
Towards a Bell-Curve Calculus for e-Science

Lin Yang1 Alan Bundy1 Dave Berry2 Conrad Hughes2
1 University of Edinburgh 2 National e-Science Centre

Abstract

Workflows are playing a crucial role in e-Science systems. In many cases, e-Scientists need to do
average case estimates of the performance of workflows. Quality of Service (QoS) properties are
used to do the evaluation. We defined the Bell-Curve Calculus (BCC) to describe and calculate the
selected QoS properties. The paper presents our motivation of using the BCC and the methodology
used during the developing procedure. It also gives the analysis and discussions of the experimental
results from the ongoing development.

1. Introduction
Grid computing has an almost ten-year history
since it was derived, from an analogy to the
power Grid, to denote a proposed distributed
computing infrastructure for advanced science
and engineering collaborations [1]. It is strongly
required by consumers, scientists, engineers,
enterprises, countries, and even the whole world
to share resources, services and knowledge [2].
This sharing is supported and implemented by
web services, software systems designed to
support interoperable machine-to-machine
interaction over a network. These services can
be composed in many different ways to form
workflows. It is very helpful to measure the
performance of the resulting composite services
because their quality affects the quality of the
Grid directly.
 In scientific workflows, experimental data is
generated and propagated from one service to
another. It would be useful to get rough
estimates of various QoS properties, e.g.
reliability, accuracy, run time, etc. so that e-
Scientists could perform analyses and
evaluations of either services or the data
produced. We have previously thought about
the use of interval arithmetic to calculate error
bounds on such estimates. The idea is to extend
a numeric value to a number interval, e.g. we
use an interval, say [41, 43], to represent the
range of error of 42. Extended numeric analysis
is used as the way of interval propagation in
workflows. The simplest example is for a unary
and monotonically increasing function f(x), the
extended function f*([a, b]) = [f (a), f (b)].
Using interval arithmetic and propagating error
bounds will calculate the biggest accumulative
error during workflow executions, so it is a
good method for doing a worst-case analysis.
 However, in more common situations, e-
Scientists may want to know the likelihood of

each value in the interval. So for average-case
analysis, we propose to use normal distributions
(bell curves) to add the concept of probability to
differentiate the likely from the unlikely values
of the QoS properties. That is, if we associate a
probability density function (pdf) shaped as a
bell curve with the estimate, then some values
in the interval have a higher probability than
others. Figure 1 defines and illustrates the pdf
and cumulative density function (cdf) of a
standard bell curve.

FIGURE 1

STANDARD BELL CURVE

The graph shows a standard bell curve with parameters –
mean value µ=0 and standard deviation �=1. The red curve
is the pdf (probability density function) curve, indicating the
probability of each possible value of variable x. It can be

generally presented as p(x) =

2()
221

2

x

e

µ

σ

πσ

−
−

. The green

curve is the cdf (cumulative density function) curve,
integrated from its pdf. It gives the probability that a
normally distributed variable will output a value � x.

 So now the questions are:
 (1) Can we use BCC to describe QoS
properties and what are the advantages and
disadvantages?
 (2) How can we define a BCC?
 We aim to prove the hypothesis:

 The Bell-Curve Calculus is a good estimate
of Quality of Service properties over a wide
range of values.

2. Why a Bell-Curve Calculus

Although PEPA [3] and some other projects use
exponential distribution as their atomic
distribution, we still have sufficient reasons to
choose bell curve. Initial experimental evidence
from DIGS 1 suggests that bell curves are a
possible approximation to the probabilistic
behaviour of a number of QoS properties used
in e-Science workflows, including the reliability
of services, considered as their mean time to
failure; the accuracy of numerical calculations
in workflows; and the run time of services.
Moreover, the Central Limit Theorem (CLT) [4]
also gives us some theoretical support by
concluding that:

 “The distribution of an average tends to be
Normal, even when the distribution from which
the average is computed, is decidedly non-
Normal.”
 Here in the CLT, ‘Normal’ refers to a
Normal Distribution, i.e. a Bell Curve.
 Furthermore, from the mathematical
description of bell curves, we can see that the
biggest advantage of using a bell curve is that
its probability density function (pdf) p(x)

=
2()

