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Abstract

This paper presents a new algorithm for plan recognition
using an action grammar formalism based on Combinatory
Catagorial Grammar, that requires a significant shift in think-
ing about the problem of plan recognition. This approach
makes significant use of the concepts of lexicalization and
headedness from natural language parsing. It argues that lex-
icalization of action grammars can help plan recognition ad-
dress a number of technical and efficiency questions, and that
headedness in action grammars is previously unrecognized
and an important addition to plan recognition theory in its
own right.

Introduction
Some very effective prior research on Plan Recognition (PR)
has been based on models of plan execution (Bui, Venkatesh,
& West 2002; Avrahami-Zilberbrand & Kaminka 2005;
Geib 2006). This view has effectively allowed researchers
to address a number of previously open research questions,
however, it also requires these algorithms to hypothesize the
root goals and state of the entire collection of subplans for all
viable root goals at each time point. (Geib 2004) has pointed
out that for plan libraries with specific characteristics this
can result in the algorithm maintaining an exponential num-
ber of goal hypotheses. For real world domains maintaining
this will produce an unacceptable runtime.

To address this limitation, we describe a different ap-
proach to plan recognition and present an implementation
in a system called, ELEXIR, that is least commitment in
building the hypothesis for the observations. It is based
on the natural language parsing (NLP) concept of a lexical-
ized plan library based on Combinatory Catagorial Gram-
mars (CCG) (Steedman 2000) and the concept from NLP
of headedness (Sag, Wasow, & Bender 2003). We are not
the first work to make use of ideas from NLP in PR (See
for example (Carberry 1990; Pynadath & Wellman 2000;
Vilain 1991)) we are the first to apply headedness and mildly
context sensitive grammars, like CCG, to this task.

To establish some basic terminology, we describe PR as
taking in as input a set of observations and a grammar spec-
ifying the acceptable sets of observations. PR then parses
these observations to produce explanations that organize the
observations into a structured representation of the meaning
of the collection.

Motivation
The vast majority of plan recognition systems are tested on
plan libraries with a very small set of root plans, and in gen-
eral work quite well on restricted sets of roots. However
since for algorithms that must hypothesize the root goals
and the state of the agent’s subplans, the algorithm’s run-
time most often scales with the number of roots in the plan
library, a fact that is deemphasized by testing on a small set
of root goals.

This problem is made worse if there are a relatively small
set of observable actions. If the number of actions is small
relative to the number of root goals (a common feature
of human behavior domains) we are pushed in to a space
where individual actions are not highly informative of the
root goals. It is rather sets of observations, and even sets
of subgoals and subplans that are informative of the agent’s
goals. This means such an algorithm must maintain a larger
set of hypothesized root goal and plan structures since the
observed actions do not differentiate between them.

Consider for example the domain of computer network
security, the prerequisite of almost any hostile activity is re-
connaissance. Now while observing scanning and probing
actions on a network is highly correlated with hostile activ-
ity it does not predict the kind of activity. Is the attacker
interested in stealing data, executing a denial of service, or
just installing Netcat to allow him to “harmlessly” route traf-
fic through the attacked machine. In exactly this case, (Geib
2004) has shown that plan libraries with specific kinds of
structure produce an exponential number of possible expla-
nations.

The space of possible root goal hypotheses grows still fur-
ther when we take seriously the possibility of multiple root
goals. In real human domains, multiple concurrent and inter-
leaved plans are common. Consider a “stay at home parent”
that is doing the laundry, cleaning the house, and watching
the kids all at the same time. No single goal will explain all
of their activities. We must see this as three concurrent and
interleaved goals.

In the end, efficient plan recognition simply can’t afford
to hypothesize all of the possible root goal sets that could
be leading to the observed actions. Rather than building the
set of all hypothesis that could explain the observed actions,
we propose a least commitment approach, that builds only
that part of the explanation that is required by each of the



actual observations. Such an approach presents two critical
questions.

1. How much of the plan structure should be built? Tradi-
tional plan libraries for PR based on HTN like plan struc-
tures (Ghallab, Nau, & Traverso 2004) do not provide us
with any hints as to how much of the plan should be built.
We will turn to lexicalized grammars and the concept of
headedness from NLP to answer this question.

