
On the Complexity of Nash Equilibria and Other Fixed Points
(Extended Abstract)

Kousha Etessami
LFCS, School of Informatics

University of Edinburgh

Mihalis Yannakakis
Department of Computer Science

Columbia University

Abstract

We reexamine what it means to compute Nash equi-
libria and, more generally, what it means to compute a
fixed point of a given Brouwer function, and we investi-
gate the complexity of the associated problems. Specif-
ically, we study the complexity of the following prob-
lem: given a finite game, Γ, with 3 or more players,
and given ε > 0, compute a vector x′ (a mixed strategy
profile) that is within distance ε (say, in l∞) of some
(exact) Nash equilibrium.

We show that approximation of an (actual) Nash
equilibrium for games with 3 players, even to within
any non-trivial constant additive factor ε < 1/2 in just
one desired coordinate, is at least as hard as the long
standing square-root sum problem, as well as more gen-
eral arithmetic circuit decision problems, and thus that
even placing the approximation problem in NP would
resolve a major open problem in the complexity of nu-
merical computation. Furthermore, we show that the
(exact or approximate) computation of Nash equilibria
for 3 or more players is complete for the class of search
problems, which we call FIXP, that can be cast as fixed
point computation problems for functions represented
by algebraic circuits (straight line programs) over ba-
sis {+, ∗,−, /, max,min}, with rational constants. We
show that the linear fragment of FIXP equals PPAD.

Many problems in game theory, economics, and
probability theory, can be cast as fixed point problems
for such algebraic functions. We discuss several im-
portant such problems: computing the value of Shap-
ley’s stochastic games, and the simpler games of Con-
don, extinction probabilities of branching processes, ter-
mination probabilities of stochastic context-free gram-
mars, and of Recursive Markov Chains. We show that
for some of them, the approximation, or even exact
computation, problem can be placed in PPAD, while
for others, they are at least as hard as the square-root
sum and arithmetic circuit decision problems.

1 Introduction

A wide variety of problems from many fields (eco-
nomics, game theory, probability, etc.) can be cast in
the form of finding a solution to a fixed point equa-
tion x = F (x). Computing a Nash equilibrium is one
prominent such problem that has attracted a lot of
attention in economics, and more recently in the com-
puter science community. Nash’s theorem says that
every (finite) game has an equilibrium, i.e., a set of
mixed strategies for the players such that no player can
improve its payoff by changing its strategy unilaterally
[33]. Nash proved his theorem using Brouwer’s fixed
point theorem: every continuous function F from a
compact convex body to itself has a fixed point. There
are many other applications of Brouwer’s theorem (and
related fixed point theorems, e.g., Banach, Kakutani)
such as price equilibria, values of games, probabilities
of events in stochastic models and others. The problem
is that the proof of Brouwer’s theorem is nonconstruc-
tive, i.e., it establishes the existence of one or more
fixed points without showing how to compute one.

The problem of computing Nash Equilibria, and
more generally computing fixed points of Brouwer func-
tions, has a long and rich history, dating back at least
to the fundamental algorithm of Scarf [37]. Given a
continuous function F and ε > 0, Scarf partitions the
domain into simplices of sufficiently small diameter δ
(depending on ε and the modulus of continuity of the
function F) and navigates through the simplices to pro-
duce a point x′ such that ||F (x′)−x′||∞ < ε. The point
x′ is almost fixed by F , but it may be far from the ac-
tual fixed points. Let us call such a point x′ a weak ε-
fixed point (weak ε-FP), to distinguish it from a point
x that is near a fixed point x∗ (i.e., ||x∗ − x′||∞ < ε)
which we will call a strong ε-fixed point. (The names
are due to the fact that for the kind of ‘well-behaved’
functions that are encountered in most applications,
weak approximation reduces to strong; see section 2
for a formal statement.) To obtain (the existence of)

an actual fixed point, the simplicial partition can be
refined more and more so that the diameter, δ, of the
simplices tends to 0; then the sequence of weakly ap-
proximate fixed points must have (by compactness) a
subsequence that converges to a point, which must be
an actual fixed point x∗. However, as Scarf pointed out
([37]), this part is nonconstructive in general. A num-
ber of other algorithms along related lines have been
proposed both for general fixed points and for Nash
equilibria. Note that the goal of the algorithms is to
compute a (any) fixed point or Nash equilibrium, not a
specific one; computing a specific one, for example the
one with highest payoff, is NP-hard [20].

In [35], Papadimitriou introduced a complexity
class, PPAD, to capture problems like (approximate)
fixed points and Nash, and showed that a certain lin-
early interpolated version of the Brouwer fixed point
problem is complete for PPAD. The class PPAD lies be-
tween (the search problem versions of) P and NP. The
Nash problem has been investigated intensely recently
in the TCS community, and last year in a breakthrough
set of papers [10, 7, 8] it was shown that computing
an (exact) Nash equilibrium for 2 players is PPAD-
complete, and so is the problem of computing a ε-Nash
Equilibrium (ε-NE) for any number of players. An ε-
NE is a profile of mixed strategies where no player can
improve its own payoff by more than ε by switching
strategies unilaterally. ε-NEs correspond in a precise
sense (they are polynomially equivalent, see section 2)
to weak ε-fixed points of Nash’s function.

One major difference between the 2- and 3-player
case is that in the 2-player case there are always ra-
tional NEs (the game payoff table is assumed to be
rational) and thus can be computed exactly, whereas
for 3 and more players this is not the case: in general
all NEs can be irrational. The same phenomenon oc-
curs in most applications of Brouwer’s theorem: the
domain is not discrete (the theorem depends after all
on the function being continuous) and the fixed points
are in general irrational. What does it mean then to
compute fixed points and equilibria in this case? A nat-
ural goal is to compute or approximate such a solution
up to a specified precision, e.g., compute the first k bits
in the binary representation, or compute a (strong) ε-
approximation of a solution, i.e., a point within ε of a
fixed point or an equilibrium. Note that this is differ-
ent from a ε-NE, which can be very far from any actual
NE (see Corollary 4 for a precise statement about how
far it can be).

