
lems of configuring systems from parts, [Lowe, 1991,Lowe et al, 1996].
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Associativity of + Commutativity of +
x + (y + z) = (x + y) + z x + y = y + x

The associativity of + is an especially simple theorem, which can be proved with
a single application of ind strat from figure 1, using a one step induction rule on
induction variable x. The commutativity of + is a bit more complicated. ind strat
is first applied using induction variable x then in both the base and step cases
there is a nested application of ind strat using y. The first argument of ind strat
indexes the induction rule using the rippling concept of wave-fronts (see §1.2, p3).
The second argument specifies the induction variable.

Fig. 2. Special-Purpose Proof Plans

1.2 Rippling

Rippling is the key method in proof plans for inductive proof. Not only does it
guide the manipulation of the induction conclusion to prepare it for the application
of the induction hypothesis, but preparation for rippling suggests an appropriate
induction rule and variable and different patterns of rippling failure suggest new
lemmas and generalisations. Since it is also cited several times in the critique, we
have included a brief introduction to rippling here.

Rippling is useful whenever there is a goal to be proved in the context of one or
more ‘givens’. Givens may be axioms, previously proved theorems, assumptions or
hypotheses. It works by calculating the difference between the goal and the given(s)
and then systematically reducing it. The similarities and differences between the
goal and given(s) are marked with meta-level annotations. These annotations are
shown graphically in figure 5, where the notation of rippling is explained. An ex-
ample of rippling is given in figure 6.

rev(nil) = nil

rev(H :: T ) = rev(T ) <> (H :: nil)

qrev(nil, L) = L

qrev(H :: T, L) = qrev(T, H :: L)

rev and qrev are alternative recursive functions for reversing a list. Each is defined
by a one-step list recursion using a base and step case. :: is an infix list cons and
<> an infix list append. rev is a naive reverse function and qrev a more efficient,
tail-recursive function. The second argument of qrev is called an accumulator.
This accumulator should be set to nil when qrev is first applied to reverse a list.
Figure 4 states two theorems that relate these two functions.

Fig. 3. Recursive Definitions of Two Reverse Functions



∀k. rev(k) = qrev(k, nil) (1)

∀k, l. rev(k) <> l = qrev(k, l) (2)

Theorem (1) shows that rev and qrev output the same result from the same input
when the accumulator of qrev is initialised to nil. Theorem (2) generalises theorem
(1) for all values of this accumulator. Paradoxically, the more specialised theorem
(1) is harder to prove. One way to prove it is first to generalise it to theorem (2).

Fig. 4. Two Theorems about List Reversing Functions

2 Critique

Our critique of proof planning is organised along two dimensions. On the first di-
mension we consider four different aspects of proof planning: (1) its potential for
advance formation, (2) its theorem proving power, (3) its support for interaction and
(4) its methodology. On the second dimension, for each aspect of the first dimension
we present: (a) the original dream, (b) the reality of current implementations and
(c) the options available for overcoming obstacles and realising part of that original
dream.

2.1 The Advance Formation of Plans

The Dream: In the original proposal for proof planning [Bundy, 1988] it was
envisaged that the formation of a proof plan for a conjecture would precede its use
to guide the search for a proof. Meta-level reasoning would be used to join general
proof plans together by matching the preconditions of later ones to the effects of
earlier ones. A tactic would then be extracted from the customised proof plan thus
constructed. A complete proof plan would be sent to a tactic-based theorem prover
where it would be unpacked into a formal proof with little or no search.

The Reality: Unfortunately, in practice, this dream proved impossible to realise.
The problem is due to the frequent impossibility of checking the preconditions
of methods against purely abstract formulae. For instance, the preconditions of
rippling include checking for the presence of wave-fronts in the current goal for-
mula, that a wave-rule matches a sub-expression of this goal and that any new
inwards wave-fronts have a wave-hole containing a sink. These preconditions can-
not be checked unless the structure of the goal is known in some detail. To know
this structure requires anticipating the effects of the previous methods in the cur-
rent plan. The simplest way to implement this is to apply each of the tactics of the
previous methods in order.