221

2

x

e

µ

σ

πσ

−
−

has only two parameters: mean

value µ and standard deviation �, where µ
decides the location of a bell curve and �
decides the shape of a bell curve. While
evaluating the performance of a workflow, we
need to gather all the possible data values of the
QoS properties we analyse from all the input
services. We do calculations and analysis using
the information and pass the results through the
whole workflow. It will be a big burden if we
transfer and calculate all the possible data
values one by one. Now using bell curves which
have only two parameters, the job becomes
more efficient. All we need to do is to store and
propagate the two parameters in workflows and
a bell curve can be constructed at any time from
µ and �.
 Then we will see if we can calculate the
QoS properties of a whole workflow from the
corresponding properties of its component
services, namely if we can define some
inference rules to derive the QoS properties of

1 DIGS (Dependability Infrastructure for Grid Services,
http://digs.sourceforge.net/) is an EPSRC-funded project, to
investigate in fault-tolerance system and other quality of
service issues in service-oriented architectures

composite services from the correlative
properties of their components.
 We consider four fundamental methods to
combine Grid services (we use services 1S and

2S to represent two arbitrary services).

Sequential: 2S is invoked after 1S ’s invocation

and the input of 2S is the output of 1S .

Parallel_All: 1S and 2S are invoked
simultaneously and the outputs are both passed
to the next service.
Parallel_First: The output of whichever of 1S

and 2S first succeeds is passed to the next
service.
Conditional: 1S is invoked first. If it succeeds,
its output is the output of the workflow; if it
fails, 2S is invoked and the output of 2S is the
output of the whole workflow.
 In terms of the three QoS properties and
four combination methods, we have twelve
fundamental combination functions (see Table
1). For instance, the combination function of
run time in sequential services is the sum of the
run times of the component services.

TABLE 1
THE TWELVE FUNDAMENTAL COMBINATION FUNCTIONS

 Seq Para_All Para_Fir Cond

run time sum max min cond1

accuracy mult combine1 varies? cond2

reliability mult combine2 varies? cond3

The table shows the twelve fundamental combination
functions in terms of three QoS properties and the four basic
combination methods. Sum, max, min and mult represent
respectively taking the sum, maximum, minimum and
multiplication of the input bell-curves. Cond1-3 are three
different conditional functions and their calculation depends
on the succeeding results. The functions of Varies are
parallel_first, which means the output of the workflow is the
output of the first succeeded service. Combine1-2 are
probabilistic merges, which are in the forms of linear-
_combinations_of_distribution_1*probability_of_1_occurri
ng+linear_combinations_of_distribution_2*probability_of_
2_occurring+...+linear_combinations_of_distribution_N*pr
obability_of_N_occurring. Neither are uniquely defined
functions, but depend on different use cases of workflows,
which adds the uncertainty to the calculus. But in most
workflows, only the basic combinations sum, max, min and
mult are needed. What we do for combine1-2 is to combine
these basic functions based on different workflow.

Here we convert the formula of bell curve to

a function in terms of µ and �, then get the bell
curve function as

σπ

λσµ
σ
µ

2
.),(

2

2

2

)(−−

=

x

e
xbc

 .
 Our job is to define different instantiations
of the combination functions applying to
different QoS properties and different workflow
structures.

3. Methodology
Suppose we have two bell curves corresponding
to two services. We present them using a bell
curve function defined in Section2 as

1 1(,)bc µ σ

and
2 2(,)bc µ σ . We need to describe

0µ and
0σ

using
1µ ,

2µ ,
1σ and

2σ . That is,
0µ =

1 2 1 2(, , ,)fµ µ µ σ σ and
0σ =

1 2 1 2(, , ,)fσ µ µ σ σ The

combination function
0 0(,)bc µ σ is defined as

0 0(,)bc µ σ =
1 1 2 2((,), (,))F bc bcµ σ µ σ =

bc(
1 2 1 2(, , ,)fµ µ µ σ σ ,

1 2 1 2(, , ,)fσ µ µ σ σ), which is

actually a function in terms of four parameters
--

1µ ,
2µ ,

1σ and
2σ .

 Therefore we have two main tasks:
(1) Can we find a satisfactory instantiation

of
1 1 2 2((,), (,))F bc bcµ σ µ σ for every

situation we are investigating?
(2) How good will our approximations be?