So how hard is it to compute or approximate to
within distance ε a Nash equilibrium (any one) for 3
or more players? Is it in PPAD? Is it even in NP?
And if not, what is the right class that captures these

problems, i.e., the class for which they are complete?
These are some of the questions we address in this pa-
per. First, we show that placing the (strong) approxi-
mate Nash problem in NP will imply a breakthrough on
longstanding open problems. In the Square Root Sum
problem (SQRT-SUM for short) we are given positive in-
tegers d1, . . . , dn and k, and we want to decide whether∑n

i=1

√
di ≤ k. This problem arises in many contexts,

e.g., in geometric computations where the square root
sum represents the sum of Euclidean distances between
given pairs of points with integer (or rational) coordi-
nates; for example, determining whether the length of a
specific spanning tree, or a TSP tour of given points on
the plane is bounded by a given threshold k amounts to
answering such a problem. This problem is solvable in
PSPACE, but it has been a major open problem since
the 1970’s (see, e.g., [18, 34, 40]) whether it is solvable
even in NP (or better yet, in P). A related (and in a
sense more powerful) problem is the PosSLP problem:
given a division-free straight-line program, or equiva-
lently, an arithmetic circuit with operations +,−, ∗ and
inputs 0 and 1, and a designated output gate, deter-
mine whether the integer N that is the output of the
circuit is positive. As shown in [1], the class P PosSLP,
i.e., decision problems that can be solved in polynomial
time using an oracle for PosSLP, is equal to the Boolean
part (restriction to inputs over {0, 1}) of decision prob-
lems over the reals that can be solved in polynomial
time in the Blum-Shub-Smale model of real computa-
tion [4] using algebraic numbers as constants. This is a
powerful model, which is equivalent to the unit cost al-
gebraic RAM model (operations on arbitrary numbers
take unit time); in particular the SQRT-SUM problem
can be decided in polynomial time on this model [40].
Allender et al. [1] showed that PosSLP and SQRT-SUM
lie in the Counting Hierarchy. We show that SQRT-SUM
and PosSLP reduce to the problem of (strong) approx-
imation of 3-player Nash equilibria. Specifically, for
any ε > 0, they reduce to this problem: given a game,
Γ, with the property (promise) that either, in every
NE, a particular strategy is played with probability 0,
or, in every NE, it is played with probability at least
1− ε, decide which of the two is the case for Γ. Note:
any non-trivial approximation of an actual NE, say to
within any constant distance c < 1/2 in the desired co-
ordinate, would enable us to distinguish the two cases
for small enough ε > 0.

Second, we define a class FIXP of problems, for
which Nash for 3 players (or more) is complete.
FIXP is the class of search problems that can be ex-
pressed as fixed point problems for functions repre-
sented by polynomial size algebraic circuits over the ba-
sis {+,−, ∗, /, max,min} with rational constants. Nash

is complete both in the sense of exact and approximate
computation. PSPACE is an upper bound on the com-
plexity of the discrete computational tasks associated
with search problems in FIXP (eg. the approximation
and decision problems). We know no better bound in
general.

There are a number of other well-studied problems
from different areas that can be cast as fixed point
problems of suitably defined functions given by simple
algebraic formulas, and thus are also in FIXP. We dis-
cuss several of them in this paper. Despite the rich
theory developed over the years, and extensive work
on these models, the complexity of many fundamental
problems is open. Stochastic games were first intro-
duced by Shapley [39] in 1953; and have been extended
in various directions and studied extensively since then.
A simpler version, called simple stochastic games was
introduced by Condon [9] in computer science and has
attracted a lot of attention. The quantities of inter-
est in these games are to compute or bound the val-
ues of the games (they are unique) and find optimal
strategies for the players. Branching processes (BP)
were first introduced, in the 1-type case, by Galton
and Watson in the 19th century to model population
dynamics, and later generalized to the multi-type case
by Kolmogorov and studied by him and Sevastyanov
([29]) and others. They are a basic probabilistic model
for many applications (e.g., biological processes and
many others [23, 24, 27]). The most basic quantities of
interest here are the extinction probabilities of entity
types. Stochastic context-free grammars (SCFG) are a
model in common use in Natural Language Processing
[32] and biological sequence analysis [13]. Recursive
Markov chains (RMC), a more powerful model that
encompasses in a precise sense both BPs and SCFGs,
were introduced in [16] to model recursive probabilistic
programs (see also [15] for an equivalent model). Basic
quantities of interest here are the termination proba-
bilities.

In all of the above models, one can define an ap-
propriate function F such that the desired quantities
x∗ are a fixed point of F ; in fact in all cases except
for general RMCs, the function and the domain can be
defined so that x∗ is the unique fixed point (for RMCs
it is the least nonnegative fixed point). In all these
problems, the function F is just a tool to get a han-
dle on the problem. For problems like Nash, weak fixed
points have a game-theoretic/economic meaning (cf. ε-
NEs) and thus are also of interest. For the above mod-
els however, weak ε-fixed points have no significance,
unless they help us find, approximate, or answer ques-
tions about, the quantities of interest which are the
actual fixed points. As an example, consider the ap-

proximation of the value of simple stochastic games.
We can compute easily in polynomial time a weak ε-
fixed point of the associated function F for ε > 0 a
constant or even inverse polynomial (1/nc for any c);
however, this is not useful since it does not tell us how
to compute even a constant approximation to the value
of the game, which is what we are interested in.

The distinction between strong (near) and weak (al-
most) approximate fixed points was noted early on,
sometimes with statements which on the surface seem
contradictory. For example, Scarf in his original paper
[37], remarks that obtaining strong fixed points from
weak fixed points is non-constructive for general map-
pings. On the other hand, Anderson [2], among several
“almost implies near” theorems, notes that for every
Brouwer function F and ε > 0 there is a δ > 0 such
that every weak δ-fixed point is a strong ε-fixed point (a
fact also observed earlier). What is going on? Scarf’s
remark concerns algorithms that use F as a black box,
i.e., work for all possible instances of all problems (in-
deed, impossibility results are known for strong approx-
imation of fixed points in the black-box oracle model);
Anderson’s results concern a fixed function analysed
with respect to the precision, i.e., a single instance
of a problem (for example, Nash for a specific game
Γ). In a concrete problem like Nash it is important to
set up the framework properly to study the complexity
as a function of the instance size. Indeed, our results
show that from a quantitative computational perspec-
tive, “almost” emphatically does not imply “near” for
Nash and other classes of Brouwer functions (see Corol-
lary 4 for a precise statement).

For some types of functions, weak and strong ap-
proximation for sufficiently small ε and even exact com-
putation can be related. We define a general class of
polynomial piecewise linear functions, and show that
for them exact fixed point computation is in PPAD; the
piecewise linear class includes simple stochastic games,
the discretized Brouwer problem of [35] which is PPAD-
complete, and the subclass of FIXP, denoted Linear-
FIXP, where the circuits do not use multiplication and
division, except by a constant. Indeed, (exact) fix-
points of polynomial piecewise linear functions, Linear-
FIXP, and PPAD are all polynomially equivalent. For
Shapley’s game (which has a nonlinear F) strong ap-
proximation is reducible to weak for sufficiently small
ε and is also in PPAD. However, bounding the value of
the game, e.g., deciding whether Player 1 can achieve
reward ≥ r is harder: we show that it is at least as
hard as SQRT-SUM, and hence placing it in PPAD (or
NP) would solve a longstanding open problem.