2. How to estimate the probabilities of the root goals given
least commitment explanations? We will follow prior
work in considering probabilistic PR as a problem of
weighted model counting (Geib 2006). However this does
not address the question of how the probabilities for each
of the models will be computed.

In the rest of this paper we will address these questions in
turn, and present ELEXIR, a probabilistic plan recognition
system, based on these ideas.

Lexicalized Building of Plan Hypothesis
In this work, we will argue for building plan structures based
on a particular lexicalized grammar formalism. This is not
intended to be a complete introduction to formal grammars.
We refer the interested reader to (Aho & Ullman 1992) for
a background on formal language theory and to (Steedman
2000) for background on CCGs. This section is intended as
a brief introduction to lexicalization of grammars and CCGs
for those already familiar with traditional formal grammars.

Traditional grammars like context free and context sensi-
tive grammars have two parts: 1) A set of rules that map a
sequence of non terminal symbols to a sequence of termi-
nal and non-terminal terminal symbols, and 2) a lexicon that
maps each possible observation to (possibly a sequence of)
terminal symbols. Note that in these grammars partial order-
ing on the right hand side of the grammar rules is handled
by creating multiple rules. This will differ markedly with
our later grammatical formalism.

It is well known that, limits in the form of the grammar
rules create different expressive classes. For example if the
left hand side of the grammar rules is limited to a single
non-terminal then the grammar is known to be context free.
Context sensitive grammars allow a much less restrictive set
of grammatical rules.

The objective behind lexicalization is to remove explicit
language specific grammar rules by moving the informa-
tion they contain into the lexicon. Traditional context free
and context sensitive grammars have a large language spe-
cific set of rules and a lexicon pairing terminals with a small
largely non-language specific set of pre-terminals. Lexical-
ized grammars have a small universal set of syntactic pro-
ductions or combinators and a large language specific lex-
icon pairing terminals with a large language specific set of
pre-terminal types.

Lexicalization of the grammars has allowed the explo-
ration of more fine grained formal language categories. It
has resulted in the identification of the class of Mildly Con-
text Sensitive Grammars (MCSG) that fall between CFGs
and CSGs in complexity. (Geib & Steedman 2007) have

argued for the use of MCSGs for PR on the basis of com-
plexity while previous work on PR as parsing has focused
on probabilistic and non-probabilistic CFGs or CSGs.

In this work we demonstrate the use of a particular MCSG
namely Combinatory Catagorial Grammars (CCG). The in-
terested reader is referred to (Steedman 2000) for a more
complete treatment of CCG in an NLP context. In the fol-
lowing section we define CCGs and show how they can be
used to encode plan grammars.

Consider the simple abstract hierarchical plan shown in
Figure 1. In this plan to achieve goal state G the agent must

Figure 1: An abstract plan with partial order causal structure

perform actions A, B, C, and D, and further A and B must
be executed before C but are unordered with respect to each
other. This structure could be represented as an Hierarchical
Task Network (HTN) (Ghallab, Nau, & Traverso 2004) as:

(m1, G, {A, B,C,D}, {(1 ≺ 3), (2 ≺ 3), (3 ≺ 4)})
We will now present more formal definitions for CCGs and
then show how they can be used to encode this method.

CCG Definitions of Plans
To define a plan library with CCGs each observable action
is associated with a set of categories that encode the action
grammar. We define the set of possible categories recur-
sively as:
Atomic categories : The plan library is assumed to have a

finite set of basic action categories C. (i.e. A, B, ... ∈ C.)
These categories correspond to propositions that describe
world states that result from executing actions. For exam-
ple, being in the bank or grasping the gun.

Complex categories : ∀Z ∈ C and a non empty set
{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C.

The complex category Z\{W, X, ...} is a functor category that
takes an unordered set of arguments {W, X, ...} and produces
a result Z. For actions in a planning domain, the seman-
tics of the \ is basically that of subgoal that precedes. Thus
an action with the category A\B is a function that results
in A in contexts where B is already true. Traditional CCGs
also provide a forward slash that allows for building func-
tor categories where the arguments are to be found after the
observed action. Such rightward categories are the key to
incrementality in NLP and we believe they provide a similar
functionality in PR contexts however to simplify our expo-
sition we will limit our discussion here to leftward slashed
categories.



