An Ontology-Based Conceptual Mapping Framework
for Translating FBPML to the Web Services Ontology

Gayathri Nadarajan and Yun-Heh Chen-Burger
Centre for Intelligent Systems and their Applications (CISA)
School of Informatics, University of Edinburgh, U.K.
G.Nadarajan@sms.ed.ac.uk, jessicac@inf.ed.ac.uk

Abstract

This paper presents an ontology-based conceptual map-
ping framework that translates a formal and visually rich
business process modeling (BPM) language, Fundamental
Business Process Modelling Language (FBPML) to a Se-
mantic Web-based language, the Web Services Ontology
(OWL-S). The translation aims to narrow the gap between
Enterprise Modelling methods and Semantic Web services,
thus bringing the two communities closer. Another signif-
icant contribution of the translation is that it allows more
mature technologies such as BPM methods to be utilised
within emerging fields that are constantly evolving, such as
the Semantic Web. The framework is divided into a data
model translation and a process model translation. An im-
plementation and an evaluation of the process model trans-
lation are demonstrated and discussed.

1. Introduction

The need for more sophisticated Web-based support
tools has become apparent with the fast advancement of
the Web and the Semantic Web vision [3]. Business-to-
Business (B2B) Electronic Commerce is fast becoming the
most important application area of Semantic Web technol-
ogy in terms of market volume [2]. Enterprise Modelling
(EM) methods, on the other hand, are mature, established
procedures that are commonly used as an analysis tool
for describing and redesigning businesses by entrepreneurs.
They have been well recognised for their value in provid-
ing a more organised way to describe complex, informal
domain [6].

For organisations with business goals, the automation
of business processes as Web services is increasingly im-
portant, especially with many business transactions taking
place within the Web today. The existence of established
EM methods, such as Business Process Modelling (BPM)

methods, suggests that they could be exploited by emerg-
ing technologies such as Semantic Web services to provide
a more mature framework incorporating both business- and
Web application-specific technologies. In a wider context
this aims to bring business-oriented and technical-oriented
communities closer in order to achieve common organisa-
tional goals.

2. Background
2.1. FBPML

The Fundamental Business Process Modelling Lan-
guage, FBPML [8] was designed to support today’s ever
changing workflow environment that meets diversified re-
quirements. It is an inherited, specialised and combined
version of several standard modelling languages. In par-
ticular, FBPML adapts and merges two established process
languages; Process Specification Language (PSL) [16] and
Integrated Definition Method (IDEF3) [11] by incorporat-
ing the visual capabilities of IDEF3 and the formal seman-
tics for process modelling concepts provided by PSL.

The main aim of FBPML is to provide support for vir-
tual organisations which are becoming more and more per-
vasive with the advancement of Web technology and ser-
vices. It ultimately seeks to provide distributed knowledge-
and semantic-based manipulation and collaboration. Most
importantly, people with different responsibilities and capa-
bilities could work together to accomplish tasks and goals
without technological or communication barriers caused by
the differences in their roles.

FBPML can express business processes in conventional
first order predicate logic. It has two sections to provide
theories and formal representations for describing data and
processes; the Data Language and the Process Language.
The FBPML Data Language (FBPML DL) [5] is first-
ordered. The syntactic convention that has been used in
Prolog has been adopted for its representation. It provides

definitions for concepts, functions, logical quantifications,
predicates and meta-predicates. The Process Language is
both visual and formal, thus it provides an intuitive repre-
sentation and the same convention for syntax as the Data
Language.

Annotation: Annl.ilall.on:
Navigation
Idea Note
Note
Primitive
Activity Activity
HP-ID HP-ID

Precedence Link
Activity A > Activity B

(Looping enabled)

1-a 2-b

Synchronisation Bal
Activity G ynchronisation Sar Activity D

3-c 4-d

Figure 1. FBPML visual notation.

2.2. OWL-S

OWL-S [10] is a Web service ontology written in the
Web Ontology Language (OWL) [12] extended with the Se-
mantic Web Rule Language (SWRL) [14]. Its main aim
is to describe Web services in machine-processable forms.
OWL-S markup of Web services facilitates the automation
of Web service tasks, including automated Web service dis-
covery, execution, composition and interoperation.