‘Good’ here means accurate and
efficient.

 For example, for the property run time in
sequential services, we can use

0 1 2µ µ µ= + and
2 2

0 1 2σ σ σ= + , which has been proved true in

mathematics [5].
 Our experiments are based on a system
called Agrajag 2 . Using Agrajag, we got a
satisfactory match (the error is generated by the
limited calculation in the approximation method
in Agrajag) of the piecewise uniform
approximation curve (blue curve) and our
estimate curve (mauve curve) (see Figure 2).

Some of our combination functions have
been defined by ourselves and tested in Agrajag.
For example, for runtime in parallel_all
structure, we need to get the maximum of two
bell curves. Figure 3 shows the situation of the
maximum of two bell curves using the
combination method:

0 1 2max(,)µ µ µ=

and
0 1 2max(,)σ σ σ= . In this graph, we can see

that our estimate achieved a good result – the

2 Agrajag (http://digs.sourceforge.net/agrajag.htm) is a
framework written in Perl and C, developed by Conrad
Hughes, to implement some operations and measurements
on some basic models of stochastic distributions.

error is very small. But does it always work like
this? When we choose two closer bell curves as
the inputs, the error became comparatively large
(see Figure 4). This inconsistency decided one
aspect worth investigation: through systematic
experimentation using Agrajag, we needed to
explore in a wide range of data to find various
error status in different input situations.

FIGURE 2
THE SUM OF TWO BELL CURVES

AND ITS APPROXIMATION

The graph shows the sum of two bell curves (red curve and
green curve). It can be used to model the run time of
sequential combinations. Here we use an exact
mathematically proved method:

0 1 2µ µ µ= + and

2 2
0 1 2σ σ σ= + to estimate the piecewise uniform curve

(blue curve) produced by Agrajag. The mauve curve is our
approximation curve, which almost coincides with the blue
curve. We can see there is still a tiny error shown at the title
of the graph. It is caused by the approximation using
piecewise uniform functions. In the ideal situation (the
resolution values which divide a curve to locally constant
and connected segments �+�), the error is zero.

FIGURE 3
THE MAXIMUM OF TWO BELL CURVES

AND ITS APPROXIMATION (1)

This graph shows an ideal situation of getting the maximum
of two bell curves. The red curve and the green curve are the
two inputs. In this case, using the method

0 1 2max(,)µ µ µ= and
0 1 2max(,)σ σ σ= , the green

curve is the piecewise uniform form of our approximation,
the mauve curve. The blue curve is Agrajag estimate. Since
the green curve, the blue curve and the mauve curve almost
coincide with each other, they are hardly distinguished in
the figure.

FIGURE 4
THE MAXIMUM OF TWO BELL CURVES

AND ITS APPROXIMATION (2)

In this graph, we use the same combination method as that
in Figure 3, but taking two much closer bell curves as the
inputs. This time, there is a distinct difference between
Agrajag’s estimate (the blue curve) and our approximation
(the mauve curve). We can see that in this case, the mauve
curve and the green curve are the same curve, so they
coincide with each other.

 Another investigation aspect is to define and
compare all sorts of combination methods to get,
say, the maximum of bell curves. For example,
through testing in Agrajag, we discovered that
in most common situations, to get the maximum
of two bell curves, the effect of approximating
the output curve using

0 1 2max(,)σ σ σ= is better

than that using 2 2
0 1 2σ σ σ= + or that

using
0 1 21/(1/ 1/)σ σ σ= + . Our main goals are to

make comparisons of all sorts of approximation
methods and find the best one across many
different situations.
 To achieve a better outcome, we need some
methods to define the precision of the
approximation methods we use and then refine
the experimental results. The explicit way to get
to precision is to calculate the average error
values, which allows us to have a general idea
about how accurate our approximation is and
make a comparison between different
approximation methods easily. However, it
cannot indicate how we could improve our
method to get a better result. In Agrajag, there is
a functionality to derive the parameters of the
piecewise uniform approximation to the
combination functions. So we call these
parameters the perfect parameters and use them
as a standard. Then we transform the job of
finding the most suitable parameters of the
combination functions to matching the perfect
parameters. We will elaborate it using an
example in Section 4.
 All the above description to our
methodology raises the question: since Agrajag
can perform piecewise uniform approximation
of bell-curve combinations, why do we still

need a BCC? Why don’t we just use Agrajag to
produce a bell-curve approximation to a
workflow using the data from its component
services? The answer is efficiency. Agrajag’s
calculations do well in small workflow
calculations, but the more common scenario is
that workflows sometimes are composed of
thousands of services. To take all the inputs and
get an approximation requires huge calculation
capacity, which will make Agrajag’s runtime
unacceptably long. While using the BCC, we
just need to do calculations among the
parameters, which will make the calculation
procedure more efficient.