The particular formulation of CCG we have described
here is closely related to that of (Hoffman 1995; Baldridge
2002) in allowing multiple unordered arguments. This will
be critical for application to PR contexts with partially or-
dered plans.

To see how these categories work in practice consider en-
coding our example method. We will use lower case letters
to denote observations of the given category. Thus, we can
create the following lexicon to assign possible observations
to action categories:

a ` A, b ` B, c ` G′\{A, B}, d ` G\G′

Where a ` A indicates that an observation of type a is of
category A. Note that all of the structure associated with
the HTN is now included in the functor categories for ob-
servations c and d. We should note that while none of the
categories shown here cover more than one level of an HTN
definition there is nothing that limits them in this way.

To combine a stream of observations into a more complex
structure we use combinators to combine the categories of
the individual observations into higher level structures. For
the simple examples in this paper we will limit ourselves to
function application and composition to combine categories:

application: Y X\Y ⇒ X
composition: X\Y Y\Z ⇒ X\Z

A number of other combinatory rules are possible and some-
times used in CCGs, we refer the interested reader to (Steed-
man 2000) for details, and we will leave the exploration of
these combinators in PR context for future work.

To see how these combinators combine with the lexicon
to allow for parsing observations to recognize high level
goals consider the following derivation that recognizes the
sequence of observations: a, b, c.

a b c
A B G′\{A,B}

<
G′\{A}

<
G′

Figure 2: Building an Explanation by Parsing Observations
with CCGs

We now need to more clearly define what we mean by
an explanation for a set of observations. Since we are com-
mitted to having multiple possible concurrent goals, for the
purposes of this discussion we will describe an explanation
as a sequence of CCG categories. Thus in the previous ex-
ample { G’ } would be one resulting explanation.

While the above parse shows how CCGs can be used to
build explanations for observed actions, we have carefully
avoided the question of why the action lexicon should be
the one we have provided. In fact, there are other possible
assignments of actions to categories that would produce an
equivalent parse for these actions and this plan structure. For
example the following is a second lexicons that can produce
the same parse for this set of observations.

a ` A, b ` B, c ` C, d ` (G\C)\{A, B}

In the different lexicons the categories that provides the
plan’s gross structure are associated with a different actions
in the lexicon. In our original lexicon it is the categories
for c and d that provides the structure of the plan, but in the
latest lexicon all of the structure is confined to the category
for d. These lexicons will result in exactly the same parsed
results for complete sequences that generate a G, however
they do differ in the intermediate structures that are built.

Representational choices about which categories to assign
to which observations must be made at the action grammar’s
design time. Thus, if we are going to use CCGs to represent
our plan grammars, we need to examine this new modeling
consideration.

Similar modeling issues do occur in HTN/CFG represen-
tations of action hierarchies in the form of choosing the sub-
goal decomposition. With their long tradition in planning
and reasoning, intuitions about what is and isn’t a subgoal
seem natural in a planning domain. However categories
have a multidimensional aspect to them (they can function
effectively as a tree spine rather than the decomposition of a
single level). This makes a traditional hierarchical interpre-
tation of them less intuitive. To address some of these and
other issues linguists have invented the concept of headed-
ness (Sag, Wasow, & Bender 2003).

Headedness in Plans
Consider the case where we see Leslie threaten a bank teller
with a gun. While there are a great many actions that have to
come both before and after this action for Leslie to success-
fully complete a plan for robbing the bank, this act is central
to the plan. The plan cannot be performed without intimi-
dating the teller. In this sense, this action of threatening the
teller is the head of Leslie’s plan to rob the bank.

Next consider the case of Leslie walking into a retail store
(without the gun). We can again effectively infer that Leslie
is shopping, even if we have seen no acts that went before
this, and even if Leslie doesn’t, carefully consider any mer-
chandise in the store or actually purchase anything. Again
the action of entering the store is the head of the plan for
shopping.

Headedness in NLP grammars has long played a crucial
role, and explains why we talk of noun phrases, verb phrases
and the like. It is because the noun or verb is the head of
these respective phrases. While NLP research has had a
great deal to say about headedness in natural language gram-
mars, our purpose here is to argue for its realization in PR
domains.

