
Generic Models for Computational Effects

John Power 1

Laboratory for the Foundations of Computer Science, University of Edinburgh,
King’s Buildings, Edinburgh EH9 3JZ, Scotland

Abstract

A Freyd -category is a subtle generalisation of the notion of a category with finite
products. It is suitable for modelling environments in call-by-value programming
languages, such as the computational λ-calculus, with computational effects. We
develop the theory of Freyd -categories with that in mind. We first show that any
countable Lawvere theory, hence any signature of operations with countable arity
subject to equations, directly generates a Freyd -category. We then give canonical,
universal embeddings of Freyd -categories into closed Freyd -categories, characterised
by being free cocompletions. The combination of the two constructions sends a
signature of operations and equations to the Kleisli category for the monad on the
category Set generated by it, thus refining the analysis of computational effects
given by monads. That in turn allows a more structural analysis of the λc-calculus.
Our leading examples of signatures arise from side-effects, interactive input/output
and exceptions. We extend our analysis to an enriched setting in order to account
for recursion and for computational effects and signatures that inherently involve
it, such as partiality, nondeterminism and probabilistic nondeterminism.

Key words: Freyd -category, enriched Yoneda embedding, conical colimit
completion, canonical model

1 Introduction

The notion of Freyd -category has emerged over the past ten years as a sub-
tle generalisation of the notion of category with finite products. It allows
one to model environments in call-by-value programming languages contain-
ing computational effects, notably the λc-calculus [25,21,9], a variant of the

Email address: ajp@inf.ed.ac.uk (John Power).
1 This work is supported by EPSRC grant GR/586372/01: A Theory of Effects for
Programming Languages.

Preprint submitted to Elsevier Science 14 May 2005

call-by-value λ-calculus designed specifically to allow one to account for com-
puational effects . Starting with the notion of category with finite products,
one obtains the notion of a symmetric monoidal category by dropping insis-
tence upon the existence of diagonals and projections [10]: in such situations,
one usually speaks of a tensor product rather than a product, correspond-
ing to the relaxation from cartesian logic to linear logic. If one further drops
the insistence upon bifunctoriality of the tensor product, one obtains the no-
tion of a symmetric premonoidal category [25]. This corresponds logically to
keeping the terms of linear logic but putting fewer of them equal. Just as
one has cartesian closed categories and symmetric monoidal closed categories,
one can speak of closedness for a symmetric premonoidal category too [21].
Finally, if one reinstates the assumption of finite product structure but only
on a specified subcategory of a putative symmetric premonoidal category, one
has the notions of Freyd -category and closed Freyd -category [9]: we recall the
definitions in Section 2. In this paper, motivated by computational effects, we
further develop the theory of Freyd -categories.

Central to the idea of a computational effect is that of an operation: for global
state, one has lookup and update; for interactive input/output, one has read
and write; for nondeterminism, one has binary ∨; etcetera [16,17]. These op-
erations are subject to computationally natural, universally defined equations.
Gordon Plotkin and I have studied signatures of such operations extensively
(see [18] for a recent summary), and, together with other co-authors, have
begun to develop a theory of them (see also [3,4,13,15]). Every signature of
operations of countable arity subject to universally defined equations forms
a countable Lawvere theory L: this is a category with countable products to-
gether with structure that forces it to be generated, in a precise sense, by one
object, and it is essentially the clone generated by the signature. The first main
result of the paper, in Section 3, asserts that the structure of any countable
Lawvere theory L yields the structure of a Freyd -category on Lop. By virtue
of its construction, this Freyd -category is canonical.

We next seek to embed any small Freyd -category into a closed textitFreyd-
category, and to do so canonically. For this, we need a variant of the Yoneda
embedding [6]. If C is any small category, the Yoneda embedding Y : C −→
[Cop, Set] exhibits [Cop, Set] as the free cocompletion of C. If C has finite
products, it exhibits [Cop, Set] as the free finite product cocompletion of C.
And if C is symmetric monoidal, it exhibits [Cop, Set] as the free symmetric
monoidal cocompletion of C [5]. So we seek to adapt that group of results to the
setting of Freyd -structure. That requires some work as a Freyd -category is not
just a single category with structure, but rather involves a pair of categories
and an identity-on-objects functor J : C0 −→ C1. Thus we need an enriched
version of the Yoneda embedding [6].

For any cartesian closed (more generally symmetric monoidal closed) category

2

V , one can define a notion of a category enriched in V , or more briefly, a V -
category. In Section 4, we define enrichment and show that if V is the cartesian
closed category [→, Set], a V -category consists exactly of a pair of categories
and an identity-on-objects functor J : C0 −→ C1, i.e., the basic data for a
Freyd -category.

Any cartesian closed category V may itself be seen as V -category, and, under
reasonable size and completeness conditions, for every small V -category C,
one has a functor V -category [Cop, V] and a fully faithful V -functor Y : C −→
[Cop, V], providing a definitive notion of a V -enriched Yoneda embedding. In
Section 5, we describe the situation and characterise the various constructions
in the case of V = [→, Set].

If J : C0 −→ C1 is a small Freyd -category, it is not quite true that [Jop, V],
where V = [→, Set], has a non-trivial closed Freyd -structure, but there is a
natural factorisation of the enriched Yoneda embedding

C
Y ′

- D
I
- [Cop, V]

with I an inclusion of a full sub-V -category (Y ′ is necessarily fully faithful)
for which D has a canonical closed Freyd -structure, with Y ′ preserving Freyd -
structure. In Section 6, we show that one such factorisation is characterised
as the free cocompletion of C under conical colimits. It follows that for any
small Freyd -category, its free conical colimit completion as a [→, Set]-enriched
category has a canonical closed Freyd -structure, and the Yoneda embedding of
the Freyd -category into its free conical colimit completion preserves the Freyd -
structure and yields its free conical colimit completion as a Freyd -category, cf
the ad hoc but provably equivalent construction in [21].

Given a countable Lawvere theory, we have shown how to generate a canonical
small Freyd -category, and given a small Freyd -category, we have shown how
to embed it canonically into a closed Freyd -category. In Section 7, we con-
sider the combination. If one adds a minor additional level of sophistication to
the second construction, the combination allows us to recover the Kleisli con-
struction for the monad on Set corresponding to the countable Lawvere theory,
yielding Moggi’s monad for computational effects [11,12], but now satisfying a
universal condition and now with a systematic account of the operations that
generate the effect.