For branching processes and SCFGs we show that
the problem is in FIXP; the challenging part here is to

constrain the domain of the function in a polynomial-
time computable way so that we get a Brouwer function
with the desired probabilities forming the unique fixed
point in the domain. The decision problem (compar-
ing the probabilities with a given rational r) is also
SQRT-SUM-hard (shown in [16]); we do not know the
status of the approximation problem for the relevant
probabilities. For the more general Recursive Markov
Chain model, we show that approximating the proba-
bilities within any non-trivial constant additive factor
c < 1/2 is at least as hard as SQRT-SUM and PosSLP.

The rest of this extended abstract is organized as
follows. In Section 2 we set up the framework, and
give basic definitions and properties. In Section 3 we
define the class FIXP, and study the complexity of
Nash equilibria. In Section 4 we define and discuss
the class of piecewise-linear fixed point problems, and
stochastic games. Section 5 concerns branching pro-
cesses, SCFGs, and RMCs. Due to space constraints,
most proofs are omitted.

2 Preliminaries

We describe a general framework for search prob-
lems where the solution sets may be real-valued, and
thus not computable exactly. A search problem Π has
a set of instances, represented by strings over a fixed fi-
nite alphabet Σ, and each instance I has an associated
set Sol(I) of solutions. As usual, it is assumed that,
given a string over Σ, one can determine in polynomial
time if the string is an instance of the problem. The
problems we will be interested in here (equilibria, fixed
points, probabilities, etc.) are total: every instance
I has a nonempty set Sol(I) of solutions. For some
problems there may be a unique solution (for example,
probabilities of certain events in a stochastic model),
while for others there may be multiple solutions (for
example, NEs of a game). Unlike usual discrete prob-
lems, solutions here are in general real-valued vectors
of finite dimension, polynomial in the size |I| of the in-
stance. We would like to solve the following problems:
1. Exact Computation: Given input I, compute a
solution x in Sol(I). Note that if there are multiple
solutions, then any one of them is a correct output. If
there is a rational solution we can output it explicitly,
but we cannot do this for irrational solutions, which
are common in the problems under consideration. In
this case we can only bound the solution or approxi-
mate it up to a desired precision. Attention has to be
paid in the formulation of the problem to stay faith-
ful to the search problem and not make it harder: in
particular, if there are multiple solutions, any one of
them should enable us to answer the question. There

are several reasonable ways to pose the problem, and
this can make a difference in the complexity.
2. Partial Computation: Given instance I and inte-
ger k > 0, compute the k most significant bits of some
solution (any one). We would like to do this in time
polynomial in |I| and k.
3. Decision Problem: Given instance I, rational
vector r and a comparison operator vector θ (e.g., ≥,≤,
etc.) return a truth value that holds for at least one of
the solutions, i.e. if all solutions x satisfy xθr then
return ‘Yes’, if none satisfies xθr then return ‘No’,
and if some do and some do not, then either answer
is correct. Alternatively, and more usually, the deci-
sion question may be posed on a particular entry, e.g.,
x1 ≥ r?, for r ∈ Q. This formulation reflects the stan-
dard way of turning optimization problems and other
problems with output to decision problems. We would
like running time polynomial in |I| and the size (num-
ber of bits) of r. Note that the Existence question,
given instance I and rational r, is there a solution x
with x1 ≥ r?, is equivalent to the decision question for
problems with unique solutions, but not otherwise. For
many search problems (e.g., 2-player NEs, [20]) the ex-
istence question is NP-hard while the search problem
is not.
4. Approximation Problem: Given instance I and
rational ε > 0, compute a vector x that is within (ad-
ditive) ε of some solution, i.e., there is a x∗ ∈ Sol(I)
such that |x∗ − x|∞ ≤ ε. Alternatively we could re-
quire to approximate only a particular entry of a so-
lution vector, e.g., approximate x∗1 within additive ε.
We would like polynomial time in |I| and log(1/ε); this
permits approximation within 2−k in time polynomial
in I and k. For several problems we will show that
the approximation problem is hard for some class, by
showing hardness of a corresponding Promised Gap
Decision Problem PGD(a,b): Given instance I, ra-
tionals a < b, and the promise that either all solutions
x ∈ Sol(I) have x1 ≤ a or they all have x1 > b, deter-
mine which of the two is the case.

There are some simple relations between these prob-
lems, but in general they are not equivalent, i.e. for a
search problem Π, the associated Partial Computation,
Decision, and Approximation problems may well have
different complexity.
Example: Nash Equilibria. In a (normal form)
game with k players, the instance I consists of k (dis-
joint) finite sets of (pure) strategies Si, i = 1, . . . , k, and
k rational-valued payoff functions ui from the product
strategy space S = ΠiSi to Q. A mixed strategy profile
x is a non-negative vector of length

∑
i |Si| that is a

probability distribution on the set of (pure) strategies
of each player. The (expected) payoff Ui(x) of x for

player i is
∑

x1,j1 . . . xk,jk
ui(j1, . . . , jk) where the sum

is over all (j1, . . . , jk) ∈ S and xi,j is the probability
with which player i plays strategy j. A Nash equilib-
rium (NE) is a strategy profile x∗ such that no player
can increase its payoff by switching its strategy uni-
laterally. Every finite game has at least one NE [33].
Two-player games have rational NEs, thus exact com-
putation is possible, and as shown in [7] the problem
is PPAD-complete.

For three and more players, the NEs can in general
all be irrational, so we would like to approximate one
(or solve the related decision problem); this is one of the
main subjects of this paper. Note that approximating
a (actual) NE is different from the notion of an ε-NE
studied previously and shown PPAD-complete [10, 21,
8]. An ε-NE is a strategy profile x such that no player
can improve its payoff by more than ε by switching
unilaterally to another strategy. That is, a profile x
is an ε-NE if it is almost at equilibrium, rather than
being near an equilibrium. In general, an ε-NE can
be very far from all actual NEs. On the other hand,
all profiles that are sufficiently close to a NE are also
ε-NEs: for every game I and ε > 0, we can take a
δ of size polynomial in the size of I and ε, such that
every profile x′ such that |x′ − x∗|∞ < δ for some NE
x∗, is an ε-NE ([30]). For this reason, we will call the
problem of computing a strategy profile that is close
to a (actual) NE strong approximation to distinguish it
from the ε-NE notion of approximation.

Nash proved his theorem in [33] using Brouwer’s the-
orem: he showed that for every finite game, Γ, the
Brouwer fixed points of the following function, FΓ, are
the NEs of Γ: FΓ(x)(i,j)

.= xi,j+max{0,gi,j(x)}
1+

Pmi
l=1 max{0,gi,l(x)} , where

gi,j(x) is the “gain” of player i if he switches to pure
strategy j (which is a polynomial in x).

In this paper we study search problems that can be
cast in a fixed point framework: every instance I of
the search problem Π is associated with a continuous
function FI mapping a convex compact domain DI to
itself, such that the set Sol(I) of solutions is Fix(FI),
the set of fixed points of FI . More generally, we may
allow polynomial time reduction from the search prob-
lem Π for I to the fixed point problem for FI , i.e., it is
not necessary to require Sol(I) = Fix(FI).