In the case of lexicalized action grammars, taking head-
edness seriously reduces to the identification of a single ob-
servable action that can be assigned a category with the
structure that results in the root of the plan or sub-plan under
consideration. This corresponds to making the design deci-
sion discussed in the previous section: determining which
action will be assigned the category that generates the root
category of the plan or sub-plan. Given the many uses we
think of actions as having, making a claim about the plau-
sibility of headedness in action plans may seem unusual.
However, there are a number of arguments in its favor.



Since any given observation can have multiple categories
assigned to it, we are not claiming that an observation can
only ever play the single role of being the head of a single
plan. Actions are less constrained in the roles they can play
within their grammars than words, and therefore, we would
expect that the same action could have a large number of
possible categories assigned to it in the plan lexicon.

It should be clear that, as in NLP, we assume that headed-
ness applies not only at the root goal but also for subgoals
as well. For example, Leslie must acquire a gun to rob the
bank, and entering a gun store would be the head of the sub
plan of shopping for the gun. Thus while a particular ob-
served action must be associated with the root goal it is not
the case that it would also be carrying the weight of deter-
mining the whole of the structure for the plan, any more than
making a choice about how to decompose one subgoal de-
termines the decomposition for the rest of an HTN plan.

Further, actions that participate in a very small number
of possible plans (i.e. taking a gun into a bank) do seem to
provide us with natural instances of headedness in plans ar-
guing for its naturalness. This also seems to correspond to
intuitions that people sometimes plan the head action of the
plan and then complete their plans both forward and back-
wards from this central action. (i.e. Consider the case of
planning an evening out for dinner. Choosing the restaurant
and the time is certainly done before deciding on when and
where pre-dinner drinks might be or where one would go
after the dinner.)

However such naturalistic arguments would only be weak
evidence if not for a final much stronger argument that,
headedness is not only required for the use of the formal-
ism, but careful selection of plan heads is necessary to cap-
ture partial ordering in plans and can provide a powerful
method of controlling the space of possible explanations to
be considered in PR. If we adopt the approach discussed so
far, headedness allows us to define exactly how much of the
plan hypothesis space should be built on the basis of the ob-
served actions, without recourse to arbitrary limits or pa-
rameters. Instead we implement the following principle in
building plan structures:

Principal of minimal head justified explanation: In build-
ing explanations we never hypothesize any plan structure
beyond that provided by the categories of the observed
actions.

This principle provides a clear answer to the first ques-
tion posed in the introduction concerning how much plan
structure to build. Further it limits the size and scope of the
plan hypothesis space for PR. It takes the idea of building
the minimal structures that are consistent with the observed
actions very seriously and as we will see in the next section
results in a very simple algorithm for generating explana-
tions of a set of observed actions.

Building Explanations in ELEXIR
Effectively ELEXIR produces explanations from a set of ac-
tion observations by assigning to each observation each of
its possible categories and then to applying the applicable

Procedure BuildExplanations(σ1...σn) {
ES = {E0};
For i = 1 to n

ES ′ = ∅;
For each exp ∈ ES

For each c ∈ Cσi ;
exp′ = exp ∪ c
ES ′ = ES ′ ∪ exp′
Compute the set of all explanations

ES close(exp′,c) that can result from the
application of one of the combinators
to any two categories in exp′ preserving
the ordering of the observations.

ES ′ = ES ′ ∪ ES close(exp′,c);
End-for;

End-for;
ES = ES ′;
End-for;

return ES ; }

Figure 3: High level algorithm for explanation generation.

combinators to produce the complete set of possible expla-
nations for the observations. Effectively this is also exactly
the same process carried out in NL parsing. However there
are a few differences.

For example, we can’t assume that we know a-priori how
many observations there will be, or that we can bound this
number. Further, we do not assume that all of the observa-
tions must contribute to a single goal, and we cannot assume
that we have seen all of the observations associated with the
plan. Many well know parsing algorithms like CKY, even
when modified for CCGs (Steedman 2000), leverage some
or all of these assumptions in their processing and as such
are unacceptable for our purposes.