Two other Semantic Web-based languages that act as
competitors to OWL-S are Business Process Execution
Language for Web services (BPEL4WS) [4] and Web Ser-
vices Modelling Ontology (WSMO) [15]. BPEL4WS, de-
veloped earlier than OWL-S, was not selected for the map-
ping framework because it does not possess the structural
similarity that OWL-S has with FBPML. The distinction
between the data and process schemas in OWL-S has been
one of the major contributing factors for choosing it over
the other two. WSMO, on the other hand, is a newer tech-
nology than OWL-S. Although its framework is quite ex-
tensive, many of its aspects are still under development and
it is therefore unclear how a mapping between FBPML and
this language could be carried out. Beside the reasons men-
tioned above, OWL-S is also fast becoming the de facto
standard for the composition of Semantic Web services,
therefore it is the most appropriate Semantic Web based lan-
guage to work with.

3. An Ontology-Based Conceptual Mapping
Framework

A conceptual mapping framework was devised to trans-
late FBPML to OWL-S, motivated by the fact that both
languages have a clear separation between their data and
process schemas. FBPML'’s data model is described in the
FBPML Data Language while OWL-S is described in OWL
and SWRL. FBPML’s process model is described by the
FBPML Process Language (FBPML PL), while OWL-S
contains its own classes to describe its process model. Thus
the mapping framework has been divided into a data model
part and a process model part. The two clearly defined map-
ping parts constitute the main essence of this work.

The data and process models of each language are rep-
resented using ontologies. The ontology diagrams for
FBPML data and process models were based on the Ad-
vanced Knowledge Technologies (AKT) Support Ontology
from the AKT Project [1]. By using a semantic representa-
tion of the data and process models, the translation is con-
ducted with accordance to mapping principles that are out-
lined in the following section.

4. Mapping Principles

We have opted to take the following high level mapping
principles [7] to translate concepts, relations and processes
described in FBPML to OWL-S:

1) One-layered parent-tracking translation. This mecha-
nism proposes that the mapping and tracking of relations
between FBPML or OWL-S classes is only recorded at one-
layer; the immediate parent level. The grandparent and sib-
ling classes may be derived via those links. This mechanism
is directional. This resembles the way an ontology is repre-
sented, i.e. the links are made explicit between a child and
its immediate parent, which will allow relations between
non-parent-child nodes to be derived from it.

2) The use of two types of links (subclass-of and is-related-
t0). In a FBPML or OWL-S ontology, the only two links
that are used between the classes are subclass relationships
that link a child to its parent and the is-related-to link which
is more general; represented as a dashed link between two
classes with the relationship name labeled on the link.

5. Data Model Translation
5.1. Procedure

The mapping of data models between FBPML and
OWL-S involves the translation of representations of con-
cepts (or classes), instances (of the concepts) and the rela-
tionships between the concepts and instances from FBPML

DL to OWL. It also entails the translation of representations
of properties and restrictions (or constraints) from FBPML
DL to OWL and SWRL. The procedure for data model map-
ping could be summarised in the following steps [17]:

1) Pre-processing (if any). E.g. organise file into Prolog
readable syntax.

2) Mapping of ontologies.

- Mapping of concepts.

- Mapping of instances.

- Mapping of relations (between concepts).

- Mapping of properties and restrictions (of concepts).

3) Mapping for rules/axioms.

The devised data model translation encompassed the
mapping of concepts, instances, relations and properties.
Restrictions and rules are expressed in OWL using SWRL,
which is currently being extended towards first-order logic
(FOL) expressivity. Thus it is still unclear how a translation
could be performed between FBPML DL and SWRL FOL.

5.2. Ontologies of the Data Models
The data model of FBPML and OWL-S are represented

semantically using ontology notation, as described by Fig-
ure 2 and Figure 3.

FBPML Concept

—

Instance Instance
of Class of Relationship

Property

hasRelationship

"""" Instance

instancef haslnstance ~ ~ < _ ar
Atrbute ~a S.al

Abstract Concrete Instance Class Class Instance
Class Class Atribute Property Relationship Relationship

S35~ ~ - _hasClassProperty

7 ~7

Figure 2. Ontology notation for FBPML's data
model.