The added sophistication is as follows: if L is a countable Lawvere theory, it
follows that Lop has countable coproducts and the Freyd -structure distributes
over them. One can modify our analysis of free cocompletions to account
for such coproducts. Given a small category C with countable coproducts,
the free cocompletion that preserves the countable coproducts may be char-
acterised by the full subcategory CP (Cop, Set) of [Cop, Set] determined by

3

countable product preserving functors from Cop to Set; and if C is symmetric
monoidal, with tensor distributing over countable coproducts, the universal-
ity condition extends to account for symmetric monoidal structure too. That
can all be modified routinely, following the work of previous sections, to the
setting of Freyd -structure. If one does that, then starting with a countable
Lawvere theory L whose induced monad is denoted TL [19,24], the combined
construction yields the closed Freyd -category given by the canonical functor
J : Set −→ Kl(TL).

The above work impacts on the syntactic structure of programming languages.
Freyd -categories provide a sound and complete class of models for the first-
order fragment of Moggi’s λc-calculus [9,13,16,22]. So, given a signature, its
operations and equations form a countable Lawvere theory L, and Lop is a
canonical model of the first-order fragment of the λc-calculus together with
the signature of operations and its equations. It also models sum types and a
type of natural numbers, as well as satisfying a natural universal property. Our
canonical embedding of a Freyd -category into a closed Freyd -category shows
how to extend that model canonically to a model of the whole λc-calculus,
yielding a conservative extension result. Moreover, the adapted embedding re-
spects the semantics of the sum types and the type of natural numbers. So our
category theoretic analysis yields structure on the λc-calculus and signatures
for it, as well as suggesting extensions to it. We explain this through the course
of the paper as we develop our category-theoretic constructs.

Finally, we turn to recursion. Making more sophisticated use of enriched cat-
egory theory again, first by enriching in the cartesian closed category ωCpo
and then by allowing ωCpo to play the role of Set in the above analysis, all
of the above can be modified to account for recursion, cf [3,4]. In the enriched
setting, one must consider V -weighted colimits in an [→, V]-category where,
in the above, we considered conical colimits in an [→, Set]-category, and one
must replace countable products by countable cotensors. But otherwise, the
above body of theory enriches without fuss, yielding an extension of the above
to recursion and to effects that inherently involve recursion, such as partiality.
We explain the situation in Section 8.

This paper is a journal version of parts of the conference papers [22] and [23],
uniting and developing most of the main results therein. It extends the author’s
talk at the First Workshop on Pragmatics in Verona in 2003.

2 Freyd-Categories and Closed Freyd-Categories

In order to define the notions of Freyd -category and closed Freyd -category, we
must recall the definitions of premonoidal category, strict premonoidal functor,

4

and symmetries for them, as introduced in [25] and further studied in [21]. A
premonoidal category is a generalisation of the concept of monoidal category:
it is essentially a monoidal category except that the tensor need only be a
functor of two variables and not necessarily be bifunctorial, i.e., given maps
f : X −→ Y and f ′ : X ′ −→ Y ′, the evident two maps from X⊗X ′ to Y ⊗Y ′

may differ.

Example 1 Given a category C with finite products together with a specified
object S, define the category K to have the same objects as C, with K(X, Y) =
C(S × X, S × Y), and with composition in K determined by that of C. For
any object X of C, one has evident functors X ⊗ − : K −→ K and − ⊗X :
K −→ K extending the product in C, but they do not satisfy the bifunctoriality
condition above, hence do not yield a monoidal structure on K. They do yield
a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some
auxiliary definitions.

Definition 2 A binoidal category is a category K together with, for each
object X of K, functors hX : K −→ K and kX : K −→ K such that for each
pair (X, Y) of objects of K, hXY = kY X. The joint value is denoted X ⊗ Y .

Definition 3 An arrow f : X −→ X ′ in a binoidal category is central if for
every arrow g : Y −→ Y ′, the two composites from X ⊗ Y to X ′ ⊗ Y ′ agree.
Moreover, given a binoidal category K, a natural transformation α : G =⇒
H : C −→ K is called central if every component of α is central.

Definition 4 A premonoidal category is a binoidal category K together with
an object I of K, and central natural isomorphisms a with components (X ⊗
Y) ⊗ Z −→ X ⊗ (Y ⊗ Z), l with components X −→ X ⊗ I, and r with
components X −→ I ⊗ X, subject to two equations: the pentagon expressing
coherence of a, and the triangle expressing coherence of l and r with respect
to a.

Now we have the definition of a premonoidal category, it is routine to verify
that Example 1 is an example of one. There is a general construction that
yields premonoidal categories too: given a strong monad T on a category C
with finite products, the Kleisli category Kl(T) for T is always a premonoidal
category, with the functor from C to Kl(T) preserving premonoidal struc-
ture strictly: of course, any monoidal category, and hence any category with
finite products, is trivially a premonoidal category. That construction is fun-
damental, albeit implicit, in Eugenio Moggi’s work on monads as notions of
computation [11], as explained in [25].

Definition 5 Given a premonoidal category K, define the centre of K, de-
noted Z(K), to be the subcategory of K consisting of all the objects of K and

5

the central morphisms.

For an example of the centre of a premonoidal category, consider Example 1
for the case of C being the category Set. Suppose S has at least two elements.
Then the centre of K is precisely Set. In general, given a strong monad on
a category with finite products, the base category C need not be the centre
of Kl(T), but, modulo a faithfulness condition sometimes called the mono
requirement [11,25], must be a subcategory of the centre.

The functors hX and kX preserve central maps. So we have

Proposition 6 The centre of a premonoidal category is a monoidal category.

This proposition allows us to prove a coherence result for premonoidal cate-
gories, directly generalising the usual coherence result for monoidal categories.
Details appear in [25].

Definition 7 A symmetry for a premonoidal category is a central natural iso-
morphism with components c : X⊗Y −→ Y ⊗X, satisfying the two conditions
c2 = 1 and equality of the evident two maps from (X⊗Y)⊗Z to Z⊗ (X⊗Y).
A symmetric premonoidal category is a premonoidal category together with a
symmetry.

Example 1 is symmetric.

Definition 8 A strict premonoidal functor is a functor that preserves all the
structure and sends central maps to central maps.

One may similarly generalise the definition of strict symmetric monoidal func-
tor to strict symmetric premonoidal functor. This all allows us to define the
notion of a Freyd -category.

Definition 9 A Freyd-category is a category C0 with finite products, a sym-
metric premonoidal category C1, and an identity-on-objects strict symmetric
premonoidal functor J : C0 −→ C1.