Similar arguments hold for most of the other proof methods used by proof plan-
ners. This is especially true in applications to game playing where the different
counter actions of the opposing players must be explored before a response can be
planned, [Willmott et al, 1999]. So the reality is an interleaving of proof planning
and proof execution. Moreover, the proof is planned in a consecutive fashion, i.e. the
proof steps are developed starting at one end of the proof then proceeding in or-
der. At any stage of the planning process only an initial or final segment of the
object-level proof is known.

The Options: One response to this reality is to admit defeat, abandon proof plan-
ning and instead recycle the preconditions of proof methods as preconditions for the



Given: rev(t) <> L = qrev(t, L)

Goal: rev( h :: t
↑

) <> ⌊l⌋ = qrev( h :: t
↑

, ⌊l⌋)

Wave-Rules:

rev( H :: T
↑

) ⇒ rev(T ) <> H :: nil
↑

(3)

qrev( H :: T
↑

, L) ⇒ qrev(T, H :: L
↓

) (4)

( X <> Y
↑

) <> Z ⇒ X <> ( Y <> Z
↓

) (5)

The example is drawn from the inductive proof of theorem (2) in figure 4. The given
and the goal are the induction hypothesis and induction conclusion, respectively,
of this theorem. Wave-rules (3) and (4) are annotated versions of the step cases of
the recursive definitions of the two list reversing functions in figure 3. Wave-rule
(5) is from the associativity of <>.
The grey boxes are called wave-fronts and the holes in them are called wave-holes.
The wave-fronts in the goal indicate those places where the goal differs from the
given. Those in the wave-rules indicate the differences between the left and right
hand sides of the rules. The arrows on the wave-fronts indicate the direction in
which rippling will move them: either outwards (↑) or inwards (↓). The corners,
⌊. . .⌋, around the l in the goal indicate a sink. A sink is one of rippling’s target
locations for wave-fronts; the other target is to surround an instance of the whole
given with a wave-front.
The wave-rules are used to rewrite each side of the goal. The effect is to move the
wave-fronts either to surround an instance of the given or to be absorbed into a
sink. An example of this process is given in figure 6

Fig. 5. The Notation of Rippling

application of tactics. Search can then be conducted in a space of condition/action
production rules in which the conditions are the method preconditions and the ac-
tions are the corresponding tactics. Satisfaction of a precondition will cause the
tactic to be applied thus realising the preconditions of subsequent tactics. Essen-
tially, this strategy was implemented by Horn in the Oyster2 system [Horn, 1992].
The experimental results were comparable to earlier versions of Clam, i.e. if tactics
are applied as soon as they are found to be applicable then proof planning conveys
no advantage over Horn’s production rule approach.

However, in subsequent developments some limited abstraction has been intro-
duced into proof planning, in particular, the use of (usually second-order) meta-
variables. In many cases the method preconditions can be checked on such partially
abstract formulae. This allows choices in early stages of the proof to be delayed then
made subsequently, e.g. as a side effect of unification of the meta-variables. We call
this middle-out reasoning because it permits the non-consecutive development of a
proof, i.e. instead of having to develop a proof from the top down or the bottom
up we can start in the middle and work outwards. Middle-out reasoning can sig-
nificantly reduce search by postponing a choice with a high branching factor until
the correct branch can be determined. Figure 8 provides an example of middle-out
reasoning.

Among the choices that can be successfully delayed in this way are: the witness
of an existential variable, the induction rule, [Bundy et al, 1990a], an intermediate
lemma and generalisation of a goal [Ireland & Bundy, 1996b,Ireland & Bundy, 1996a].
Each of these has a high branching factor – infinite in some cases. A single abstract



Given: rev(t) <> L = qrev(t, L)
Goal:

rev( h :: t
↑

) <> ⌊l⌋ = qrev( h :: t
↑

, ⌊l⌋)

( rev(t) <> h :: nil
↑

) <> ⌊l⌋ = qrev(t, ⌊h :: l⌋)

rev(t) <> ⌊(h :: nil) <> l⌋ = qrev(t, ⌊h :: l⌋)

rev(t) <> ⌊h :: l⌋ = qrev(t, ⌊h :: l⌋)