Applying the mapping principles to the derived ontolo-
gies, a class in FBPML is mapped to a class in OWL-S, an
instance of a class in FBPML is mapped to an instance of
a class in OWL-S and a relationship in FBPML is mapped
to a relationship in OWL-S. The following section provides
the syntax for the translation from FBPML DL to OWL.

5.3. Mapping of Concepts
Following the Semantic Web layering approach, OWL

is an RDF-based language (which is based on XML) that
utilises tags and tree-like structures for its representation,

OWL Concept

hasObject

~==o] mstance [~ Eropery Relationship | o
of Class T~ N Restriction

. ~
Class [instanceot | ofClass Lo __ O AR
T hasDatatype SZ'~ < ARSI
------ ! ' Propert DU R o
hasClassProperty ;" == =4 o _ pery AN R . S
’ [IEN A D <

.
N N
¢ descrivedBy 1 Class Object Datatype | has N has™

Property Property Property Domain Range
rdtabout N I

Figure 3. Ontology notation for OWL-S’s data
model.

disjoint inverse
With Of

Table 1. Mapping of classes and instances
between FBPML DL and OWL

Concept FBPML OWL

Concrete concrete_class(<owl:Class

Class Name,Description, rdf:ID="ClassName">
Example,Rules, <rdfs:comment>A com-
CrossReferences, ment</rdfs:comment>
ObjectAttributes) </owl:Class>

Abstract abstract_class(<owl:Class

Class Name,Description, rdf:ID="Abstract-
Example,Rules, ClassName">
CrossReferences, <rdfs:comment>A com-—
ObjectAttributes) ment</rdfs:comment>

</owl:Class>

Instance instance_of(<ClassName
InstanceName, rdf:ID="Instance
ClassName) Name" />

whereas FBPML DL is first-ordered. In the following sec-
tion, syntax for concepts, instances and relations in FBPML
DL and their corresponding translations in OWL are pro-
vided. The mapping between the classes (concepts) and in-

stances (objects) could be given directly as illustrated by
Table 1.

5.4. Mapping of Relationships

Binary relationships can be divided into three types in
the context of the data model translation; those between
two classes, those between two instances of a class and
those between an instance of a class and a class. As some
languages prefer to use certain conventions for specifica-
tion, it should be clarified that properties are relations, just
as objects are instances. For example, OWL specifies re-

lations using the elements owl:DatatypeProperty and
owl:0bjectProperty. Thus an instance-to-instance re-
lationship in FBPML (instance_rel/3) is translated to an
object property in OWL while an instance-to-class rela-
tionship in FBPML (instance_att/3) is mapped to an OWL
datatype property. A class property in FBPML is mapped
to a class property in OWL. Table 2 provides the syntax
for the translation of relationships from FBPML DL to
OWL. The mapping procedure for relationships is slightly

Table 2. Mapping of relationships between
FBPML DL and OWL

Relation- FBPML OWL

ship

Class-to- class_rel(<owl:Class

Class Relation, rdf:about="#Classl1">

Relation- Classt, <owl:Relation rdf:re-

ship Class2) source="#Class2"/>
</owl:Class>

Instance- instance_rel(<owl:ObjectProperty

to- Relation, rdf:ID="Rel">

Instance Instance1, <rdfs:domain

Relation- Instance?2) rdf:resource="#0bj1l"/>

ship <rdfs:range
rdf :resource="#0bj2" />
</owl:0ObjectProperty>

Instance- instance_att(<owl:DatatypeProperty
to-Class Instance, rdf: ID"Rel"/>
Relation- AttributeName, <rdfs:domain
ship AttributeValue) rdf:resource="#0bjl"/>

<rdfs:range rdf:re-
source="&xsd;string"/>

</owl:DatatypeProperty>

more complicated, as FBPML DL does not have a sepa-
rate predicate to explicitly describe a particular relation-
ship, whereas OWL provides elements to differentiate be-
tween object and datatype properties. Thus, to perform the
translation, one has to extract the relationship name from
the class or instance relationship. An obvious difference
between FBPML DL and OWL is that in OWL, all dis-
tinct objects (classes, instances, data types, etc) have unique
Uniform Resource Identifiers (URI), which avoids ambigu-
ity when referring to objects with the same name over the
Web but may not be equivalent. FBPML is a BPM lan-
guage which is, at present, not directly compatible with Web
services, thus it does not support URI based naming con-
ventions. However, a default URI (such as a projects local
URL) could be used as the base URI when the translation
takes place.