Example 1 is one such. It follows from the definition of Freyd -category that
every map in C0 must be sent by J to a map in the centre Z(C1) of C1. So it is
generally safe to think of C0 as an identity-on-objects subcategory of central
maps of C1.

Definition 10 A Freyd-category J : C0 −→ C1 is closed if for every object X
of C0 (equivalently of C1), the functor

J(−×X) : C0 −→ C1

6

has a right adjoint X → −.

Example 1 is an example of this too if C is cartesian closed. It is proved but
only stated implicitly in [25] and it is stated explicitly in [9,22] that we have:

Theorem 11 To give a category C0 with finite products and a strong monad
on it, such that Kleisli exponentials exist, is equivalent to giving a closed Freyd-
category J : C0 −→ C1.

It follows that the class of closed Freyd -categories provides a sound and com-
plete class of models for Moggi’s λc-calculus [9,20]. Our definition of Freyd -
category yields a definitive notion of what one might mean by the first-order
fragment of the λc-calculus, making the class of Freyd -categories a sound and
complete class of models for its first order fragment [9]. The details are as
follows.

By the first-order fragment of the λc-calculus, we mean type constructors

σ ::= 1 | σ1 × σ2

and term constructors

e ::= ∗ | 〈e, e′〉 | πi(e) | let x = e in e′ | x

where x ranges over variables, ∗ is of type 1, with πi existing for i = 1 or 2, all
subject to the evident typing. There are two predicates: = and (−) ↓ for effect-
freeness. The rules for the latter say ∗ ↓, x ↓, if e ↓ then πi(e) ↓, and similarly
for 〈e, e′〉, and that definedness is closed under equality. The rules for = say
that = is a congruence, together with rules for the basic constructions and for
unit and product types. The rules are closed under substitution of effect-free
terms for variables. It follows from the rules for both predicates that types
together with equivalence classes of terms in context form a category, with a
subcategory determined by effect-free terms.

The let constructor is derivable in the full λc-calculus as (λx.e′)e. It follows
from our construction that the class of Freyd -categories provides a sound and
complete class of models for the first-order fragment of the λc-calculus just as
that of closed Freyd -categories provides a sound and complete class of models
for the full calculus.

7

3 From Countable Lawvere Theories to Freyd-categories

It is generally clear, given a computational effect, how to choose suitable op-
erations that generate it. For instance, in modelling nondeterminism, one typ-
ically starts with binary ∨; for global state, one typically chooses lookup and
update; and for interactive input/output, one considers read and write. It is
less clear what equations to impose as axioms, and that question deserves sys-
tematic treatment, cf [23]. But in particular cases, such as the above, there are
generally agreed computationally natural equations: for nondeterminism, one
demands associativity, commutativity and idempotence; for global state, one
demands the equations listed in Example 13; and for interactive input/output,
one typically demands no equations [14].

Equations typically hold between derived operations rather than between
primitive ones. For instance, to express associativity of ∨, one must be able
to speak of (x ∨ y) ∨ z, which is given by a derived ternary operation. So, we
seek a unified way in which to speak of the derived operations generated by a
signature. There are several equivalent ways to do that, and we shall use the
notion of countable Lawvere theory [3].

Let ℵ1 denote a skeleton of the category of countable sets and all functions
between them. So ℵ1 has an object for each natural number n and an object
for ℵ0. Up to equivalence, ℵ1 is the free category with countable coproducts
on 1. So, in referring to ℵ1, we implicitly make a choice of the structure of its
countable coproducts.

Definition 12 A countable Lawvere theory is a small category L with count-
able products and a strict countable-product preserving identity-on-objects func-
tor I : ℵop

1 −→ L.

Implicit in the definition is the statement that ℵop
1 and L have the same set

of objects. We typically write L for a countable Lawvere theory, with the
data given by I : ℵop

1 −→ L left implicit. Every signature of operations, with
arities either natural numbers or ℵ0, subject to universally defined equations,
freely generates a countable Lawvere theory. The arrows with domain n and
codomain 1 in that countable Lawvere theory are exactly the equivalence
classes of derived n-ary operations generated by the signature; an arrow with
domain n and codomain m consists exactly of m equivalence classes of derived
n-ary operations generated by the signature. And that generalises routinely
to ℵ0. Composition in the countable Lawvere theory amounts to a category
theoretic formulation of the notion of substitution.

Example 13 A signature for global state contains operations lookup : V al −→
Loc and update : 1 −→ Loc×V al, where Loc is a finite set of locations and V al
is a countable set of values [4,16]. These freely generate a countable Lawvere

8

theory by identifying the finite set Loc with its cardinality n and by identifying
V al with ℵ0, then freely allowing substitutions applied to instances of lookup
and update. So an arrow is a word of finite length but possibly infinite breadth
of copies of lookup and update. These operations are now subject to seven
equation schema, which, with lookup corresponding to the logical symbol l and
with update corresponding to u, can be expressed syntactically as

(1) lloc(uloc,v(x))v = x
(2) lloc(lloc(tvv′)v)v′ = lloc(tvv)v

(3) uloc,v(uloc,v′(x)) = uloc,v′(x)
(4) uloc,v(lloc(tv′)v′) = uloc,v(tv)
(5) lloc(lloc′(tvv′)v′)v = lloc′(lloc(tvv′)v)v′ where loc 6= loc′

(6) uloc,v(uloc′,v′(x)) = uloc′,v′(uloc,v(x)) where loc 6= loc′

(7) uloc,v(lloc′(tv′)v′) = lloc′(uloc,v(tv′))v′ where loc 6= loc′.

The countable Lawvere theory given by factoring out by these equations is the
countable Lawvere theory LS for global state.

Example 14 A signature for interactive input/output consists of operations
read : I −→ 1 and write : 1 −→ O, for countable sets I of inputs and O
of outputs [16,4]. Again, identifying I and O with ℵ0, these operations freely
generate a countable Lawvere theory that we call the countable Lawvere theory
LI/O for interactive input/output.

Exceptions work much as interactive input/output: the countable Lawvere
theory LE is freely generated by an operation raise : 0 −→ E for a countable
set of exceptions E [16,4]. Nondeterminism involves issues of partiality that
we do not treat in this section, but the heart of it is given by the free countable
Lawvere theory LN on a binary operation ∨ subject to equations for associa-
tivity, commutativity, and idempotence [16]. Of course, one can also consider
combinations of such effects [3,4].