For simplicity, it is customary to take the domain
DI to be a box or a simplex, usually the unit cube
2n = [0, 1]n or the unit simplex ∆n = {x | x ≥
0,

∑
i xi = 1}. If we have a function F on a convex

compact domain D, we can embed D into a suitable
box or simplex D′ that contains it, define a continu-
ous functions π from D′ to D that is the identity on
D (e.g., project D′ onto D) and compose π with F to

form a continuous function on D′ whose FPs are the
FPs of F . The box or simplex can be translated and
scaled to a unit cube or unit simplex. For the cases we
will be interested in, an appropriate mapping π can be
constructed.

Consider a search problem Π that has been cast as
a fixed point problem and the class F of functions FI

indexed by the instances I of Π. We say F is polyno-
mially computable if for every instance I and rational
vector x ∈ DI , the image FI(x) is rational and can
be computed in time polynomial in the size of I and
of x. F is called polynomially continuous if there is a
polynomial q(z1, z2) such that for all instances I and
all rational ε > 0, there is a rational δ > 0 such that
size(δ) ≤ q(|I|, size(ε)) and such that for all x, y ∈ DI ,
|x−y|∞ < δ ⇒ |FI(x)−FI(y)|∞ < ε; this definition is
robust with respect to the norm. F is called polynomi-
ally contracting with respect to norm lk, k ∈ N∪ {∞},
if there is some polynomial q(z) such that for all in-
stances I there is some rational β < 1 − 2−q(|I|), such
that for all x, y ∈ DI , |FI(x)− FI(y)|k < β|x− y|k.

We are interested in the problems mentioned before:
compute an exact fixed point if possible, or the decision
and approximation problems. We refer to the approx-
imation of a fixed point as the strong approximation
problem to contrast it with the following version that
is specific to the formulation of the search problem as
a fixed point problem:
Weak Approximation: Given instance I and given
a rational ε > 0 as input, compute a rational vector
x′ ∈ DI such that |FI(x′)− x′|∞ < ε.

Remark: A search problem may be expressible as
a fixed point problem in several different ways, using
different functions. For example, besides Nash’s func-
tion, there are other functions whose fixed points also
are the NEs [19, 3]. In general, the notion of a weak ap-
proximation depends on the function that is used. The
notion of a (strong) approximation does not depend on
the function, it is inherent to the search problem itself.
We now give basic facts about the relationship between
these different problems (proofs omitted).

Proposition 1 Let F be the class of functions associ-
ated with a fixed point search problem.
1. If F is polynomially continuous, then weak approxi-
mation for F is P-time (many-one) reducible to strong
approximation.
2. If F is polynomially continuous and polynomi-
ally computable, then weak approximation for F is in
PPAD.
3. If F is polynomially contracting and polynomi-
ally computable, then strong approximation is P-time
reducible to weak approximation. Consequently, the

strong approximation problem for such a class of func-
tions is in PPAD.
4. Computing an ε-NE for a game, Γ, is P-time equiv-
alent to computing a weakly approximate fixed point for
Nash’s function FΓ.

3 Nash Equilibria and the class FIXP

We now define a class of fixed point problems,
FIXP, for which the Nash equilibrium problem (for
3 or more players) will be shown to be complete. The
class of fixed point problems induces a corresponding
class for each of the associated types of questions: e.g.,
a class of decision problems, a class of (strong) approx-
imation problems, etc. As usual in the definition of
classes (cf. PLS, PPAD, MAXSNP, etc.), it is con-
venient to define a syntactic version and then close it
under (polynomial-time) reductions. Recall that in the
framework of search problems cast as fixed points, each
instance I is associated with a continuous function FI

from a compact convex domain DI to itself, such that
Sol(I) = Fix(FI). The basic characteristic of the class
FIXP is that (i) the function FI is represented by an al-
gebraic circuit (or straight line program) CI over the ba-
sis {+,−, ∗, /, max,min} using rational constants, that
computes the function over the domain, and (ii) there is
a polynomial time algorithm that computes the circuit
from I. Note that the circuit operates on real numbers,
but the algorithms we study do not do any computa-
tion on reals; the circuit is a finite representation of
the function, just like a formula, but more succinct of
course. The underlying model of computation for us is
still the standard discrete Turing machine.

The circuit CI is a sequence of gates g1, . . . , gr,
where for i = 1, . . . , n, gi = xi is an input variable,
for i = n + 1, . . . , n + m, gi = ci ∈ Q is a rational con-
stant (encoded in the standard way, with numerator
and denominator given in binary), and for i > n + r,
we have gates gi = gj ◦ gk, with j, k < i, where the
operator is ◦ ∈ {+,−, ∗, /, max,min} (infix max and
min have the obvious meaning). The last n gates are
the output gates. Of course some of the operations are
redundant (can be defined in terms of others), and we
could just have the constant 1 and build the other ra-
tionals, but we include them for convenience. We will
also standardize the domain here for simplicity and as-
sume that it is the unit cube 2n = [0, 1]n. (Reductions
can be used to embed other domains into it.) The cir-
cuit CI represents the function FI . Thus, if we input
any vector x ∈ 2n into CI it will output a vector in
2n; in particular this means that the evaluation of all
the gates is well-defined and there is no division by 0.

We close the class by reductions. In the usual case

of discrete search problems, a reduction from problem
A to problem B consists of two polynomial-time com-
putable functions, a function f that maps instances I
of A to instances f(I) of B, and a second function g
that maps solutions y of the instance f(I) of B to so-
lutions x of the instance I of A. The difference here
is that the solutions are real-valued, not discrete, so
we have to specify what kind of functions g are al-
lowed. It is sufficient for our purposes in this paper
to restrict the reverse function g to have a particularly
simple form: a separable linear transformation with
polynomial-time computable rational coefficients; that
is, x = g(y), where each gi(y) is of the form aiyj + bi

for some j, where ai, bi are rationals computable from
I in polynomial time. A reduction of this form from A
to B induces corresponding P-time reductions for the
Decision and the (Strong) Approximation problems.

Corresponding to the class FIXP of search problems
(with real solutions) there is a class of Decision prob-
lems, a class of Approximation problems and a class
of Partial computation problems. To emphasize the
distinction between them, we can attach a subscript
to FIXP, denoting these classes of associated problems
as FIXPd, FIXPa, FIXPpc, respectively. Note that
these are classes of discrete search problems (hence
their complexity can be studied in the standard Turing
machine model), as opposed to FIXP which is a class
of, in general, real-valued search problems (whose com-
plexity can be studied in a real computation model, e.g.
[4]). By appealing to PSPACE decision procedures for
the existential theory of reals [6, 36], we can readily
obtain the following.
Proposition 2 The Partial Computation, Decision,
(Strong) Approximation and Existence versions of all
problems in FIXP can be solved in PSPACE.