The example comes from the step case of the inductive proof of theorem (2) from
figure 4. Note that the induction variable k becomes the constant t in the given

and the wave-front h :: t
↑

in the goal. However, the other universal variable,

l, becomes a first-order meta-variable, L, in the given, but a sink, ⌊l⌋, in the
goal. We use uppercase to indicate meta-variables and lowercase for object-level
variables and constants.
The left-hand wave-front is rippled-out using wave-rule (3) from figure 5, but then
rippled-sideways using wave-rule (5), where it is absorbed into the left-hand sink.
The right-hand wave-front is rippled-sideways using wave-rule (4) and absorbed
into the right-hand sink. After the left-hand sink is simplified, using the recursive
definition of <>, the contents of the two sinks are identical and the goal can be
fertilized with the given, completing the proof. Note that fertilization unifies the
meta-variable L with the sink h :: l.
Note that there is no point in rippling sideways unless this absorbs wave-fronts into
sinks. Sinks mark the potential to unify wave-fronts with meta-variables during
fertilization. Without sinks to absorb the wave-fronts, fertilization will fail. Such
a failure is illustrated in figure 7

Fig. 6. An Example of Rippling

branch containing meta-variables can simultaneously represent all the alternative
branches. Incremental instantiation of the meta-variables as a side effect of sub-
sequent proof steps will implicitly exclude some of these branches until only one
remains. Even though the higher-order2 unification required to whittle down these
choices is computationally expensive the cost is far less than the separate exploration
of each branch. Moreover, the wave annotation can be exploited to control higher-
order unification by requiring wave-fronts to unify with wave-fronts and wave-holes
to unify with wave-holes. We have exploited this middle-out technique to especially
good effect in our use of critics, [Ireland & Bundy, 1996b].

Constraints have also been used as a least commitment mechanism in the Ωmega
proof planner [Benzmüller et al, 1997]. Suppose a proof requires an object with cer-
tain properties. The existence of such an object can be assumed and the prop-
erties posted as constraints. Such constraints can be propagated as the proof de-
velops and their satisfaction interleaved with that proof in an opportunistic way
[Melis et al, 2000b,Melis et al, 2000a].

Middle-out reasoning recovers a small part of the original dream of advance proof
planning and provides some significant search control advantage over the mere use
of method preconditions in tactic-based production rules.

2 Only second-order unification is required for the examples tackled so far, but higher-
order unification is required in the general case.



Given: rev(t) = qrev(t, nil)
Goal:

rev( h :: t
↑

) = qrev( h :: t
↑

, nil)

( rev(t) <> h :: nil
↑

) = qrev( h :: t
↑

, nil)
︸ ︷︷ ︸

blocked

The example comes from the failed step case of the inductive proof of theorem (1)
from figure 4. A particular kind of ripple failure is illustrated.
The left-hand wave-front can be rippled-out using wave-rule (3) and is then com-
pletely rippled. However, the right-hand wave-front cannot be rippled-sideways
even though wave-rule (4) matches it. This is because there is no sink to absorb
the resulting inwards directed wave-front. If the wave-rule was nevertheless applied
then any subsequent fertilization attempt would fail.
Figure 8 shows how to patch the proof by a generalisation aimed to introduce a
sink into the appropriate place in the theorem and thus allow the ripple to succeed.

Fig. 7. A Failed Ripple

2.2 The Theorem Proving Power of Proof Planning

The Dream: One of the main aims of proof planning was to enable automatic theo-
rem provers to prove much harder theorems than conventional theorem provers were
capable of. The argument was that the meta-level planning search space was consid-
erably smaller than the object-level proof search space. This reduction was partly
due to the fact that proof methods only capture common patterns of reasoning,
excluding many unsuccessful parts of the space. It was also because the higher-level
methods, e.g. ind strat, each cover many object-level proof steps. Moreover, the use
of abstraction devices, like meta-variables, enables more than one proof branch to
be explored simultaneously. Such search space reductions should bring much harder
proofs into the scope of exhaustive search techniques.