Trivially, to give the strict countable-product preserving functor I : ℵop
1 −→ L

in the definition of a countable Lawvere theory is equivalent to giving a strict
countable-coproduct preserving functor J : ℵ1 −→ Lop. The category ℵ1 not
only has countable coproducts but also has finite products: these are given by
finite products of countable sets. The category Lop generally does not have
finite products, and the finite products of ℵ1 are generally not preserved by
J . But one can routinely check the following result:

Theorem 15 For any countable Lawvere theory L, the category Lop together
with the functor Iop : ℵ1 −→ Lop canonically support the structure of a Freyd-
category.

PROOF. Given a countable (possibly finite) set α and given a map in L,

9

say f : β −→ γ, we must define a map α ⊗ f in L from α × β to α × γ.
The set α× β is the sum of α-many copies of β, and similarly for α× γ. The
category Lop has countable sums, and countable sums are preserved by Iop.
So we define α ⊗ f : α × β −→ α × γ to be the sum in Lop of α copies of
f : the domain and codomain of this sum are as desired because Iop preserves
countable sums. This determines the rest of the data for a Freyd -structure,
and it is routine to verify that the Freyd -category axioms all hold.

This allows us to extend our analysis of the first-order fragment of the λc-
calculus at the end of Section 2 as follows.

Corollary 16 For any countable Lawvere theory L, the category Lop together
with Iop : ℵ1 −→ Lop is a model of the first-order fragment of the λc-calculus.

We call the countable Lawvere theory of Corollary 16 the canonical model
determined by the computational effect associated with L.

Next consider exactly what one might mean by an interpretation of the opera-
tions of a signature for the first-order fragment of the λc-calculus. In previous
work, we have investigated three main ways to interpret operations in the set-
ting of the full λc-calculus [15]. When considered in the context of a closed
Freyd -category, all three are equivalent. But in the absence of closedness, we
can define only two of those notions of interpretation; they remain equivalent
to each other. The difficulty for the third notion arises because when S is
countable, S → (X ×S) is uncountable even when X = 1 [15]. Here, we focus
on the notion that most directly yields a canonicity result. It uses the idea of
a generic effect.

Definition 17 Given a signature of typed basic operations and given a se-
mantics for each type, an interpretation of an operation of type σ → τ in a
Freyd-category J : C0 −→ C1 is a map M(τ) −→ M(σ) in C1, where M(σ)
and M(τ) are the interpretations of the types σ and τ .

Example 18 Consider the usual interpretation of side-effects in the Kleisli
category Kl(S → (− × S)) for the monad S → (− × S) on Set, where S =
V alLoc. The operation lookup : V al −→ Loc is interpreted by the function

Loc −→ (S → (V al × S))

taking (loc, σ) to (v, σ), where v is given by looking up loc in σ. To give a
function from Loc to (S → (V al × S)) is to give a map in Kl(S → (−× S))
from Loc to V al. The operation update : 1 −→ Loc × V al is interpreted by
the function

Loc× V al −→ (S → S)

10

sending (loc, v, σ) to the state that updates σ by replacing the value at loc by
v; and that is a map in Kl(S → (− × S)) from Loc × V al to 1. This way of
modelling operations as generic effects has proved particularly useful [15,3,4]
and is consistent with Example 13 here. If we restrict from the λc-calculus to
its first-order fragment, we can restrict the interpretation to land in the full
sub-Freyd-category of Kl(S → (−× S)) determined by (a skeleton of) count-
able sets. This latter Freyd-category is exactly the canonical Freyd-category for
global state determined by Corollary 16. It is not yet clear how to incorporate
local state into the setting of this paper, although there is reason for optimism
that that will be possible in due course [14].

One can similarly use the notion of interpretation as we have defined it here
to give canonical interpretations of ∨ for nondeterminism, read and write
for interactive input/output, raise for exceptions, etcetera [15], all respect-
ing the appropriate equations. One has the following trivial but fundamental
proposition:

Proposition 19 Every signature of operations of countable arity has a canon-
ical sound interpretation in the canonical model: an arity α is modelled by the
object α, and a basic operation op : α −→ β is modelled by the corresponding
map from β to α in Lop.

4 Enrichment in [→, Set]

In this section, we describe enriched categories, in particular with respect to
enrichment in [→, Set], and we characterise the latter. The standard reference
for enriched categories is [6]. For simplicity of exposition, we shall restrict our
attention to enrichment in a complete and cocomplete cartesian (rather than
just monoidal or symmetric monoidal) closed category V .

Definition 20 A V -category C consists of

• a set Ob(C) of objects
• for every pair (X, Y) of objects of C, an object C(X, Y) of V
• for every object X of C, a map ι : 1 −→ C(X, X)
• for every triple (X, Y, Z), a map

· : C(Y, Z)× C(X, Y) −→ C(X, Z)

subject to an associativity axiom for · and an axiom making ι a left and right
unit for ·.

The leading example has V = Set, in which case the notion of V -category
agrees exactly with the usual notion of locally small category. Other standard

11

examples involve V = Poset, yielding locally small locally ordered categories,
V = ωCpo, yielding locally small categories with coherent ωcpo structure
on each homset, allowing an account of recursion, and V = Cat, yielding
locally small 2-categories. But the example of primary interest to us here has
V = [→, Set]: the category → is the category determined by a pair of objects
and one non-identity arrow, which goes from the first object to the second; so
an object of the functor category [→, Set] consists of a pair of sets (X0, X1) and
a function from one to the other, f : X0 −→ X1, and an arrow amounts to a
commutative square in Set. Products are given pointwise; the closed structure
is more complicated, cf Proposition 23.

Proposition 21 To give an [→, Set]-category is equivalent to giving a pair of
categories and an identity-on-objects functor J : C0 −→ C1.

PROOF. Given an [→, Set]-category C, put Ob(C0) = Ob(C1) = Ob(C). For
any pair (X, Y) of objects of C, the data for an [→, Set]-category gives us an
object C(X,Y) of [→, Set], i.e., a pair of sets and a function f : A −→ B.
So define C0(X, Y) = A and C1(X, Y) = B, and define the behaviour of the
putative functor J : C0 −→ C1 on the homset C0(X, Y) to be f : C0(X, Y) −→
C1(X, Y). The rest of the data and the axioms for an [→, Set]-category provide
the rest of the data and axioms to make C0 and C1 into categories and to make
J functorial. The converse follows by similarly routine calculation.

Based on this result, we henceforth identity the notion of [→, Set]-category
with a pair of categories and an identity-on-objects functor J : C0 −→ C1.

In general, every V -category C has an underlying ordinary category U(C)
defined by Ob(U(C)) = Ob(C) and with the homset (UC)(X, Y) defined to be
the set of maps in V from the terminal object 1 to C(X, Y). The composition
of the V -category C routinely induces a composition for U(C), and similarly
for the identity maps.