Recall SQRT-SUM and PosSLP from Section 1.

Theorem 3
1. The SQRT-SUM and PosSLP problems are P-time

(many-one) reducible to the promised-gap-decision
problem PGD(0,1) for 4-player Nash.

2. The SQRT-SUM and PosSLP problems are P-time
reducible to PGD(0,1 − ε) for 3-player Nash for
any constant ε (and even with ε = 2−poly).

Remarks: 1. For 3 players, it is not hard to show
that the PGD(0,1) problem is in PPAD, hence showing
that it is as hard as SQRT-SUM or PosSLP would imply
that these problems are in NP∩coNP, which would be
a breakthrough (and looks very doubtful at present for
PosSLP). 2. Similar results hold for the approximation
of the payoff of one player, or of all the players, in any
NE, i.e., formalizing the questions again as promised

gap decision problems on payoffs. 3. All the reductions
of the theorem have the property that the particular
entry (strategy probability) x1 of the PGD question
has the same value in all NEs of the constructed game,
thus there is no ambiguity; in fact in the reduction from
SQRT-SUM to 4-player Nash the game is guaranteed to
have a unique NE. 4. A corollary of the proof is this:

Corollary 4 For every n there is a 4-player game, Γn,
of size O(n), with an ε-NE, x′, where ε = 1/22Ω(n)

,
such that x′ has l∞-distance 1 from every actual NE.
For 3-players, the same statement holds with distance
1 replaced by 1− 2−poly.

To prove Theorem 3 we give separate reductions
from SQRT-SUM and PosSLP. For part 1, from a given in-
stance of SQRT-SUM (or PosSLP) we construct a 4-player
game Γ such that player 4 has only two strategies in
the game and at any NE it always plays the same pure
strategy (one of the two) with probability 1 and the
other with 0; determining which of the two strategies
it plays solves the SQRT-SUM (or PosSLP) instance. For
part 2, we use a general reduction from many-player
to 3-player games by Bubelis [5], extending it to give
different weights to different players:

Lemma 5 For any (finite) game Γ with d players
and any d positive numbers λi > 0, i = 1, . . . , d with∑d

i=1 λi = 1, we can construct a 3-player game Γ′ such
that the pure strategies of player 1 in Γ′ correspond 1-1
to the pure strategies of all the players in Γ, and the
following properties hold.
1. For every NE y of Γ′, if yij denotes the probability
with which player 1 plays in y strategy (i, j), i.e., the
jth strategy of player i in Γ, then the vector x defined
by xij = yij/λi is a NE in Γ.
2. Conversely, for every NE x of Γ, there is a NE
y of Γ′ such that player 1 plays in y each strategy
(i, j) with probability λixij. Furthermore, if x is fully
mixed (all strategies are in the support), then there is
a unique corresponding such NE y in Γ′ and it is also
fully mixed.
3. If the payoffs in Γ and the λi’s are rationals, then
the construction of Γ′ can be done in polynomial time
in the size of Γ and the λi’s.

Part 2 of Theorem 3 follows from part 1 by applying
Lemma 5 with λ4 = 1− ε and λ1 = λ2 = λ3 = ε/3.

One of the implications of the theorem is that com-
puting the first bit of a (any) NE is at least as hard as
SQRT-SUM and PosSLP. In [1] it is shown that computing
a specified bit of the integer computed by an arithmetic
circuit is #P-hard, when the index of the desired bit is
given in binary. Using our reductions from PosSLP, we
can deduce a similar result for NEs. The key property

is that certain probabilities in the game are shifts of
the numbers computed by the arithmetic circuit.

Corollary 6 Given a 3-player game and i in binary,
it is #P-hard to compute the i-th bit of the probability
of the first strategy of player 1 in a (any) NE.

We show that Nash exactly characterizes the search
problems that can be cast as fixed points of functions
represented by algebraic circuits:

Theorem 7 The Nash equilibrium problem for 3 (or
more) players, is FIXP-complete. In particular, the
corresponding Decision, (Strong) Approximation and
Partial Computation problems are complete respectively
for FIXPd, FIXPa, and FIXPpc.
Sketch. Regarding membership in FIXP, the Nash
function FΓ of a game is given by an algebraic circuit
(in fact a formula); furthermore we can suitably embed
the domain ∆ (which is the product of unit simplices
for the players) in the unit cube 2n (n the total num-
ber of pure strategies), i.e., we can define a function
π : 2n → ∆ by a suitable algebraic formula so that π
is the identity on ∆, and the composed function FΓ ◦π
on 2n has the NEs as its fixpoints. For the hardness
part, we first subject the circuit CI of the instance I
to a series of (polynomial) transformations that bring
it to an equivalent ‘normal’ form C ′ which uses in ad-
dition a conditional assignment gate (with restricted
condition), so that C ′ has the property that for every
input x ∈ 2n, all gates of C ′ have value in [0, 1] and
C ′(x) = CI(x). Then we reduce to the Nash problem
with a fixed number of players using gadgets for the
gates; the gadgets for +,−, ∗,max,min are similar to
gadgets of [10, 7], and we also have gadgets for division
and conditional assignment. Finally, we apply Lemma
5 to reduce to a 3-player game Γ, picking suitable λ’s
so that the fixpoints x of I correspond to NEs y of Γ,
and the x-values are multiples (in fact by powers of 2,
i.e. binary shifts) of corresponding y-values. Details in
the full paper.

As another example of a FIXP-complete problem,
consider the following exchange equilibrium problem
[38]. We have m agents and n commodities. For
each vector p of prices for the commodities, each agent
l has an (positive or negative) excess demand gl

i(p)
for each commodity i. The standard assumptions are
that the functions gl

i(p) (i) are homogeneous of de-
gree 0, thus the price vectors may be normalized to lie
on the unit simplex ∆n, (ii) they satisfy Walras’ law∑n

i=1 pig
l
i(p) = 0, (iii) they are continuous on the unit

simplex. Let gi(p) =
∑

l g
l
i(p) be the (total) market

excess demand for each commodity i. The functions
gi(p) clearly satisfy the same constraints. A vector p

of prices is an equilibrium if gi(p) ≤ 0 for all i, with
equality for all commodities i that have pi > 0. There
is always at least one equilibrium, and the proof is
via Brouwer’s theorem. Namely, the equilibria are the
fixed points of the function F : ∆n 7→ ∆n, defined by
the formula Fi(p) = pi+max(0,gi(p))

1+
P

k max(0,gk(p)) . Clearly, if the
functions gl

i, and hence also gi, are defined by algebraic
circuits, then so is the function F and the exchange
equilibrium problem is in FIXP. Conversely, Brouwer’s
theorem can be derived from the equilibrium theorem
[41] and the proof gives a reduction. Namely, given
a Brouwer function f : ∆n → ∆n, one can define a
(total) market excess demand function g : ∆n → Rn

where g(p) = f(p) − (〈p, f(p)〉/〈p, p〉)p. One can see
that g satisfies the constraints of an excess demand
function (e.g., 〈p, g(p)〉 = 0 for all p , Walras’ law) and
hence has an equilibrium. Furthermore, any price equi-
librium is a fixed point of f . Clearly, if f is given by an
algebraic circuit we can construct a circuit for g. Thus:
Proposition 8 The exchange equilibrium problem
with excess demand functions given by algebraic cir-
cuits over {+,−, ∗, /, max,min} is FIXP-complete.