The Reality: This dream has been partially realised. The reduced search space
does allow the discovery of proofs that would be beyond the reach of purely object-
level, automatic provers: for instance, many of the proofs listed in §1.1, p1.

Unfortunately, these very search reduction measures can also exclude the proofs
of hard theorems from the search space, making them impossible to find. The re-
duced plan space is incomplete. Hard theorems may require uncommon or even
brand new patterns of reasoning, which have not been previously captured in proof
methods. Or they may require existing tactics to be used in unusual ways that are
excluded by their current heuristic preconditions. Indeed, it is often a characteristic
of a breakthrough in mathematical proof that the proof incorporates some new kind
of proof method, cf Gödel’s Incompleteness Theorems. Such proofs will not be found
by proof planning using only already known proof methods, but could potentially
be stumbled upon by exhaustive search at the object-level.

The Options: Firstly, we consider ways of reducing the incompleteness of proof
planning, then ways of removing it.

We should strive to ensure that the preconditions of methods are as general
as possible, for instance, minimising the use of heuristic preconditions, as opposed
to preconditions that are required for the legal application of the method’s tactic.



This will help ensure that the tactic is applied whenever it is appropriate and not
excluded due to a failure to anticipate an unusual usage. A balance is required
here since the absence of all heuristic preconditions may increase the search space
to an infeasible size. Rather diligence is needed to design both tactics and their
preconditions which generalise away from the particular examples that may have
suggested the reasoning pattern in the first place.

The use of critics expands the search space by providing a proof patch when
the preconditions of a method fail. In practice, critics have been shown to facilitate
the proof of hard theorems by providing the ‘eureka’ steps, e.g. missing lemmas,
goal generalisations, unusual induction rules, etc, that hard theorems often require
[Ireland & Bundy, 1996b]. However, even with these additions, the plan space is still
incomplete; so the problem is only postponed.

One way to restore completeness would be to allow arbitrary object-level proof
steps, e.g. the application of an individual rule of inference such as rewriting, gen-
eralisation, induction, etc, with no heuristic limits on its application. Since such a
facility is at odds with the philosophy of proof planning, its use would need to be
carefully restricted. For instance, a proof method could be provided that made a
single object-level proof step at random, but only when all other possibilities had
been exhausted. Provided that the rest of the plan space was finite, i.e. all other
proof methods were terminating, then this random method would occasionally be
called and would have the same potential for stumbling upon new lines of proof that
a purely object-level exhaustive prover does, i.e. we would not expect it to happen
very often – if at all.

It is interesting to speculate about whether it would be possible to draw a more
permanent benefit from such serendipity by learning a new proof method from
the example proof. Note that this might require the invention of new meta-level
concepts: consider, for instance, the learning of rippling from example object-level
proofs, which would require the invention of the meta-level concepts of wave-front,
wave-hole, etc.

Note that a first-order object-level proof step might be applied to a formula
containing meta-variables. This would require the first-order step to be applied
using higher-order unification, – potentially creating a larger search space than
would otherwise occur. Also, some object-level proof steps require the specification
of an expression, e.g. the witness of an existential quantifier, an induction variable
and term, the generalisation of an expression. If these expressions are not provided
via user interaction then infinite branching could be avoided by the use of meta-
variables. So object-level rule application can introduce meta-variables even if they
are not already present. These considerations further underline the need to use such
object-level steps only as a last resort.

2.3 The Support for Interaction of Proof Planning

The Dream: Proof planning is not just useful for the automation of proof, it can
also assist its interactive development. The language of proof planning describes the
high-level structure of a proof and, hence, provides a high-level channel of commu-
nication between machine and user. This can be especially useful in a very large
proof whose description at the object-level is unwieldy. The different proof meth-
ods chunk the proof into manageable pieces at a hierarchy of levels. The method
preconditions and effects describe the relationships between and within each chunk
and at each level. For instance, the language of rippling enables a proof state to be
described in terms of differences between goals and givens, why it is important to
reduce those differences and of ways to do so.