6. Process Model Translation

The process model translation entailed the mapping be-
tween FBPML PL and OWL-S. FBPML PL is both visual
and formal. Some of the process elements of FBPML PL
are contained in Figure 1. A process model described in
FBPML is made up of Main Nodes, Junctions, Links and
Annotations. The main nodes are Activity (process), Prim-
itive Activity, Role and Time Point. Links place temporal
constraints on process execution and include Precedence
Links and Synchronisation Bars. Junctions connect multi-
ple activities, control the initiation and finishing of parallel
processes and define their temporal constraints. The four
types of junctions in FBPML are Start, Finish, And and Or.
And and Or junctions are most commonly used in Split and
Joint contexts and combinations of split and joint constructs
are also used to represent more complicated models [8].

OWL-S is made up of four main classes; for the pur-
pose of the process model translation, a subclass of the
Service Model, the class Process was further exam-
ined. The ontology diagram for this class is given by Fig-
ure 5. The straight-lined arrows denote subclass-of links
while the dotted-lined arrows denote is-related-to links.

The primitives in FBPML PL were mapped to the prim-
itives in OWL-S. Several observations were made from
the mapping of primitives between their process elements.
In FBPML, a role is a responsibility in context; usually
in the form of a Provider or a Requester. In OWL-
S the Participant instances include TheClient and
Thus the Requester role corresponds to
TheClient in OWL-S and the Provider role corresponds
to Theserver OWL-S. FBPML’s notion of role is richer
and could refer to an individual, a group of people or soft-
ware components or a combination of the above [8].

TheServer.

FPULThing
<

Figure 4. Ontology notation for FBPML pro-
cess model.

The time ontology is used currently in limited

Figure 5. OWL-S process model ontology
[10].

ways in the process specification in OWL-S (de-
scribed in http://www.isi.edu/pan/damltime/time-
entry.owl). Although there is no OWL-S construct

that maps to FBPML’s Precedence Link, the order of
execution of processes within a sequence enclosed
by <objList:first>...</objList:first> and
<objList:rest>...</objList:rest>.

The And-Split is slightly modified (with barrier syn-
chronisation) to correspond to the OWL-S Split construct
where the processes that branch into the junctions are syn-
chronised. The OWL-S choice construct selects one pro-
cess out of many for execution, which is equivalent to the
Xor in FBPML, however, OWL-S does not provide a direct
equivalent for the Or construct. The Xor junction is sub-
sumed by the Or junction and has been utilised by more
recent applications to make it more explicit for automation
when bridging to (Semantic Web or Web service) methods
that do not have Or junctions.

Since OWL-S does not support the notion of trigger, the
combination of Precondition and Trigger in FBPML ap-
proximately map to Precondition in OWL-S. Postcondi-
tion in FBPML describes the effects and conditions which
must hold true after the execution of a process.

In FBPML, an Action is the actual execution behaviours
in a process model which can be stored in a repository.
The advantage of the action repository is that actions can
be reused and shared. Therefore an Action approximately
maps to OWL-S Atomic Process. A precise specifica-
tion of what it means to perform a process in OWL-S has
not been given yet. Table 3 summarises the mapping of the
primitives between FBPML PL and OWL-S process ontol-

ogy.

6.1. Methodology

After determining the matching primitives, the mapping
was followed through using simple process models consist-
ing of sequences, and junctions [13]. The procedure for

Table 3. Summary of mapping between
FBPML and OWL-S process primitives

Primitive FBPML OWL-S

Main Nodes Activity Composite Process
Primitive Activity Atomic Process
Role Participant
Time Point See Note

Links Precedence Link (part of) Sequence
Synchronisation Bar ~ See Note

Junctions Start See Note
Finish See Note
And-Joint Split-Join
Or-Joint See Note
And-Split Split
Or-Split Repeat-While,

Repeat-Until

Xor-Junction Choice

Annotations Idea Note See Note
Navigation Note See Note

Process Precondition Precondition

Components Trigger See Note
Postcondition Effect
Precondition, Trigger ~ Input/Output

and Postcondition

Atomic Process
Conditional Action If-Then-Else

Note: Limited (or no) equivalent convention provided by

OWL-S.