4 Piecewise Linear Functions, PPAD,
and Stochastic Games

We will define a general class of fixed point problems
with piecewise linear, polynomial-time computable
functions and show that (i) they have rational fixed
points and (ii) the exact computation problem is in
PPAD. The simple stochastic games of Condon [9] are
an example of such a problem. We also consider the
more general stochastic games of Shapley [39], which
are nonlinear.

Consider a fixed point search problem Π: every in-
stance I is associated with a continuous function FI on
a (convex compact) domain DI , which we assume for
convenience to be the unit cube 2n (n polynomial in
|I|). We say that Π is a polynomial piecewise linear
problem if the following hold: The domain is divided
by hyperplanes into polyhedral cells, the function FI is
linear in each cell and is of course continuous over the
whole domain. The coefficients of the function in each
cell and of the dividing hyperplanes are rationals of size
bounded by a polynomial in |I|. These are not given ex-
plicitly in the input, in fact there may be exponentially
many dividing hyperplanes and cells. Rather, there is
an underlying (polynomial-depth) arithmetic decision
tree TI for deciding if a point x is in the domain and de-
termining its cell, using linear comparisons of the form
ax ≤ b (a, b poly-size rationals), and a polynomial-time
algorithm for tracing the appropriate path in the tree
for a given point x till it reaches a leaf, where it outputs

the appropriate linear function FI(x). Formally, there
is an oracle algorithm that runs in time polynomial in
|I| which generates a sequence of queries of the form
ax ≤ b? adaptively (i.e., the next query depends on I
and the sequence of previous answers), and at the end
outputs ‘No’ (i.e., x is not in the domain) or outputs
the coefficients c, c′ of the function FI(x) = cx + c′.
Examples:
1. Simple Stochastic Games (SSG). This is a two-
player game on a directed graph G = (V,E) that has
two sink nodes labeled 0 and 1, and the rest of the
nodes are partitioned into three sets, V0 (random), V1

(max), V2 (min). The edges out of each random node
are labelled with rational probabilities that sum to 1.
A token is placed initially at a node s and then moved
along edges until it reaches a sink. If the token is at
a node u in V0 then the edge is chosen randomly ac-
cording to the probabilities, if u ∈ V1 then it is chosen
by Player 1 who tries to maximize the probability of
reaching sink 1, and if u ∈ V2 then the edge is chosen
by Player 2 who tries to minimize the probability of
reaching sink 1. For every starting node s, there is a
well-defined value xs of this (zero-sum) game, which is
the probability that the token reaches eventually sink 1
if both players play optimally. The goal is to compute
the value xs for a specific node s or for all nodes s. It
is known that the values are rational of bit complex-
ity polynomial in the input, and that the players have
deterministic optimal strategies. The decision problem
xs ≥ 1/2? (does Player 1 win with probability at least
1/2) is in NP ∩ coNP , and it is a well known open
problem whether it is in P.

The values xs satisfy a system of equations x =
F (x), which are as follows. If u is the 0 sink or the
1 sink then xu = 0 or xu = 1 respectively; if u ∈ V0

then xu =
∑

v puvxv, where the sum ranges over all
edges (u, v) with puv the corresponding probability; if
u ∈ V1 then xu = max{xv|(u, v) ∈ E}; if u ∈ V2 then
xu = min{xv|(u, v) ∈ E}. In general there may be mul-
tiple solutions, however one can transform by a small
perturbation δ any SSG game Γ to a ‘stopping’ game
Γ′ whose system has a unique solution in the unit cube
[9]; for a suitably small δ the exact values of Γ can be
obtained efficiently from the values of Γ′ by rounding
or by solving a linear system of equations. Clearly max
and min, and hence also F are piecewise linear func-
tions. In this example, the dividing hyperplanes are
of the form xv = xw, for pairs of nodes v, w that are
successors of the same node in V1 or V2 (in this case
there are a polynomial number of hyperplanes).
2. Linearly interpolated functions. The follow-
ing model of Brouwer functions F is used in [35]. The
input is an integer N (in binary) and a Turing ma-

chine M , which given a “grid” point x in the unit
cube 2n with coordinates multiples of 1/N returns in
polynomial time a displacement vector µ(x) such that
F (x) = x + µ(x) ∈ 2n (the displacement is also con-
strained to satisfy |µ(x)| ≤ 1/N2, but this restriction is
actually not necessary as we’ll see). The function then
is extended to a piecewise linear map throughout 2n,
by partitioning 2n into 1/N cubelets along the grid hy-
perplanes, partitioning each cubelet into simplexes in
a standard simplicization, and then interpolating the
values at the vertices of each simplex. The cells here
are the simplexes. It is not hard to give an algorithm
that determines efficiently for a given x ∈ 2n the sim-
plex that contains it, using binary search and linear
tests. Evaluate F at the vertices of the simplex and
compute the linear form of the function F (x) by inter-
polation. Note: Every Brouwer function F (say on 2n)
can be approximated by a linearly interpolated func-
tion G by imposing a suitable grid. If F is polynomially
continuous then a fixed point of G (for a suitably small
but polynomially encodable grid size) is a weak ε-fixed
point of F , but in general may be very far from any
actual fixed point of F (cf. 3-player Nash).
3. 2-Player Nash. Nash’s function is nonlinear even
for 2 players. However, we can use another function [22]
which becomes piecewise linear in the 2-player case.
For a mixed strategy profile x, let u(x) be a vector
which gives the expected payoff of each pure strategy
with respect to the profile x of the other players, let
h(x) = x+u(x), and let G(x) = π(h(x)) be the projec-
tion of h(x) on the domain ∆ (product of the unit sim-
plices of the players). Specifically, the projection π can
be constructed explicitly as follows: for any vector y
over the set of pure strategies S, choose for each player
i a value vi so that

∑
j∈Si

max(yij −vi, 0) = 1 (there is
a unique such vi) and define π(y)ij = max(yij − vi, 0).
If x is a fixpoint of G, then u(x)ij = vi for all xij > 0
and u(x)ij ≤ vi for all xij = 0, hence x is a NE. Con-
versely, it is easy to see that a NE x is a fixpoint of
G. In the 2-player case, u(x), and hence also h(x), is
clearly linear. It is not hard to see that π is piecewise
linear (for any number of players); see the proof sketch
of Theorem 11. Thus G is piecewise linear for 2 play-
ers. The same holds for polymatrix games (multiplayer
games where the payoffs are sums of the payoffs of the
pairwise interactions).