The preconditions and effects of methods and critics support the automatic
analysis and patching of failed proof attempts. Thus the user can be directed to the



reasons for a failed proof and the kind of steps required to remedy the situation.
This orients the user within a large and complex search space and gives useful hints
as to how to proceed.

The Reality: The work of Lowe, Jackson and others in the XBarnacle system
[Lowe & Duncan, 1997] shows that proof planning can be of considerable assistance
in interactive proof. For instance, in Jackson’s PhD work, [Jackson, 1999,Ireland et al, 1999],
the user assists in the provision of goal generalisations, missing lemmas, etc. by in-
stantiating meta-variables. However, each of the advantages listed in the previous
section brings corresponding disadvantages.

Firstly, proof planning provides an enriched language of human/computer com-
munication but at the price of introducing new jargon for the user to understand.
The user of XBarnacle must learn the meaning of wave-fronts, flawed inductions,
fertilization, etc.

Secondly, and more importantly, the new channel of communication assists users
at the cost of restricting them to the proof planning search space; cf the discussion
of incompleteness in §2.2, p7. For instance, XBarnacle users can get an explanation
of why a method or critic did or did not apply in terms of successful or failed
preconditions. They can over-ride those preconditions to force or prevent a method
or critic applying. But their actions are restricted to the search space of tactics and
critics. If the proof lies outside that space then they are unable to direct XBarnacle
to find it.

The Options: The first problem can be ameliorated in a number of ways. Jargon
can be avoided, translated or explained according to the expertise and preferences
of the user. For instance, “fertilization” can be avoided in favour of, or translated
into, the “use of the induction hypothesis”. “Wave-front”, on the other hand, has
no such ready translation into standard terminology and must be explained within
the context of rippling. Thus, although this problem can be irritating, it can be
mitigated with varying amounts of effort.

The second problem is more fundamental. Since it is essentially the same as
the problem of the incompleteness of the plan space, discussed in §2.2, p7, then
one solution is essentially that discussed at the end of §2.2. New methods can
be provided which apply object-level proof steps under user control. As well as
providing an escape mechanism for a frustrated user this might also be a valuable
device for system developers. It would enable them to concentrate on the parts of a
proof they were interested in automating while using interaction to ‘fake’ the other
parts.

The challenge is to integrate such object-level steps into the rest of the proof
planning account. For instance, what story can we now tell about how such object-
level steps exploit the effects of previous methods and enable the preconditions of
subsequent ones?

2.4 The Methodology of Proof Planning

The Dream: Proof planning aims to capture common patterns of reasoning and
repair in methods and critics. In [Bundy, 1991] we provide a number of criteria
by which these methods and critics are to be assessed. These include expectancy3,
generality, prescriptiveness4, simplicity, efficiency and parsimony. In particular, each
method and critic should apply successfully in a wide range of situations (generality)

3 Some degree of assurance that the proof plan will succeed.
4 The less search required the better.



and a few methods and critics should generate a large number of proofs (parsimony).
Moreover, the linking of effects of earlier methods and critics to the preconditions
of later ones should enable a good ‘story’ to be told about how and why the proof
plan works. This ‘story’ enables the expectancy criterion to be met.

The Reality: It is hard work to ensure that these criteria are met. A new method
or critic may originally be inspired by only a handful of examples. There is a con-
stant danger of producing methods and critics that are too fine tuned to these initial
examples. This can arise both from a lack of imagination in generalising from the
specific situation and from the temptation to get quick results in automation. Such
over-specificity leads to a proliferation of methods and critics with limited applica-
bility. Worse still, the declarative nature of methods may be lost as methods evolve
into arbitrary code tuned to a particular problem set. The resulting proof planner
will be brittle, i.e. will frequently fail when confronted with new problems. It will
become increasing hard to tell an intelligible story about its reasoning. Critical re-
viewers will view the empirical results with suspicion, suspecting that the system
has been hand-tuned to reproduce impressive results on only a handful of hard
problems.