Action

the mapping of typical (simple) models involved breaking
down each process into a composite process, and consider-
ing a single construct to be translated, such as sequence,
Split, Split-Join or Choice. The whole composite
process consists of a sequence of at most two processes.
This component based model translation could be incre-
mentally extended to cater for more complex models via a
layered model translation. When the procedure is refined
to cater for all process models, a general methodology for
the process model mapping was achieved (refined from [9]).

1. Decompose FBPML process model in top-down
order.

2. Translate model into a sequence process in OWL-S.

3. All activities between start and finish nodes are compos-
ite components of the sequence process.

4. Exhaustively decompose each composite component
into a sequence of its basic process component, until as far
as a simple process construct.

6.2. A Working Example

Top Sequence | A I—.| XOR-XOR |—0| £ |
process. I

AND-AND

(5

Split-Join Process I—
AND-AND @
I'II
—

Figure 7. The Decomposition of the FBPML
Process Model given by Figure 6.

To illustrate the application of the methodology above, a
more complex FBPML process model which incorporated

Choice Process

a combination of sequences, junctions and composite XOR-XOR
processes was translated to OWL-S.

Figure 6. A FBPML Process Model made up
of sequences, junctions and composite pro-
cesses.

FBPML formal notation:
start(A).
activity(8,Xor-Xor,Trig1,Precond1,Postcond1,Act1,Desc?2).

The full translated syntax in OWL-S is provided in [13].
Due to space limitation, only relevant parts of the syntax
that constitute the modelling of the process are shown and

— -
N
=z = =

junction(Xor,A,[And-And,D]). (3 discussed

junction(Xor,[And-And,D],E). 4 ’

! Lo (,L ,]) “) <process:CompositeProcess rdf:ID="Complex Model">

primitive_activity(1,E,Trig2,Precond2,Postcond2,Act2,Desc2). (5)

finish(E). 6

I{,() . () <process:Sequence>

activity(9,And-And, Trig3,Precond3,Postcond3,Act3,Desc3). (7) y as

. . process:components

unction(And,J1,[B, C)). 8

! i ([D () <process:ControlConstructList>

junction(And,[B, C],J2). 9) <obsList:Eirsts

primitive_activity(2,A,Trig4,Precond4,Postcond4,Act4,Desc4). (10)) ’ bort 4f DA
rocess:Perrorm r M =

primitive_activity(3,B,Trig5,Precond5,Postcond5,Act5,Desc5). (11) f ar wians
rocess:process r .resource=

primitive_activity(4,C, Trigé, Precond6, Postconds,Act6,Descé). (12)) Dpt o P - oo :

- ata ow an arameter inaings —-—
primitive_activity(5,D,Trig7,Precond7,Postcond7,Act7,Desc7). (13) g

Assumptions and Interpretations:

e The ordering of junctions is from top-most (outer) to
downmost (inner). For example the Xor-Xor definition
(formulae 3-4) appears before the And-And definition
(formulae 8-9).

e The branches coming out and going into the Xor junc-
tions are called J1 and J2 respectively. Following the
methodology provided previously, the process model
could be decomposed in the following manner:

e The whole process is a composite process made up of a
sequence consisting of atomic process A, a composite
process containing both the outer most Xor junctions,
called XOR-XOR, and atomic process, D.

e The Composite process XOR-XOR is a Choice pro-
cess of either atomic process D ora Split-Join of B
and C (the AND-AND junction).

The order of execution, incorporating OWL-S constructs, in
prefix notation, is given as the follows:
Sequence (A,Choice(Split-Join(B,C),D),E).