4. Experimental Result and Analysis

In this section, we will give some experimental
results and analysis according to the
methodology we have described in Section 2
and Section 3. Since the combination function
of sum of two bell curves is exact, we make our
first attempt on the method of the getting
maximum of two bell curves, which does not
have a known simple mathematical combination.

 To get more intuitive results, we used
Gnuplot3 to draw 3D graphs. Without loss of
generality, we fixed one of the input bell curves
to the standard bell curve (

2µ =0 and
2σ =1).

Then the three dimensions were set as
1µ ,

1σ

and the difference between the piecewise
uniform estimation and our approximation using
our combination methods. To ensure that
common situations are considered, we generated

1 1(,)bc µ σ from a range of logarithmic-scaled

integers, e.g., 102− �
1µ � 102 and 102− �

1σ � 102 .

 Figure 5 shows the experimental results
using a combination method (Method 1):

0 1 2max(,)µ µ µ= and
0 1 2max(,)σ σ σ= . From this

graph we can see how the value of the error
changes. Especially in the area of 7�

1µ �9 and

1�
1σ �1.6, the errors are near 1e-06, which is a

quite satisfactory approximation.
 Does the method shown in Figure 5 achieve
the best result? We tested another method
(Method 2):

0 1 2max(,)µ µ µ= and
0σ =

1σ or
2σ

(with bigger µ) (see Figure 6). In Figure 6, we
can see that the area of tiny errors is extended,
compared to Figure 5. In most areas, the two
surfaces coincide with each other, which is
always true when

1σ �1 because
2σ �1 and both

3 Gnuplot is a portable command-line driven interactive data
and function plotting utility for many operating systems. It
can plot either 2D or 3D graphs.

methods will take
0 1σ σ= . Whereas in the area

1µ �4 and
1σ <1, the green surface (Method 2) is

much lower than the red one (Method 1). But
the two methods are still the best two among all
the methods we tried. Table 2 shows all the
combination methods we had tried to get the
maximum of two bell curves and their average
errors. For all the methods we
used

0 1 2max(,)µ µ µ= .

FIGURE 5
THE MAX OF TWO BELL CURVES

AND ITS APPROXIMATION – METHOD 1

The graph shows the error distribution for

102− �
1µ � 102 and 102− �

1σ � 102 . The X-axis is the value

of
1µ , the Y-axis is the value of

1σ and the Z-axis is the

value of error between the piecewise uniform estimate (the
resolution values is 1000 for this case) and the BCC
estimate using the method

0 1 2max(,)µ µ µ= and

0 1 2max(,)σ σ σ= . A lower value for the Z-axis shows a

better fit. The values of x, y and z are discrete, but we set it
drawn with the parameter ‘by steps’, which allows Gnuplot
to connect every two points and give us a clearer figure. The
colourful platform map at the bottom of the coordinates
indicates the various values of error. From the label on the
right, we can see that from grey to yellow, the value of error
decreases.

FIGURE 6
THE MAX OF TWO BELL CURVES

AND ITS APPROXIMATION – METHOD 2

The graph shows the error distribution using the method

0 1 2max(,)µ µ µ=
 and 0σ = 1σ or 2σ (with bigger

µ
). Please note that the yellow areas in the platform map

do not imply that all the values of the error are zero, but
rather the errors are too small to distinguish from zero.