As the consequences of over-specificity manifest themselves in failed proof at-
tempts so the methods and critics can be incrementally generalised to cope with the
new situations. One can hope that this process of incremental generalisation will
converge on a few robust methods and critics, so realising the original dream. How-
ever, a reviewer may suspect that this process is both infinite and non-deterministic,
with each incremental improvement only increasing the range of the methods and
critics by a small amount.

The opposite problem is caused by an over-general or missing precondition,
permitting a method to apply in an inappropriate situation. This may occur, for
instance, where a method is developed in a context in which a precondition is
implicit, but then applied in a situation in which it is absent. This problem is
analogous to feature interaction in telecomms or of predicting the behaviour of a
society of agents.

The Options: The challenge is not only to adopt a development methodology that
meets the criteria in [Bundy, 1991] but also to be seen to do so. This requires both
diligence in the development of proof plans and the explicit demonstration of this
diligence. Both aims can be achieved by experimental or theoretical investigations
designed to test explicit hypotheses.

For instance, to test the criterion of generality, systematic and thorough appli-
cation of proof planning systems should be conducted. This testing requires a large
and diverse set of examples obtained from independent sources. The diversity should
encompass the form, source and difficulty level of the examples. However, the gen-
erality of the whole system should not be obtained at the cost of parsimony, i.e. by
providing lots of methods and critics ‘hand crafted’ to cope with each problematic
example; so each of the methods and critics must be shown to be general-purpose.
Unfortunately, it is not possible to test each one in isolation, since the methods
and critics are designed to work as a family. However, it is possible to record how
frequently each method and critic is used during the course of a large test run.

To meet the criterion of expectancy the specifications of the methods and critics
should be declarative statements in a meta-logic. It should be demonstrated that
the effects of earlier methods enable the preconditions of later ones and that the
patches of critics invert the failed preconditions of the methods to which they are
attached. Such demonstrations will deal both with the situation in which method
preconditions/effects are too-specific (they will not be strong enough hypotheses)



and in which they are too general (they will not be provable). The work of Gal-
lagher [Gallagher, 1993] already shows that this kind of reasoning about method
preconditions and effects can be automated.

To meet the criterion of prescriptiveness the search space generated by rival
methods needs to be compared either theoretically or experimentally; the method
with the smaller search space is to be preferred. However, reductions in search space
should not be obtained at the cost of unacceptable reductions in success rate. So
it might be shown experimentally and/or via expectancy arguments that accept-
able success rates are maintained. Reduced search spaces will usually contribute
to increased efficiency, but it is possible that precondition testing is computation-
ally expensive and that this cost more than offsets the benefits of the increased
prescriptiveness, so overall efficiency should also be addressed.

3 Conclusion

In this paper we have seen that some of the original dreams of proof planning have
not been fully realised in practice. We have shown that in some cases it has not been
possible to deliver the dream in the form in which it was originally envisaged, for
instance, because of the impossibility of testing method preconditions on abstract
formulae or the inherent incompleteness of the planning search space. In each case
we have investigated whether and how a lesser version of the original dream can
be realised. This investigation both identifies the important benefits of the proof
planning approach and points to the most promising directions for future research.
In particular, there seem to be three important lessons that have permeated the
analysis.

Firstly, the main benefits of proof planning are in facilitating a non-consecutive
exploration of the search space, e.g. by ‘middle-out’ reasoning. This allows the post-
ponement of highly branching choice points using least commitment mechanisms,
such as meta-variables or constraints. Parts of the search space with low branching
rates are explored first and the results of this search determine the postponed choices
by side-effect, e.g. using higher-order unification or constraint solving. This can re-
sult in dramatic search space reductions. In particular, ‘eureka’ steps can be made in
which witnesses, generalisations, intermediate lemmas, customised induction rules,
etc, are incrementally constructed. The main vehicle for such non-consecutive ex-
ploration is critics. Our analysis points to the further development of critics as the
highest priority in proof planning research.

Secondly, in order to increase the coverage of proof planners in both automatic
and interactive theorem proving it is necessary to combine it with more brute force
approaches. For instance, it may be necessary to have default methods in which
arbitrary object-level proof steps are conducted either at random or under user con-
trol. One might draw an analogy with simulated annealing in which it is sometimes
necessary to make a random move in order to escape from a local minimum.