<objList:first>
<process:Perform rdf:ID="Xor-Xor">

<process:process rdf:resource="#Xor-Xor">

<process:ControlConstructList>
<obijList:first>
<process:Perform rdf:ID="E">

<process:process rdf:resource="#E">

<objlList:rest rdf:resource="&objList;#nil"/>
</process:ControlConstructList>
</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>

<-- End of Composite Process: Complex Model -->

<process:CompositeProcess rdf:ID="Xor-Xor">
<process:composedOf>

<process:Choice>

<process:components>

<process:ControlConstructBag>

<objList:first>

<process:Perform rdf:ID="And-And">
<process:Perform rdf:ID="D">
<objlList:rest rdf:resource="&objList;#nil"/>
<-— End of Xor-Xor —-->

<process:CompositeProcess rdf:ID="And-And">
<process:composedOf>
<process:Split-Join>
<process:components>
<process:ControlConstructBag>
<objList:first>

<process:Perform rdf:ID="B">
<process:Perform rdf:ID="C">
<-— End of And-And -->

From the application of the conceptual mapping method-
ology on the process model components, it can be seen
that unlike the data model translation, the process model
translation is less straightforward and poses some difficul-
ties and challenges. This is interesting as it brings forth the
capabilities and limitations of the two process model lan-
guages. It also highlights the differences between FBPML
and OWL-S that were not revealed by the data model trans-
lation. FBPML PL is richer as it has both visual and for-
mal representations for describing process model execution.
The FBPML process diagram is intuitive and promotes hu-
man reasoning, OWL-S’s RDF-based tags, on the contrary,
aim to provide improved machine-processability. This ac-
centuates the difference between languages in the Business
Process Modelling domain and the Semantic Web services
domain.

7. Implementation

A process model translator was developed using SICStus
Prolog 3.10.1 on (Red Hat) Linux 9, the design was based
on parsing first-order logic (Horn) clauses into hierarchical
OWL and RDF tree-like tags. The general algorithm was
based on process decomposition as outlined in the previous
section. The initial implementation was based on specific
simple procedures which were built up incrementally as the
complexity of the process model increased. The main aim
of the process model translator was to cater for any process
model described in FBPML PL to be converted into OWL
syntax. As pointed out in the previous section, the process
model translation does not encompass all the possible prim-
itives and process constructs, and is thus limited. Hence

Mapping Engine.

Predsfined
predicates. Library
and rules

Data
Model

Figure 8. An Architectural Overview of the
FBPML to OWL-S Mapping Engine.

the system was implemented to perform the translation as
closely, accurately and directly as possible, taking into ac-
count some viable assumptions and interpretations.

The system implemented encompassed six types of
translations, namely simple Sequence, And-Split, And-
Joint, Xor-Split, And-And combination and complex layered
model with any of these combinations. The overall architec-
ture diagram is given by Figure 8.

8. Evaluation

The conceptual mapping framework and process model
translator implementation demonstrated that most of the
data model components could be translated directly, while
the process model components, in particular the junctions,
could only be partially (or not) translated. A constituent
of a FBPML process model that could not be translated is
recorded in the OWL-S comment construct.

The analysis suggests that the translation between
FBPML and OWL-S is both partial and incomplete. Par-
tial because there are some elements that exist in FBPML
but not in OWLS (e.g. Trigger, Or) and incomplete because
some of the translation cannot be conducted due to lack of
knowledge about an element that is still in progress (e.g.
rules described in SWRL FOL). The reason for this problem
lies in the fact that OWL-S uses programming-like control
constructs as its basic building blocks, which is inadequate
for all process execution modelling [9].

The implementation of the process model translator, al-
though limited, decomposes the sequences and combination
junctions in a methodical manner. The problem will arise
if loops, which may cause partly overlapped processes, are
added to the process model. When this happens, the pro-
cess model may not be decomposed, thus causing mapping
problems. Thus, we can conclude that the formal mapping

between FBPML and OWL-S is very challenging and will
require more insight and exploration before a reasonable
mapping framework could be formulated. The essence of
the analysis is that a much thorough understanding for both
languages has been gained and this can contribute as the
groundwork towards future directions.

9. Conclusion

We have demonstrated a conceptual mapping framework
between two formal languages, FBPML and OWL-S. The
former is traditionally used in the context of business pro-
cess modelling and the latter in the domain of Semantic Web
services. We have also attempted to automate the transla-
tion of the process modelling aspect between the two lan-
guages. The conceptual mapping exercise and implementa-
tion have brought to light some vital differences between the
constructions of the two languages which suggest that the
translation between them is partial. Furthermore, the speci-
fications of some aspects of OWL-S are still in progress and
hence, the translation is not complete.