Proposition 22 The underlying ordinary category of an [→, Set]-category J :
C0 −→ C1 is the category C0.

This result follows from routine checking.

5 The [→, Set]-enriched Yoneda Embedding

The Yoneda embedding Y : C −→ [Cop, Set] has a subtle universal property:
it is the free colimit completion, or more briefly the free cocompletion, of a
small category C [6]. Moreover, if C has finite products, it is the free finite

12

product cocompletion of C, and if C is symmetric monoidal, it is the free
symmetric monoidal cocompletion of C [5]. We shall give a variant of this
universal property for Freyd -categories in Section 6, but in order to do so,
we need to study the enriched Yoneda embedding Y : C −→ [Cop, V] in the
setting of V = [→, Set]. To do that, we first observe that V itself has the
structure of a V -category, with homobject V (X, Y) given by the exponential
Y X of V . This yields the following result in the case of V = [→, Set]:

Proposition 23 The cartesian closed category [→, Set] extends canonically
to the [→, Set]-category

inc : [→, Set] −→ [→, Set]1

where [→, Set]1(f : X −→ Y, f ′ : X ′ −→ Y ′) is defined to be the set of
functions from Y to Y ′. The behaviour of the functor inc is evident.

Observe, prefiguring a deeper use of this idea we shall make later, that the cat-
egory [→, Set]1 and the functor inc are given by the identity-on-objects/fully
faithful factorisation of the codomain functor from [→, Set] to Set.

For any small V -category C, one has a functor V -category [C, V]. In general,
given V -categories C and D, a V -functor H : C −→ D consists of a function
HOb : Ob(C) −→ Ob(D) together with, for each pair of objects (XY) of C,
a map C(X, Y) −→ D(HX, HY) in V , subject to two axioms to the effect
that composition and identities are respected. This is a routine generalisation
of the usual notion of functor. An object of [C, V] is a V -functor from C to
V and the homobject [C, V](H, K) is given by an equaliser that internalises
to V the construction of the set of natural transformations between parallel
functors: details appear in [6] but we now spell out the situation in the case
of V = [→, Set].

Proposition 24 Given a small [→, Set]-category J : C0 −→ C1, the functor
[→, Set]-category [J, [→, Set]] is defined as follows: an object consists of

• a functor H0 : C0 −→ Set
• a functor H1 : C1 −→ Set
• a natural transformation φ : H0 ⇒ H1J

C0

J
- C1

@
@

@
@

@

⇑ φ
H0

R

Set

H1

?

An arrow in [J, [→, Set]]0 from (H0, K0, φ0) to (H1, K1, φ1) consists of a pair

13

of natural transformations (H0 ⇒ K0, H1 ⇒ K1) making the evident diagram
involving the φ’s commute. An arrow in [J, [→, Set]]1 between the same objects
consists of a natural transformation H1 ⇒ K1. Composition and the behaviour
of the identity-on-objects functor are evident.

PROOF. This follows by consideration of the definition of the V -category
[C, V] where V = [→, Set]. An object of [C, V] in this setting consists of an
[→, Set]-functor from J to [→, Set] regarded as a [→, Set]-category using the
construction of Proposition 23. Such a functor assigns, to each object X of
C0, equivalently each object X of C1, an arrow in Set, giving precisely the
data for the object parts of H0 and H1 and the natural transformation φ.
The behaviour of the [→, Set]-functor on homs is equivalent to the behaviour
of H0 and H1 on arrows. And the various axioms for a [→, Set]-functor are
equivalent to functoriality of H0 and H1 and naturality of φ. Similarly routine
calculations yield the characterisations of the two sorts of arrow in the functor
[→, Set]-category.

We can further characterise this [→, Set]-category by means of a lax colimit
in the 2-category Cat [1].

Definition 25 Given a functor J : Co −→ C1, denote by l(J) the category
determined by being universal of the form

C0

J
- C1

@
@

@
@

@

⇑ ι
I0

R

l(J)

I1

?

I.e., for every such diagram with an arbitrary vertex D, there is a unique func-
tor from l(J) to D making corresponding functors and natural transformations
agree.

One can provably extend the condition of the definition uniquely to yield
an isomorphism of categories between a category with such lax cocones with
vertex D as objects and the functor category from l(J) to D. It is easy to
construct l(J): it is freely generated by having C0 and C1 as full subcategories,
together with, for each object X of C0, an arrow from I0(X) to I1(X), subject
to the collection of such arrows being made natural in C0. Note that the
coprojections I0 and I1 are fully faithful. The universal property tells us that
to give an object of [J, [→, Set]] is equivalent to giving a functor from l(J) to
Set, allowing us to deduce the following proposition.

14

Proposition 26 The functor [→, Set]-category [J, [→, Set]] is given by the
identity-on-objects/fully faithful factorisation of

[I1, Set] : [l(J), Set] −→ [C1, Set]

i.e., [J, [→, Set]]0 is isomorphic to [l(J), Set], and [J, [→, Set]]1 and the identity-
on-objects functor are given by the identity-on-objects/fully faithful factorisa-
tion of [I1, Set].

Finally, we investigate the enriched Yoneda embedding Y : C −→ [Cop, V]
when V = [→, Set]. Given an [→, Set]-category J : C0 −→ C1, the Yoneda
embedding consists of an [→, Set]-functor from J to [Jop, [→, Set]], i.e., a pair
of functors

(Y0 : C0 −→ [Jop, [→, Set]]0, Y1 : C1 −→ [Jop, [→, Set]]1)

We can characterise these functors as follows:

Proposition 27 The functor Y0 : C0 −→ [Jop, [→, Set]]0 is the composite of
the ordinary Yoneda embedding Y : C0 −→ [Cop

0 , Set] with the (fully faithful)
functor LanI0 : [Cop

0 , Set] −→ [l(Jop), Set] = [Jop, [→, Set]]0. And the functor
Y1 : C1 −→ [Jop, [→, Set]]1 is given by the defining property of a factorisation
system applied to the square

C0

J
- C1

[Jop, [→, Set]]1
?

- [Cop
1 , Set]

Y

?

where the bottom (fully faithful) functor is given by applying (−)op to Propo-
sition 26 and the left-hand functor is given by the composite of Y0 with the
identity-on-objects functor determined by applying (−)op to Proposition 26.
The definition of a factorisation system (this can also be proved directly) yields
a unique functor from C1 to [Jop, [→, Set]]1 making both triangles commute.