Further, some probabilistic NL parsing algorithms do not
produce the complete set of parses. They only consider as-
signing the highest probability categories to each observa-
tion. While in principle we have no objection to this, it is
an area for future work to determine if this would result in a
significant loss of accuracy in a PR system. This short cut is
not implemented here.

Instead, we have a simple algorithm captured in the
pseudo code given in Figure 3. In effect this algorithm
does nothing more than create the set of all explanations
that result from the incremental closure of the categories
introduced by the current observation and the existing cat-
egories.1 For example, given our original lexicon and the
observations: a, b, c, d the algorithm produces the following
explanations: (1) {G}, (2) { G’, G \ G’ }, (3) { A, G’ \ {A}, G
\ G’ }, (4) {B, G’ \ {B}, G \ G’}, (5) {A, B, G’ \ {A, B}, G \
G’}.

Note that in each case the ordering of the actions has been

1To date we have not explicitly addressed the problem of spu-
rious ambiguity in CCGs (Steedman 2000), however we believe
that to the degree this presents a problem for PR, the reductions to
normal form parsing (Eisner 1996) used to address this problem in
NLP will work in PR as well.



preserved. This is necessary to correctly enforce the direc-
tionality information encoded in the category slashes. While
preserving the ordering constraints, our implementation of
this algorithm does violate the “adjacency restriction” that
requires that only directly adjacent categories be able to be
combined by a combinator that is usually enforced in CCG
grammars. While this can in theory increase the computa-
tional complexity of the parsing algorithm it is necessary to
handle multiple interleaved plans.

It is worth discussing why the algorithm should produce
explanations 2-5 in the above example. They are included to
account for the case where any of the categories will be used
in some other, as yet unseen, plan. Under the assumption
that a given category can only contribute to a single plan,
if these categories are consumed at the earliest opportunity
they will be unavailable for later use. Therefore, in the in-
terest of these future possibilities we must produce these ex-
planations.

Thus, we have outlined an algorithm for computing a
set of explanations that make the minimal commitments re-
quired by the observed actions, thus answering the first of
the questions we raised in the motivation section. We now
move to address the question is now how to use this set of
explanations to determine the relative likelihood of various
specific goals.

Computing Probabilities in ELEXIR
Traditionally in probabilistic plan recognition the objective
is to compute the conditional probability for all of the possi-
ble root goals (Charniak & Goldman 1993). As we have al-
ready argued, the space of possible explanations is very large
and can in some contexts be infinite. Further it is not clear
that the space of explanations for observed actions has the
kind of properties that are argued for in NLP contexts that
make approximating a probability distribution over such a
space possible.(Booth & Thompson 1973). However, the ex-
planations that we have generated in the last section are more
amenable to a different approach: weighted model counting.

Weighted model counting in plan recognition works in the
following manner. Assuming we can compute the exclusive
and exhaustive set of explanations for a given set of obser-
vations, and that we can compute the conditional probability
of each explanation given the observations, then the condi-
tional probability for any given goal is given by the follow-
ing formula:

Definition 1.1

P(goal|obs) =
∑

{expi |goal∈expi}

P(expi|obs)

where P(expi|obs) is the conditional probability of explana-
tion expi, and the conditional probability for the goal is just
the sum of the probability mass associated with those expla-
nations that contain the goal of interest.

But note this approach critically relies on 1) an exclusive
and exhaustive set of explanations for the observations and
2) being able to compute the conditional probability for each
explanation. While in the next subsection we will show how

to compute the probability for an explanation, there is a con-
flict between computing only minimal head justified expla-
nations and computing the complete and covering set of ex-
planations. To see this we return to our example of Leslie
robing the bank. Consider the following plan grammar:

graspBag ` GB, graspGun ` GG,
enterBank ` IB, graspCash ` GC,

threaten ` (ROBBANK\IB)\{GB,GG},
handOverGun ` (S ELLGUN\IB)\{GB,GG}

and the following series of observations:

(graspBag, t0), (graspGun, t1), (enterBank, t2)

There is only one minimal head justified explanation for
these observations and that is that they are all being engaged
in for their own ends. Since none of the observations is of a
category that allows for the combination with the other cat-
egories, the only consistent explanation is that each of these
actions as being done as a separate root goal. This highlights
a significant problem for the principle of minimal head jus-
tified explanations. They are unable to talk meaningfully
about a plan until the head of the plan has been observed.
This clashes quite seriously with our intuition that all three
of the observed actions could be forming part of a larger
plan.