 When we observe the above three figures,
we can see that the errors produced by both
methods stay stable at a comparatively high
value in some areas. For instance, in Figure 6,
there are some areas with correspondingly high
error values and a sharp descent on error values
at

1µ �4. Why is there a distinct difference

among the values? We did an experiment using
method 2 to get the answer.
 We set the numbers of pieces of piecewise
uniform functions as 10, 100 and 1000 and got
the three piecewise uniform estimates of the
maximum of two bell curves. Then we used
method 2 to derive our approximation of the
maximum and obtained three error distributions.
We drew the three distributions in one graph
(Figure 7). We can see that the high-error areas
of the three distributions coincided with each

TABLE 2
THE COMBINATION METHODS OF GETTING MAXIMUM OF TWO BELL CURVES

The table shows the situation when we use different combination methods to get the maximum of two bell curves at the same
resolution value. We set

0 1 2max(,)µ µ µ= in all the methods.
1µ And

1σ both take values from 52− to 52 . Since we use the

standard bell curve as one input and
1µ >0,

0σ =
1σ or

2σ (with bigger µ) and
0 1 2σ σ σ= × are the same method in this case.

Despite this, the first two combination methods are the best two methods we got. The combination methods we choose are rough
hypotheses based on Figure 4. We estimate the output parameters according to the location and shape of the Agrajag approximation
curve. We calculated the average error of each method to compare how good these combination methods are.

other. But since the three distributions used
different resolution values, which means that
the precisions of the three calculations are
different and there should be a minimum
difference on the error values with different
numbers of pieces. While in some areas, the
value is almost unchanged, which means the
method we used did not get a correct result in
these areas. We tested all the methods we used
in our experiment and could not find a
completely satisfactory method.

FIGURE 7

THE COMPARISON OF COMBINATION METHOD 2
WITH DIFFERENT RESOLUTION VALUES

The graph provides us the comparison of error distributions
when we separately take the number of a pieces in
piecewise uniform estimate as 10, 100 and 1000. Here the
method is

0 1 2max(,)µ µ µ= and
0σ =

1σ or
2σ (with

bigger µ).

 In this case, we could use our perfect

parameters method stated in Section 3 to
facilitate fine adjustments on our approximation
functions.

We derive the perfect parameters
pµ and

pσ

in Agrajag and try to approximate them in terms
of

1µ ,
2µ ,

1σ and
2σ . Then the combination

function we aim for turns to (,)p pbc µ σ =

bc(
1 2 1 2(, , ,)fµ µ µ σ σ ,

1 2 1 2(, , ,)fσ µ µ σ σ)

1 1 2 2((,), (,))F bc bcµ σ µ σ .

 We fix one parameter, such as
1σ , then use

some function to describe the relation between

pµ and
1µ . To simplify the problem, we use

linear function here, namely
1p a bµ µ= × + . Then

we get sets of a and b corresponding to different

1σ value. Figure 8 gave us the linear

approximation when
1σ = 0.5. Then we could

have the linear function of
1σ in terms of a and

b. So we finally get the function of
pµ in terms

of
1µ and

1σ (see Figure 9).

FIGURE 8
THE LINEAR APPROXIMATION OF

pµ

The red line is the real data of

pµ and the green line is our

approximation using the linear function

10.99 0.24pµ µ= × + . In this case,
1σ is fixed to 0.5. In

this figure, the linear approximation achieved a good result,
especially in the upper part of the curve.

 FIGURE 9

THE APPROXIMATION OF
pµ IN TERMS OF

1µ AND
1σ

In this graph, the red surface is the real perfect

pµ surface

and the green surface is our approximation of
pµ in terms

of
1µ and

1σ . We can see in this figure, the two surfaces do

not coincide in all the areas, which means that we still need
to do some adjustment during the procedure of the linear
approximation. We could change parameters of the linear
functions or use non-linear functions to do the
approximation.

 In the above example, only using linear
approximation seems to get a good result.
However, in most cases, linear functions alone
cannot achieve a satisfactory result. For
example, this time we fix

1µ to 15.5, then we

use a linear function of
1σ to approximate

pσ

(see Figure 10). There is a big gap between the
curve and the approximation. After drawing the
difference curve, based on the curve shape, we
used different compensation to approximate it.
The choices of exponential or other functions
were made by our experience and the

parameters of those functions were chosen by
fitting the curves gradually. Figure 11 shows the
result after adding the exponential
compensation. The error between the real
perfect values and our approximation is reduced
appreciably. We could repeat the above
procedure until the result reaches the acceptable
range.