PROOF. The enriched Yoneda embedding takes an object X of C0, equiv-
alently of C1, to the [→, Set]-functor J(−, X) : Jop −→ [→, Set], which may
be described as the pair of functors

(C0(−, X) : Cop −→ Set, C1(−, X) : Cop
1 −→ Set)

15

together with the natural transformation from the first to the second deter-
mined by J . It is routine to verify that C1(−, X) : Cop

1 −→ Set is the left
Kan extension of C0(−, X) along Jop (see [6] or [10] for the definition and
properties of Kan extensions). And by composition of left Kan extensions, its
left Kan extension along I1 agrees with LanI0C0(−, X). Since I0 and I1 are
fully faithful, it follows that LanI0C0(−, X) commutes with both C0(−, X)
and C1(−, X), respecting ι. This proves the characterisation we claim for Y0,
and that for Y1 follows because, by its definition, it must be the unique functor
making the two triangles commute.

The behaviour of the two functors on maps follows routinely if we can see that
LanI0 and LanI1 are fully faithful. The proof is the same for both, so let us
just consider I0. Since I0 is fully faithful, it follows (see for instance [6]) as used
above that for any functor H : Cop

0 −→ Set, we have that H0 is coherently iso-
morphic to the composite (LanI0H0)I0. But LanI0 : [Cop

0 , Set] −→ [l(Jop), Set]
has a right adjoint given by sending a functor to its composite with I0, and
the above-mentioned isomorphism tells us that the unit of the adjunction is
an isomorphism, and hence that the adjunction is a coreflection, and hence
that LanI0 is fully faithful.

6 The Free Conical Colimit Completion of a Small [→, Set]-Category

Weighted colimits, sometimes called indexed colimits, form the definitive no-
tion of colimit in an enriched category [6]. But the definition is complex and
we do not need it in this paper except to study recursion later. Conical colim-
its, which amount to the first obvious guess for a notion of enriched colimit,
are among the weighted colimits but are not all of them. Moreover, they are
exactly the colimits we need in our analysis of V = [→, Set]. If V were Set,
the small conical colimit completion of a small V -category C would be exactly
[Cop, Set], but that is not true for general V , and in particular, it is not true
for V = [→, Set]. So, in this section, we describe conical colimits and charac-
terise the conical colimit completion of a small V -category in the setting where
V = [→, Set]. We then use that construction to give a canonical embedding
of a small Freyd -category into a closed Freyd -category.

Given a V -category C and a small ordinary category L, one can construct
a V -category [L, C]. An object of [L, C] is a functor from L to U(C). Given
functors H, K : L −→ U(C), one defines the homobject [L, C](H, K) of V to
be an equaliser in V of two maps of the form

ΠOb(L)C(HX, KX) −→ ΠArrLC(HX, KY)

one determined by postcomposition with Kf , the other given by precompo-

16

sition with Hf , for each map f in L, thus internalising the notion of natural
transformation. When V = Set, this construction agrees with the usual defi-
nition of the functor category.

Definition 28 For an arbitrary V -category C and a small ordinary category
L, given a functor H : L −→ U(C), a conical colimit of H is a cocone over
H with vertex defined to be colimH, such that composition with the cocone
yields, for every object X of C, an isomorphism in V of the form

C(colimH, X) ∼= [L, C](H, ∆X)

If V = Set, this definition agrees with the usual notion of colimit. In general,
a V -category C is said to have all conical colimits if, for every small category
L, every functor H : L −→ U(C) has a conical colimit.

Theorem 29 [6] The free conical colimit completion of a small V -category C
is given by the closure of C in [Cop, V] with respect to the Yoneda embedding
Y : C −→ [Cop, V] under conical colimits.

We proceed to characterise the construction of Theorem 29 in the case of
V = [→, Set].

Proposition 30 An [→, Set]-category J : C0 −→ C1 has all conical colimits
if and only if C0 has all colimits and J preserves all colimits.

PROOF. Suppose the [→, Set]-category J : C0 −→ C1 has all conical colim-
its. In general, if an arbitrary V -category has all conical colimits, it follows that
its underlying ordinary category has all colimits. So C0 has all colimits. Now,
by direct use of the definition of conical colimits in the case of V = [→, Set], it
follows that J must preserve them. The converse holds by direct calculation.

Theorem 31 The free conical colimit completion of a small [→, Set]-category
J : C0 −→ C1 is given by

• the category [Cop
0 , Set]

• the identity-on-objects/fully faithful factorisation of

LanJop : [Cop
0 , Set] −→ [Cop

1 , Set]

PROOF. First observe, using Proposition 30, that this [→, Set]-category has
conical colimits: [Cop

0 , Set] is cocomplete and LanJop has a right adjoint, and
factoring a colimit preserving functor into an identity-on-objects functor fol-
lowed by a fully faithful functor makes the former also preserve all colimits.
Now observe that the canonical [→, Set]-functor into [Jop, [→, Set]] preserves

17

colimits: the canonical [→, Set]-functor is given by LanI0 , which has a right
adjoint, so preserves colimits, together with the functor determined by the uni-
versal property of a factorisation system applied to the commutative square

[Cop
0 , Set] - C ′ - [Cop

1 , Set]

[Jop, [→, Set]]0

LanI0

?
- [Jop, [→, Set]]1 - [Cop

1 , Set]

id

?

where the top and bottom rows are given by identity-on-objects/fully faithful
factorisations, and where the diagram commutes by calculations with left Kan
extensions and using fully faithfulness of I1. The canonical [→, Set]-functor is
fully faithful: we established fully faithfulness of LanI0 in the previous section,
and the intermediary functor as above is fully faithful as its composite with
the bottom right-hand functor in the diagram is fully faithful. Next observe,
by Proposition 27, that the Yoneda embedding factors through the canonical
[→, Set]-functor. Finally, observe that every object of this full sub-[→, Set]-
category is generated by a conical colimit of representables: that is routine
as every functor H : Cop

0 −→ Set is a conical colimit of representables [6].
Combining all these observations yields the result.