Theorem 9 The exact fixed point computation prob-
lem for polynomial piecewise linear functions is in
PPAD.
Sketch. We use one application of Scarf’s algorithm
and Linear Programming. Given instance I, we pick a
suitably small ε, compute a weak ε-fixpoint y, form a
LP involving the inequalities on the path traced by the

decision algorithm on y, and from the function at y,
and show that the solution to the LP gives us an exact
fixpoint.

Corollary 10 The following problems are in PPAD:
1. Compute the value (and optimal strategies) of a sim-
ple stochastic game. 2. Compute an exact fixed point
of a linearly interpolated function.
Membership of simple stochastic games in PPAD was
observed in [26], although it should be mentioned that
there is an oversight in the proof there, because it uses
a theorem of [35] without noticing that the theorem
does not apply to the actual function, but to a modified
function obtained by linear interpolation at grid points.

It follows from Theorem 9 and the examples 2 and
3 that the class of piecewise linear fixpoint problems is
equivalent to PPAD. The same can be shown for the
(piecewise) ‘linear’ part of FIXP: Let Linear-FIXP be
the class of problems that can be expressed as (poly-
nomially reduced to) exact fixpoint computation prob-
lems for functions given by algebraic circuits using
{+,−,max,min} (equivalently, {+,max}) and multi-
plication with rational constants only; no division or
multiplications of two gates/inputs is allowed.
Theorem 11 Linear-FIXP=PPAD.
Sketch. In one direction, it is not hard to show that
a circuit as above that does not use multiplication (and
division) except by a constant, computes a polynomial
piecewise linear function, hence the exact fixed point
problem is in PPAD by Theorem 9. In the other di-
rection, we implement by a circuit C the function G of
example 3 for a 2-player game Γ. For input x, the cir-
cuit C first computes y = h(x) (using + and *-constant
gates). For each player i = 1, 2, we have a (polyno-
mial) sorting network Ni that sorts in decreasing or-
der the corresponding subvector yi. of y to a permuted
vector zi., using max, min gates for the comparators.
Then compute vi as max{(1/l) ∗ ((

∑l
j=1 zij) − 1)|l =

1, · · · , |Si|}; output x′ij = max(yij − vi, 0) for each
i = 1, 2; j ∈ Si.

From the FIXP-completeness of (3-player) Nash, us-
ing the function G and the above construction, we can
show that FIXP does not change if we omit division:
{+, ∗,max} and rational constants suffice.

Stochastic games were first introduced by Shapley
in his seminal paper [39] in a more general form where
the players take actions simultaneously instead of one
at a time (as in SSGs). In Shapley’s game there
is a (finite) graph G = (V,E), each node (state) u
has an associated one-shot zero-sum finite game with
a reward (payoff) matrix Au for player 1 from player
2. If the play is in state u and the players choose ac-
tions (pure strategies) i, j then Player 1 receives reward

Au[i, j] from Player 2, the game stops with probability
qu
ij > 0, and it transitions to state v with probabil-

ity puv
ij , where qu

ij +
∑

v puv
ij = 1. Since there is at least

positive probability q = min{qu
ij |u, i, j} > 0 of stopping

in each step, the game stops a.s. in a finite number of
steps. (Another standard equivalent formulation is as a
discounted game, where the game does not stop but fu-
ture rewards are discounted by a factor 1−q per step).
The goal of Player 1 is to maximize (and of Player 2
to minimize) the total expected reward, which is the
value of the game. Let x = (xu|u ∈ V) be the vec-
tor of game values for the different starting states u.
As usual we assume that all rewards and probabilities
are rationals. The values in general may be irrational
now however, so we may not be able to compute them
exactly. We would like to bound them (i.e., answer
decision questions) and/or approximate them.

The vector x of values satisfies a fixed point equation
as follows. For each node u, let Bu(x) be the matrix
whose i, j entry is Au[i, j]+

∑
v puv

ij xv. Let V al(Bu(x))
be the value of the one-shot zero-sum game represented
by the reward matrix Bu(x). The optimal value vec-
tor satisfies the system of equations x = F (x) where
Fu(x) = V al(Bu(x)), u ∈ V . Furthermore, there is a
unique solution, because F is a Banach function (a con-
traction map) under the l∞ norm with contraction fac-
tor 1− q. Note that F (the V al function) is nonlinear.
For the domain we can pick a box [−M,M]n with M
large enough (M = max{|Au[i, j]||u, i, j}/q suffices).

Theorem 12 The following hold for Shapley’s game.
1. Computing the values is in FIXP; hence Shapley re-
duces to (3-player) Nash.
2. The strong approximation problem is in PPAD.
3. The decision problem is at least as hard as
SQRT-SUM.

Sketch. For part 1, we cannot construct directly an
algebraic circuit for V al (we do not even know if LP
can be solved in a number of operations that is poly-
nomial in the dimension of the problem). We intro-
duce instead additional variables for the probabilities
of the strategies and corresponding fixed point equa-
tions. Part 2 is proved by noting that the function
F is polynomially contracting and polynomially com-
putable, hence strong approximation reduces to weak
and is in PPAD. We note that the contraction principle
can be used also to give an alternative proof for exact
SSGs being in PPAD. Part 3 is shown by modification
of a construction in [17] for a stochastic reachability
game.

From (3), the decision problem for Shapley’s game,
i.e., “is the value ≥ r for given rational r?”, is unlikely
to be placed easily in PPAD.

5 RMCs, Branching Processes, and
SCFGs

A Recursive Markov Chain (RMC) informally con-
sists of a collection of Markov chains that can call each
other in a potentially recursive manner like recursive
procedures. RMCs generalize a number of classic prob-
abilistic models. In particular, Multi-Type Branching
Processes (MT-BPs) a fundamental probabilistic model
([29, 24]), correspond in a precise sense to 1-exit RMCs
(1-RMCs), where each component has exactly one exit
node where it can terminate and return control to the
component that called it. Both these models also corre-
spond to Stochastic Context-Free Grammars (SCFGs),
a model in common use in Natural Language Processes
([32]), and biological sequence analysis ([13]).