FIGURE 10
THE LINEAR APPROXIMATION TO

pσ

IN TERMS OF
1σ WHEN

1µ IS FIXED

In this graph, we fixed

1µ = 15.5 and used a linear function

of
1σ to approximate

pσ . The green line is our

approximation, whereas the red curve is the real
pσ data.

We can see the lower part of the curve dropped remarkably.
So only using linear approximation does not produce a
satisfactory result.

FIGURE 11
THE APPROXIMATION OF

pσ IN TERMS OF
1σ

AFTER ADDING EXPONENTIAL COMPENSATION

In this figure, the red curve is the real

pσ data. The green

curve is our approximation using linear function plus some
exponential compensation. The blue curve is the error
between the real data and our approximation, which is quite
flat to the naked eye. Compared to Figure 10, we can see
that our improved approximation method achieved a much
better result. If we require more precise result, we could add
more compensation to the method.

FIGURE 12
THE APPROXIMATION OF ‘A’ IN TERMS OF

1µ

In this graph, the red surface is the real perfect ‘a’ surface
and the green surface is our approximation of ‘a’ in terms of

1µ . There is a gap between the two curves in the area when

1µ is relatively small. We could still use some
compensation function to erase it. But in this case, the
absolute value of error is acceptable. So we chose to keep
the form of the approximation function simpler.

We applied the above procedure to different

1µ values and found that
pσ could always be

approximated by the function f(
1σ) in the form

of f(
1σ) = a*

1σ +b-exp(-
1σ /d) and the

parameters a, b, c and d vary regularly along the
values of

1σ . So we present the parameters a, b,

c and d in term of
1µ separately. Figure 12

shows the situation when we approximate the
parameter a using a function of

1µ .

After deriving all the four functions of
approximating the parameters a, b, c and d in
term of

1µ , we substitute them into the perfect

function
pσ = f(

1σ). Then we have the final

approximation function of
pσ in terms of both

1µ and
1σ . We repeat the procedure to get the

approximation function of
pµ , which is more

precise than the result in Figure 9.

5. Use Case
After deriving the fundamental combination
functions for runtime, we apply the BCC to
some use case (Figure 13), which can be
abstracted using our combination functions
(Figure 14).

We use Agrajag results as the gold standard
values against which to evaluate our BCC.
Figure 16 shows the difference between the
standard values and our approximation values.
Through calculating the runtime of the whole
workflow, we could:
(1) Do evaluations on the performance of the
workflow;

(2) Provide measurement values for e-Scientists
to make decisions on whether to use the
workflow or not.

FIGURE 13
EVALUATION USE CASE

This is an example workflow for creating population-based
"brain atlases", comprised of procedures, shown as orange
ovals, and data items flowing between them, shown as
rectangles. More details of the workflow can be found in
http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceC
hallenge.

FIGURE 14
ABSTRACTED WORKFLOW USE CASE

This graph shows the abstract structure of the workflow
using our fundamental combination functions. In this case,
the workflow contains only the structures of ‘Seq’ and
‘Para_All’, so only ‘sum’ and ‘max’ are concerned.

FIGURE 15
APPROXIMATION OF RUNTIME

The graph presents the runtime of the workflow in Figure 13.
In this graph, the blue curve shows the Agrajag values,
namely, the standard values; while the green curve is our
approximation values. Due to the low resolution, the
difference is acceptable. If we raise the resolution, the
advantage of the BCC will be obvious. It will take much
less time to achieve the values.

6. Future Work
In Section 3~5, we gave the methodology and
some experimental results of the BCC, and also
applied it to certain use case. The next step is to
complete the BCC by finishing the rest of the
fundamental combination functions. Then we
will find real data to do more evaluation. After
that, we will consider extend the BCC by
importing Log-Normal or other distributions to
describe the values more precisely. We may
also embed the extended BCC to some
frameworks to enhance their functionalities of
prediction and evaluation.

References
[1] Foster,I., Kesselman,C., The Grid: Blueprint
for a New Computing Infrastructure, Morgan
Kaufmann Publishers, 1999
[2] Smarr, L., Chapter 1. Grids in Context, in
The Grid 2, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2003
[3] Hillston, J. A Compositional Approach to
Performance Modelling 1995
[4]http://www.statisticalengineering.com/central
_limit_theorem.htm
[5]http://mathworld.wolfram.com/NormalSumD
istribution.html