Thirdly, frequent and systematic rational reconstruction is necessary to off-set
the tendency to develop over-specialised methods and critics. This tendency is a
natural by-product of the experimental development of proof planning as specifi-
cations are tweaked and tuned to deal with challenging examples. It is necessary
to clean-up non-declarative specifications, merge and generalise methods and crit-
ics and to test proof planners in a systematic and thorough way. The assessment
criteria of [Bundy, 1991] must be regularly restated and reapplied.

Despite the limitations exposed by the analysis of this paper, proof planning
has been shown to have a real potential for efficient and powerful, automatic and
interactive theorem proving. Much of this potential still lies untapped and our
analysis has identified the priorities and directions for its more effective realisation.



Afterword

I first met Bob Kowalski in June 1971, when I joined Bernard Meltzer’s Metamath-
ematics Unit as a research fellow. Bernard had assembled a world class centre in
automatic theorem proving. In addition to Bob, the other research fellows in the
Unit were: Pat Hayes, J Moore, Bob Boyer and Donald Kuehner; Donald was the
co-author, with Bob, of SL-Resolution, which became the theoretical basis for Prolog.

Bob’s first words to me were “Do you like computers? I don’t!”. This sentiment
was understandable given the primitive computer facilities then available to us: one
teletype with a 110 baud link to a shared ICL 4130 with 64k of memory. Bob went
on to forsake the automation of mathematical reasoning as the main domain for
theorem proving and instead pioneered logic programming: the application of theorem
proving to programming. I stuck with mathematical reasoning and focussed on the
problem of proof search control. However, I was one of the earliest adopters of Prolog
and have been a major beneficiary of Bob’s work, using logic programming both as
a practical programming methodology and as a domain for formal verification and
synthesis. I am also delighted to say that Bob has remained a close family friend for
30 years.

Happy 60th birthday Bob!
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Schematic Conjecture: ∀k, l. F (rev(k), l) = qrev(k, G(l))
Given: F (rev(t), L) = qrev(t, G(L))
Goal:

F (rev( h :: t
↑

), ⌊l⌋) = qrev( h :: t
↑

, G(⌊l⌋))

F ( rev(t) <> h :: nil
↑

, ⌊l⌋) = qrev(t, h :: G(⌊l⌋)
↓

)

rev(t) <> ( h :: nil <> F ′( rev(t) <> h :: nil
↑

, ⌊l⌋)

↓

) = qrev(t, h :: G(⌊l⌋)
↓

)

rev(t) <> ( h :: F ′( rev(t) <> h :: nil
↑

, ⌊l⌋)

↓

) = qrev(t, h :: G(⌊l⌋)
↓

)

rev(t) <> (⌊h :: l⌋) = qrev(t, ⌊h :: l⌋)

Meta-Variable Bindings:

λu, v. u <> F ′(u, v)/F

λu, v. v./F ′

λu. u./G

Generalised Conjecture: ∀k, l. rev(k) <> l = qrev(k, l)

The example shows how the failed proof attempt in figure 7 can be analysed using a
critic and patched in order to get a successful proof. The patch generalises the the-
orem to be proved by introducing an additional universal variable and hence a sink.
Middle-out reasoning is used to delay determining the exact form of the general-
isation. This form is determined later as a side effect of higher-order unification
during rippling.
First a schematic conjecture is introduced. A new universal variable l is introduced,
in the right-hand side, at the point where a sink was required in the failed proof in
figure 7. Since we are not sure exactly how l relates to the rest of the right-hand
side a second-order meta-variable G is wrapped around it. On the left-hand side
a balancing occurrence of l is introduced using the meta-variable F . Note that l
becomes a first-order meta-variable L in the given, but a sink ⌊l⌋ in the goal.
Induction on k, rippling, simplification and fertilization are now applied, but
higher-order unification is used to instantiate F and G. If the schematic conjecture
is now instantiated we see that the generalised conjecture is, in fact, theorem (2)
from figure 4.

Fig. 8. Patching a Failed Proof using Middle-Out Reasoning