To address this limitation. we will describe two differ-
ent mechanisms for understanding the likelihood of different
root goals. Both will be based on weighted models counting
but the first will be a bottom up process constrained by our
minimal head justified explanations, and the second will ad-
dress the need to look at goals who’s head has not yet been
observed. Both of them will require computing the condi-
tional probability of each explanation.

Computing the Probability of an Explanation
While there are a number of different probability models
used for CCG parses in the NLP literature (Hockenmaier
2003; Clark & Curran 2004) for this work we will use a par-
ticularly simple model, extending one described in (Hock-
enmaier 2003). For an explanation, exp, of a sequence of
observations, σ1...σn, that results in m categories in the ex-
planation, we define the probability of the explanation as:
Definition 1.2

P(exp|{σ1...σn}) =
n∏

i=1

P(ciniti|σi)
m∏

j=1

P(root(c j))K

Where ciniti represents the initial category assigned in this
explanation to observation σi and root(c j) represents the
atomic head result category of the jth category in the ex-
planation.

The first product represents the probability of the given
observations having the specified CCG categories. This is
standard in NLP parsing and assumes the presence of a prob-
ability distribution over the possible categories that a given
observation can be mapped to. In NLP such probabilities are
usually learned using large corpora of parsed text (Clark &
Curran 2004).



The second product (and its associated constant) is de-
signed capture the probability that, each category in the ex-
planation will not be part of a larger plan but instead repre-
sents a separate rooted plan instance. Unlike the first term,
this is not part of traditional NLP models for two reasons.
First, in NLP it makes little sense to consider the probability
that a speaker would utter a collection of nouns and verbs
each as an isolated unrelated declarative statement. Second,
in most NLP contexts the sequence of observations is fur-
ther known to be a complete sentence (usually parsed text
contains punctuation marks indicating sentence boundaries).
Again in this setting it makes little sense to consider the
probability that the sequence is anything but a single com-
plete sentence. However these assumptions do not in gen-
eral hold in the PR domain. It is more than possible for a
given sequence of observations to contain multiple plans of
varying lengths, or to only cover fragments of multiple plans
being executed (consider a set of multi-day plans).

To address recognition in these domains we take a slightly
extreme position within the PR community and assume that
any action could be done for its own sake. This is different
than much work on PR. This work assumes that, however
unlikely, it is completely acceptable for any given action
to be a root goal and to be executed by itself without re-
gard to a more complex goal. Therefore, we must assume a
prior probability for each atomic category as a root goal. We
believe it is relatively straightforward to collect frequencies
from real world data to provide such priors.

Given this set of assumptions, to understand the deriva-
tion of the second term in the above definition, we denote
the set of all values of root(c j) for a given explanation, exp
as goalsexp and the probability of this particular set of cate-
gories being adopted as root goals as P(goalsexp). We rep-
resent the probability of an agent adopting a category c as a
root goal as P(c) with each goal instance being chosen (or
rejected) independently.

Since in ELEXIR we want to allow for multiple instances
of a given category in goals (it is acceptable for root(ci) =
root(c j) where i , j), we assume that individual goals are
sampled as a geometric distribution. Therefore, P(c) repre-
sents the probability that category c is added as a root goal
in the explanation and we keep sampling to see if there are
more root instances of c. This allows us to write the proba-
bility that there will be exactly n root instances of any cate-
gory c as P(c)n(1 − P(c)).

This is almost certainly incorrect — intuitively the prob-
ability of multiple instances of a single goal decreases far
more rapidly than this, making this an over estimate of the
likelihood of the goals. However, in practice this simplifi-
cation seems benign, and adding a more complex model has
not yet been necessary. The theory will support more more
sophisticated models, and we see examining these as an area
for future research.

Assuming |goalsc| represents the number of root instances
of category c in the explanation allows us to define:

P(goals) =
∏

c∈goals

P(c)|goalsc |(1 − P(c))
∏

c<goals

(1 − P(c)).