Turning now to Freyd -structure, in general, for a small V -category C, the
functor V -category [Cop, V] has finite products, indeed all limits and colim-
its. We have characterised conical colimits in the setting of V = [→, Set]
in Proposition 30. A dual result applies to conical limits. So, for any small
[→, Set]-category J : C0 −→ C1, it follows that in the presheaf [→, Set]-
category

[Jop, [→, Set]]0 −→ [Jop, [→, Set]]1

the category [Jop, [→, Set]]0 has and the functor preserves finite products. So
it does not have non-trivial Freyd -structure. So, in particular, it does not pro-
vide a closed Freyd -category into which J , equipped with a non-trivial Freyd -
structure, can embed as a Freyd -category. We therefore cannot adapt the
construction of the free finite product cocompletion of a category with finite
products to the setting of Freyd -structure simply by enrichment of the Yoneda
embedding in V = [→, Set]: we must add further subtlety. That subtlety is
given by restricting the Yoneda embedding to the conical colimit completion,
and it agrees with the ad hoc description of an embedding of (something very
similar to) a small Freyd -category into (something very similar to) a closed
Freyd -category in [21]: from Theorem 31, it is little more than an observa-
tion that the proof in [21] extends to yield a universal characterisation of the
construction therein.

18

There is one delicate point: exactly what do we mean by the “free conical-
colimit complete closed Freyd -category on a Freyd -category?” By a map of
closed Freyd -categories, we mean a map that preserves the Freyd -structure
but need not preserve the closed structure. This should not come as a great
surprise: the maps of primary interest between cartesian closed categories are
functors that preserve finite products but need not preserve the closed struc-
ture; most forgetful functors to Set are examples. It also agrees with the uni-
versal characterisations for finite product and symmetric monoidal structure
in [5] and with the work of [8] on data refinement.

Theorem 32 The free conical colimit completion of a small Freyd-category
J : C0 −→ C1 is the free conical-colimit complete closed Freyd-category on J ,
i.e., the [→, Set]-category of Theorem 31 with a natural Freyd-structure.

PROOF. Theorem 29 characterises the free conical colimit completion of any
[→, Set]-category J : C0 −→ C1. We need only show that that construction
acts as we wish with respect to Freyd -structure. But [Cop

0 , Set] is cartesian
closed, with Y : C0 −→ [Cop, Set] preserving finite products, and LanJop

has a right adjoint. So the only remaining non-trivial point is to construct,
for functors F, H, K : Cop

0 −→ Set and for every natural transformation α :
LanJopH ⇒ LanJopK, a natural transformation LanJop(F×H) ⇒ LanJop(F×
K); and that must be done coherently. But to do that, we just make two uses
of the fact that [Cop, Set] is the free colimit completion of C. It follows from
this free cocompleteness that, for any object X of C0, equivalently of C1, the
functor X ⊗ − : C1 −→ C1 extends to [Cop

1 , Set]. This yields F ⊗ α for any
representable F = C0(−, X). For an arbitrary F , one deduces the construction
by use of symmetry and by centrality of the maps in the canonical colimiting
cocone of F .

7 Recovering Monads

In this section, we consider the composite of our two constructions: the first
building a Freyd -category from a countable Lawvere theory or, in practice,
from a signature of operations and equations, the second building a closed
Freyd -category from a Freyd -category. If we refine Theorem 29 a little, fol-
lowing the work in [6], we recover Moggi’s monads for computational ef-
fects [11,12]. In order to show how this works, we start with a general theorem
about enriched categories [6]. We then study what that theorem says in the
case of V = [→, Set] and see how it applies to Freyd -structure. The general
theorem is as follows.

Theorem 33 If C is a small V -category with countable coproducts, the free

19

conical colimit completion of C that preserves the countable coproducts of C is
given by the closure of C in CP (Cop, V) with respect to the Yoneda embedding
under conical colimits.

A priori, this result is relevant to us because any countable Lawvere theory L
has countable products and so Lop has countable coproducts. That is essen-
tially the information we use, but we need a slightly more subtle use of it as
we need to consider V = [→, Set]. One can further adapt Theorem 32 along
the same lines as Theorem 33 is an adaptation of Theorem 29, cf [21,25]. We
proceed as follows.

Definition 34 A Freyd-category J : C0 −→ C1 has countable coproducts if
C0 has and J preserves countable coproducts.

Proposition 35 For any closed Freyd-category J : C0 −→ C1, if C0 has
countable coproducts, so does J .

There is more flexibility here than might first appear. If a cartesian closed
category C has countable coproducts, it follows that, for every object X of C,
the functor − × X : C −→ C preserves them, i.e., product distributes over
sum. But if C has finite products and countable coproducts without being
closed, −×X might not preserve countable coproducts. But many categories
do satisfy such a preservation condition and it is remarkably powerful, yielding
the notion of a countably distributive category [2]. The same issue arises for
Freyd -categories: in the presence of countable coproducts, one is naturally led
to the notion of countably distributive Freyd -category, implying axioms on an
extension of the λc-calculus to include sum types as we shall discuss shortly.
Here, we have and need a notion of countable distributivity anyway.

Definition 36 A Freyd-category J : C0 −→ C1 is countably distributive if C0

has and J strictly preserves countable coproducts, and finite products distribute
over countable coproducts in C0.

The notion of countable distributivity allows us to characterise the canonical
model of Corollary 16 by a universal property.

Theorem 37 The canonical model is the generic countably distributive Freyd-
category, i.e., for any countably distributive Freyd-category J : C0 −→ C1

and any sound interpretation of the signature in J that respects the coprod-
uct structure of the arities, there is, up to coherent isomorphism, a unique
countable coproduct preserving Freyd-functor from Iop to J that respects the
interpretations.

Now we can state the result we really want.

Theorem 38 The free conical colimit completion of a small countably dis-

20

tributive Freyd-category J : C0 −→ C1 that preserves the countable coproducts
of J is the free conical-colimit complete closed Freyd-category on J that pre-
serves the countable coproducts of J , i.e, the [→, Set]-category of Theorem 33
in the case of V = [→, Set] and taking C to be J , with a natural Freyd-
structure.

The construction of the closed Freyd -structure is exactly as in Theorem 32 ex-
cept for the systematic replacement of arbitrary functors by ones that respect
the countable coproduct structure of C.

It follows from the definition of countable Lawvere theory that if L is a count-
able Lawvere theory, the Freyd -category Iop : ℵ1 −→ Lop is countably distribu-
tive. So, starting with a countable Lawvere theory, then applying Theorem 15
followed by Theorem 38, we obtain the identity-on-objects/fully faithful fac-
torisation of a functor of the form

CP (ℵop
1 , Set) −→ CP (L, Set)

But ℵop
1 is the free category with countable products on 1. So the cate-

gory CP (ℵop
1 , Set) is equivalent to Set, and thus we have the identity-on-

objects/fully faithful factorisation of a functor of the form

Set −→ CP (L, Set)

It is a standard result of Lawvere theories that the category CP (L, Set) is
monadic over Set with monad TL induced by L (see [19,24]). So having rou-
tinely checked some coherence details, we have the identity-on-objects/fully
faithful factorisation of the canonical left adjoint

Set −→ TL − Alg

and that factorisation yields precisely Kl(TL). Thus we have the following:

Theorem 39 For any countable Lawvere theory J : ℵop
1 −→ L, the canonical

closed Freyd-category

Set −→ Kl(TL)

is the free conical colimit completion of Iop : ℵ1 −→ Lop that preserves the
countable coproducts of Iop.