A key to the analysis of all these models is the prob-
lem of computing the probability of termination (ex-
tinction); it can be expressed as the Least Fixed Point
(LFP) of a corresponding monotone system of poly-
nomials, P : Rn

≥0 7→ Rn
≥0, i.e., each coordinate Pi(x)

is given by a polynomial with non-negative rational
coefficients. The LFP, x∗ ∈ [0, 1]n, is the solution
to x = P (x) such that for all solutions x′ ∈ Rn

≥0,
x∗ ≤ x′. The LFP is guaranteed to exist for the polyno-
mial maps that arise from these models, and gives pre-
cisely the vector of termination probabilities for them.
Obviously, such polynomial functions can be described
by algebraic circuits. We in fact show that the prob-
lem of computing/approximating termination proba-
bilities for MT-BPs, SCFGs, and 1-RMCs, is in FIXP,
by showing that the LFP for this class of RMCs can
be isolated in such a way that it constitutes the unique
fixed point of a corresponding FIXP function. Due to
lack of space, we have to forgo formal definitions of
these models. Background on these models and their
algorithmic theory can be found in [16].
Theorem 13 For every ε > 0, the SQRT-SUM and
PosSLP problems are P-time (many-one) reducible to
the promised gap problem PGD(ε,1) for the termina-
tion probability of RMCs.
Theorem 14 Computing the termination probabilities
for 1-RMCs, MT-BPs, and SCFGs, is in FIXP. Thus
the decision/approximation problem reduces to deci-
sion/strong approximation for (3 player) NEs.

Acknowledgement. It is a pleasure to thank Peter
Bro Miltersen for an extended email discussion about
PPAD and Nash Equilibria.

References

[1] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and
P. B. Miltersen. On the complexity of numerical anal-
ysis. In 21st IEEE Comp. Compl. Conf., 2006.

[2] R. M. Anderson. “Almost” implies “Near”. Trans. Am.
Math. Soc., 296, pp. 229-237, 1986.

[3] R. A. Becker and S. K. Chakrabarti. Satisficing behav-
ior, Brouwer’s fixpoint theorem and Nash equilibrium.
Economic Theory, 26:63–83, 2005.

[4] L. Blum, F. Cucker, M. Shub, and S. Smale. Complex-
ity and Real Computation. Springer-Verlag, 1998.

[5] V. Bubelis. On equilibria in finite games. Intl. J. Game
Theory, 8(2), 65-79, 1979.

[6] J. Canny. Some algebraic and geometric computations
in PSPACE. In STOC, pp. 460–467, 1988.

[7] X. Chen and X. Deng. Settling the complexity of two-
player Nash equilibrium. FOCS, pp. 261–272, 2006.

[8] X. Chen, X. Deng, and S. H. Teng. Computing Nash
equilibria: approximation and smoothed complexity.
In FOCS, pp. 603–612, 2006.

[9] A. Condon. The complexity of stochastic games. Inf.
& Comp., 96(2):203–224, 1992.

[10] C. Daskalakis, P. Goldberg, and C. Papadimitriou.
The complexity of computing a Nash equilibrium. In
STOC, pp. 71–78, 2006.

[11] C. Daskalakis, A. Fabrikant, and C. Papadimitriou.
The game world is flat: The complexity of Nash equi-
libria in succinct games. Proc. ICALP, 2006.

[12] R. S. Datta. Universality of Nash equilibria. Math. of
Oper. Res., 28(3), 424-432, 2003.

[13] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic models of
Proteins and Nucleic Acids. Cambridge U. Press, 1999.

[14] B. C. Eaves, H. Scarf. The solution of systems of piece-
wise linear equations. Math. of O.R., 1(1), 1-27, 1976.

[15] J. Esparza, A. Kučera, and R. Mayr. Model checking
probabilistic pushdown automata. In LICS, 2004.

[16] K. Etessami and M. Yannakakis. Recur-
sive Markov chains, stochastic grammars, and
monotone systems of non-linear equations. In
STACS, 2005. (See full expanded version from
http://homepages.inf.ed.ac.uk/kousha/).

[17] K. Etessami and M. Yannakakis. Recursive Concurrent
Stochastic Games. In ICALP, 2006.

[18] M. R. Garey, R. L. Graham, and D. S. Johnson. Some
NP-complete geometric problems. In 8th ACM STOC,
pp. 10–22, 1976.

[19] J. Geanakoplos. Nash and Walras equilibrium via
Brouwer. Economic Theory, 21:585–603, 2003.

[20] I. Gilboa and E. Zemel. Nash and correlated equilibria:
some complexity considerations. Games and Economic
Behavior, 1:80–93, 1989.

[21] P. Goldberg and C. Papadimitriou. Reducibility
among equilibrium problems. In STOC, 2006.

[22] F. Gul, D. Pearce, E. Stacchetti. A bound on the
proportion of pure strategy equilibria in generic games.
Math. of Oper. Res. 18, pp. 548-552, 1993.

[23] P. Haccou, P. Jagers, and V. A. Vatutin. Branching
Processes: Variation, Growth, and Extinction of Pop-
ulations. Cambridge U. Press, 2005.

[24] T. E. Harris. The Theory of Branching Processes.
Springer-Verlag, 1963.

[25] R. J. Horn and C. R. Johnson. Matrix Analysis. Cam-
bridge U. Press, 1985.

[26] B. Juba. On the hardness of simple stochastic games.
Master’s thesis, CMU, 2005.

[27] M. Kimmel and D. E. Axelrod. Branching processes
in biology. Springer, 2002.

[28] K.-I. Ko. Computational complexity of fixed points
and intersection points. J. Complexity, 11, pp. 265-
292, 1995.

[29] A. N. Kolmogorov and B. A. Sevastyanov. The calcu-
lation of final probabilities for branching random pro-
cesses. Doklady, 56:783–786, 1947. (Russian).

[30] R. Lipton and E. Markakis. Nash equilibria via poly-
nomial equations. In LATIN’04, 2004.

[31] R.J. Lipton, E. Markakis, A. Mehta. Playing large
games using simple strategies. Proc. ACM Conf. Elec.
Comm., 36-41, 2003.

[32] C. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. MIT Press, 1999.

[33] J. Nash. Non-cooperative games. Annals of Mathe-
matics, 54:289–295, 1951.

[34] C. Papadimitriou. The Euclidean traveling salesman
problem is NP-complete. Theor. Comp. Sci., 4:237–
244, 1977.

[35] C. Papadimitriou. On the complexity of the parity
argument and other inefficient proofs of existence. J.
Comput. Syst. Sci., 48(3):498–532, 1994.

[36] J. Renegar. On the computational complexity and ge-
ometry of the first-order theory of the reals, parts I-III.
J. Symb. Comp., 13(3):255–352, 1992.

[37] H. Scarf. The approximation of fixed points of a con-
tinuous mapping. SIAM J. Appl. Math., 15:1328–1343,
1967.

[38] H. Scarf. The Computation of Economic Equilibria.
Yale University Press, 1973.

[39] L.S. Shapley. Stochastic games. Proc. Nat. Acad. Sci.,
39:1095–1100, 1953.

[40] P. Tiwari. A problem that is easier to solve on the
unit-cost algebraic RAM. Journal of Complexity, pp.
393–397, 1992.

[41] H. Uzawa. Walras’s existence theorem and Brouwer’s
fixed point theorem. Econ. Stud. Q., 13:59–62, 1962.