A complete formalism for rules and conditions within
OWL would allow for some of the gaps between FBPML
and OWL-S to be filled. As the future for OWL-S re-
mains unclear, current effort towards converging OWL-S
with WSMO could be a positive step towards the devel-
opment of a stronger and more stable global standard for
Semantic Web services.

As a closure, narrowing the gap between business pro-
cess technologies and Semantic Web services has opened a
window of opportunity for the more established BPM meth-
ods to be utilised by the evolving Semantic Web technolo-
gies. It is hoped that the growth of Semantic Web standards
such as OWL-S could be strengthened and enriched by ma-
nipulating more mature technologies such as BPM meth-
ods.

References

[1] AKT. Advanced Knowledge Technologies IRC Project Tech-
nology Showcase. Aberdeen, Edinburgh, Open, Sheffield,
Southampton Universities, 2002. http://www.aktors.org.

[2] G. Antoniou and F. vanHarmelen. A Semantic Web Primer.
MIT Press, Cambridge, MA, USA, 2004.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web. Scientific American, 284(5), May 2001.

BPEL4WS. Business Process Execution Language

for Web Services Version 1.1. 1IBM, BEA Systems,

Microsoft, SAP AG, Siebel Systems, 2003. http://www-

128.ibm.com/developerworks/library/specification/ws-
bpel/.

Y.-H. Chen-Burger. Informal semantics for the fbpml data

language. Technical report, Informatics Research Reports,

School of Informatics, University of Edinburgh, 2002.

[4

—

[5

—

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

Y.-H. Chen-Burger and D. Robertson. Automating Business
Modelling: A Guide to Using Logic to Represent Informal
Methods and Support Reasoning. Book Series of Advanced
Information and Knowledge Processing, Springer Ver-Lag,
2005.

Y.-H. Chen-Burger and A. Tate. Mapping principles be-
tween ix and compendium. Technical report, Informatics
Research Report, EDI-INF-RR-0167, School of Informat-
ics, University of Edinburgh, U.K., 2003.

Y.-H. Chen-Burger, A. Tate, and D. Robertson. Enterprise
modelling: A declarative approach for fbpml. In Proceed-
ings European Conference of Artificial Intelligence, Knowl-
edge Management and Organisational Memories Workshop,
2002.

L. Guo, Y.-H. Chen-Burger, and D. Robertson. Mapping a
business process model to a semantic web service model.
In Third IEEE International Conference on Web Services
(ICWS04), 2004.

D. Martin(editor). Owl-s semantic markup for web services,
release 1.1, 2004. http://www.daml.org/services/owl-s/1.1/.

R. Mayer, C. Menzel, M. Painter, P. Witte, T. Blinn, and
B. Perakath. Information Integration for Concurrent Engi-
neering (IICE) IDEF3 Process Description Capture Method
Report. Knowledge Based Systems Inc. (KBSI), sept 1995.

D. McGuinness and F. van Harmelen. OWL Web Ontol-
ogy Language. World Wide Web Consortium (W3C), 2004.
http://www.w3.org/TR/owl-features/.

G. Nadarajan. Mapping fundamental business process mod-
elling language to a semantic web based language. Mas-
ter’s thesis, School of Informatics, University of Edinburgh,
UK., 2005.

P. Patel-Schneider. Semantic Web Rule Language First-
Order Logic (SWRL FOL). National Research Council of
Canada, Network Inference, and Stanford University, 2005.
http://www.w3.org/Submission/2005/01/.

D. Roman, H. Lausen, and U. Keller, editors. Web Service
Modeling Ontology (WSMO). WSMO Final Draft, 2005.
http://www.wsmo.org/TR/d2/v1.2/.

C. Schlenoff, A. Knutila, and S. Ray, editors. Proceedings of
the First Process Specification Language (PSL) Roundtable.
National Institute of Standards and Technology, Gaithers-
burg, MD, 1997. http://www.nist.gov/psl/.

J. Scicluna, R. Lara, A. Polleres, and H. Lausen. Formal
mapping and tool to owl-s. WSMO Working Draft, Dec.
2004.