Moving all of the 1−P(c) terms into a single product allows
us to write this as:

P(goals) =
∏

c∈goals

P(c)|goalsc |
∏
∀c∈C

(1 − P(c))

Now note, the second term is a product over the set of all
atomic categories, C, in the plan library, and is actually a
constant across all explanations:

P(goals) =
∏

c∈goals

P(c)|goalsc |K

Rewriting this in terms of the instances in the explanation
finally yields the term seen in Definition 1.2.

P(goals) =
m∏

j=1

P(root(c j)K

Computing Goal Probabilities Bottom-up
Having defined an algorithm that builds the set of possible
explanations, and defined a method of computing the prob-
ability for each such explanation, we are now in a position
to compute the conditional probability of each of the root
goals that occurs in any of the explanations. Following Def-
inition 1.1 it is straight forward to loop over the set of expla-
nations computing the conditional probability for each root
goal that occurs in any explanation of the observations.

However, as we have discussed, given the principle of
minimal head justified explanations, this bottom up process
has a critical limitation. It assumes that there will be no
more observations. It has not considered any explanations
that could result from the observed actions contributing to a
goal for which the head has not yet been observed.

In some cases this will be perfectly acceptable. If in, our
bank robbing example we knew for a fact that Leslie was
not going to perform any more actions then we would have
to assume that the grasping the bag and gun and entering the
bank were in fact unrelated actions. However, this is unsat-
isfying for most real world situations where we know more
observations are possible. To address this need, in the next
subsection we outline a top-down, goal directed metric of
how much the observed actions could contribute to a partic-
ular goal of interest.

Computing Top-down Probabilities
We have already argued that the space of possible explana-
tions, given the availability of multiple goals and large num-
bers of observations, is too large to be effectively searched.
Therefore, our goal is not to compute a probability distri-
bution over the space of all possible permutations of root
goals but instead to produce a metric that will indicate how
likely it is that a particular goal is being executed given the
observed actions.

To inform this, reconsider the Bank robbing example. The
reason that it seems likely that Leslie is going to rob the
bank is because all three of the observed actions could be
arguments to a category that has robbing the bank as its
head. However, all three of the observed actions could also
be arguments to the final category in our previous lexicon,



namely selling the gun as its head. However we dismiss
selling the gun to someone in the bank as being very un-
likely. This seems to identify two features that should be
critical in our metric: 1) the number of observed actions’
categories that can act as arguments or sub-arguments to a
category that has the desired goals as its head result, and 2)
the prior probability of the desired goal.

Imagine in our example, hypothesizing an instance of the
robbing bank goal, and adding it to our earlier explanation.
The process that we have already discussed for computing
explanations from observations would combine all three of
the observations with the robbing bank category to produce
a reduced explanation with ROBBANK as its sole category.
This explanation has a much higher conditional probability.
The root probability terms for each of the three categories
have been removed and replaced with the prior probabil-
ity for robbing the bank (which while unlikely in itself is
much more likely then the three unrelated events happen-
ing). This suggests leveraging our existing algorithm, hy-
pothesizing the desired goal and making use the change in
the conditional probability of the explanations (4CP) to es-
timate how likely it is that the agent is actually pursuing the
desired goal.

Large positive shifts in 4CP indicates two things. First,
there are observed actions with categories that can play the
role of arguments to a category with the desired head, (root
probability terms for these categories drop out of the condi-
tional probability for the explanation.) Second, this rise in
probability from the loss from the categories that contribute
to the desired goal as roots overshadows the cost associated
with the introduction of the root goal.

Negative shifts in 4CP indicate the opposite. Either there
weren’t sufficient gains from actions that contribute, or the
cost of the desired goal was too high.

It is important to note that since the observed actions may
be able to act as arguments to a sub-category of a category of
interest the process of identifying which observations could
be playing a role in the desired goal is slightly more complex
than simply extending the explanations with a hypothesized
new category. Instead we will compute the maximal cancel-
lation for the explanation given the category. We will return
to discuss this in more detail but first we outline the specific
metrics to be used.

ELEXIR is computes two statistics based on 4CP.

Maximum 4CP (max4CP): For each explanation of the
observations loop over the set of all categories that have
the desired head result compute the 4CP for the maximal
cancellation for each explanation and category pair. Store
the maximum across all explanations.

Average maximum 4CP (m̂ax4CP): Average the
max4CP values computed for each explanation.

Keep in mind that both of these statistics may be negative.
A given goal of interest my actually make the explanations
less likely. The algorithm for computing these statistics is
shown in figure Figure 4.

To make this algorithm more precise, we define the maxi-
mal cancellation of a new category against an existing expla-
nation as the resulting explanation when the maximal num-

Procedure ComputeDCP(goal, expS et) {
For each e in expS et

For each c in the lexicon st. goal = head − result(c)
Add to e the category c
Compute the maximal cancellation for

e by removing from e all root
categories that could contribute to c

Compute 4CP;
End-for;

Store max4CP for each e
End-for;

Compute m̂ax4CP
Compute max4CP}

Figure 4: Algorithm for max4CP and m̂ax4CP.

ber of categories in the original explanation that can fulfill
an argument role for the category that achieves the desired
goal have been removed. The largest 4CP gains must be
achieved when the maximal number of existing categories
fulfill roles as arguments in the desired goal category (since
their root goal probability term will be removed from the
explanations CP.)

As we have already alluded producing the maximal can-
cellation must be sensitive to the possibility that categories
may act as an argument to a subcategory of the desired goal.
In more traditional planning parlance it may contribute to a
subgoal. Therefore the process of computing the maximal
cancellation must consider all of the possible completions
for the goal category’s arguments. Like traditional hierar-
chical planning, this can require decomposing a subgoal. In
this process this corresponds to expanding one argument by
replacing it with a functor category from the lexicon that re-
sults in the appropriate category. Consider the explanation
{A, B,C} looking for a D where the plan grammar includes
(D\P)\A and P\{B,C}. In this case, all of the previously ob-
served actions could contribute to achieving goal D however
this can only be seen if atomic category P is expanded.

Allowing this kind of category decomposition also re-
quires that all possible permutations of unordered argu-
ments be considered. Consider again the simple explana-
tion {A, B,C} in the context where we are looking for D but
this time the grammar includes D\{P, A} and (P\B)\A. If we
first remove the A argument to D and then consider decom-
posing P we get {B,C} as the maximal cancellation, but in
the other order we can get {C} as the maximal cancellation
because the A is still in the explanation.2 Thus computing
the maximal cancellation for an explanation and a category
does clearly imply that we have to look at all of the possible
cancellations and orderings for the categories.

Complexity
Given that this process must be performed pairing every ex-
planation with every category that has the desired head result
this seems as though it might be computationally expensive.

2We are looking at overloading category cancellation as an area
for future work. This would obviate the need for considering mul-
tiple orderings in this case.



We take some solace however in the realization that, any
complete algorithm will be required to consider this same
space. Further, algorithms that consider the case of multiple
possible root goals and initially hypothesize the goal set are
required to consider all of these possible plans interleaved
with all of the other possible hypothesized goals, a far worse
search space.

Implementation of ELEXIR
The approach and algorithms described here have been im-
plemented in Common LISP and successfully tested on a
number of small example problems including the bank rob-
bery example discussed here and a hand crafted selection
of test problems. While initial tests show impressive per-
formance our data for claims in this area is still anecdotal.
Given the significant differences between this approach to
PR and much of the existing work we are currently in the
process of assembling data from a large real world test do-
main in order to do a more thorough evaluation of the algo-
rithm itself and to compare it to other systems.

Conclusions
This paper has covered a considerable amount of ground
both in theoretical concerns and applied issues. The main
conclusions can be summarized as:
• We argue, the size of the plan hypothesis space for plan

recognition in real world domains is too large to admit
efficient computation of exact probabilistic solutions.
• We describe an algorithm that uses headed, lexicalized,

mildly context sensitive grammars (specifically CCGs) in
a least commitment approach to building plan hypothesis
to avoid the size of the search space.
• We defined two metrics based on the conditional probabil-

ity of explanations for the observations that can be used to
compare alternative hypothesis about the agent’s goals.
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