For calculi, the canonical model of Corollary 16 agrees and unifies the models
for the various computational effects given by Moggi: he did not give a unified

21

way to model signatures, so the best we can do is to point out that our unified
account agrees with all his examples.

The result means our analysis decomposes the construction of the Kleisli cat-
egory for a monad into two parts whenever the monad arises from a countable
Lawvere theory. In all the examples of computational effects we address here,
that is the case, and so this decomposition refines Moggi’s analysis, adds a sys-
tematic account of operations, and allows one a more structured development
of the associated λc-calculus.

Our work also suggests an extension of the first-order fragment of the λc-
calculus to include sum types. The canonical model is a finitely distributive
Freyd -category. So, by the first-order fragment of the λc-calculus with sum
types, we might mean type constructors

σ ::= 1 | σ1 × σ2 | 0 | σ1 + σ2

and term constructors

e ::= ∗ | 〈e, e′〉 | πi(e) | let x = e in e′ | 0 | inl(e) | inr(e) | cases(e1, e2) | x

subject to evident typing rules and an extension of the rules for the predicates
= and (−) ↓ to make the class of finitely distributive Freyd -categories J :
C0 −→ C1 into a sound and complete class of models.

One typically does not have countable sum types directly in an idealised pro-
gramming language such as the λc-calculus, but one does typically have Nat,
and that is also canonically modelled in the canonical model generated by any
signature. Data and axioms for Nat are already definitive, so our work here
does not yield new insight there, but at least it is consistent.

8 Recursion through Enrichment

Recursion may added to a study of computational effects in the spirit of the
above work systematically by changing base category from Set to ωCpo, e.g.,
as in [4], changing from ordinary functors to ωCpo-enriched functors, etcetera.
Many of the constructions of ordinary category theory enrich without fuss; but
a few, especially those involving limits, require greater care, in particular be-
cause products in the definition of Lawvere theory enrich most naturally as
cotensors [6,4,19]. With care, all of the category theoretic work of the pa-
per does generalise to enrichment in a cartesian closed category V satisfying
standard axiomatic conditions. In this section, we outline how the enrichment
works.

22

Assume V is locally countably presentable as a cartesian closed category [7]:
one does not need a formal definition to follow the work of this section; the
main point is that it includes categories such as ωCpo and Poset. If we sys-
tematically add enrichment to the definitions associated with the notion of
premonoidal category, we can make the following definition, enriching Defini-
tions 9 and 10.

Definition 40 A Freyd-V -category is a V -category C0 with finite products, a
small symmetric premonoidal V -category C1, and an identity-on-objects strict
symmetric premonoidal V -functor J : C0 −→ C1. It is closed if for every
object X of C0, the V -functor J(−×X) : C0 −→ C1 has a right V -adjoint.

Letting Vℵ1 be a skeleton of the full sub-V -category of V determined by count-
ably presentable objects of V , we can define the notion of a countable Lawvere
V -theory [4]. Given an object X of V and an object A of a V -category C, an
X-cotensor of A is an object AX of C for which there is an isomorphism

C(B, AX) ∼= C(B, A)X

V -natural in B. So the notion of cotensor generalises the notion of power
rather than that of product. Up to equivalence, the V -category V op

ℵ1
is the free

V -category with countable cotensors on 1.

Definition 41 A countable Lawvere V -theory is a small V -category L with
countable cotensors and a strong countable-cotensor preserving identity-on-
objects V -functor I : V op

ℵ1
−→ L.

Theorem 42 For any countable Lawvere V -theory L, the V -category Lop to-
gether with the V -functor Iop : Vℵ1 −→ Lop canonically support the structure
of a Freyd-V -category.

PROOF. It is shown in [6,7] that Vℵ1 has finite products and that X × Y is
an X-tensor of Y , dualising the notion of cotensor. The V -category Lop has
tensors, so one has a V -functor X ⊗ − : Lop −→ Lop. Using duality, we are
done.

Our analysis of [→, Set] in Sections 4 and 5 generalises routinely to [→, V]: in-
stead of speaking of the underlying ordinary category of an [→, Set]-category,
one speaks of the underlying V -category of an [→, V]-category. However, en-
richment of Section 6 requires more care: one must replace the conical colimits
of Section 6 by V -weighted colimits, where V is regarded as a full sub-[→, V]-
category of [→, V]. This can be confusing: V generalises Set and [→, V] gen-
eralises [→, Set], so V -weighted colimits generalise conical colimits and do not
constitute all [→, V]-weighted colimits.

23

A general analysis of weighted limits would be lengthy, so we refer the reader
to the definitive book [6]. The upshot is given by the following results.

Theorem 43 The free V -colimit completion of a small [→, V]-category J :
C0 −→ C1 is given by

• the V -category [Cop
0 , V]

• the identity-on-objects/fully faithful factorisation of

LanJop : [Cop
0 , V] −→ [Cop

1 , V]

Theorem 44 The free V -colimit completion of a small Freyd-V -category J :
C0 −→ C1 is the free V -colimit-complete closed Freyd-V -category on J , i.e.,
the [→, V]-category of Theorem 43 with a natural Freyd-V -structure.

Finally, systematically replacing countable coproducts by countable tensors,
we can enrich Section 7 to obtain the following decomposition result.

Theorem 45 Let J : V op
ℵ1

−→ L be a countable Lawvere V -theory. Then the
canonical closed Freyd-V -category

V −→ Kl(TL)

is the free V -colimit completion of Iop : Vℵ1 −→ Lop that preserves the count-
able tensors of Iop.

One can, of course, add recursion to the λc-calculus or to its first-order frag-
ment and give a syntactic counterpart of our extension here from enrichment
in Set to enrichment in ωCpo. Enrichment in ωCpo is orthogonal to the ex-
istence of solutions to recursive domain equations: the latter correspond to
the existence of some colimits in a category or in an ωCpo-category. Not only
do the closed V -categories we construct have such colimits, but also the V -
category Vℵ1 used in the definition of Lawvere V -theory has them. The latter
fact allows us to use such solutions as possible arities, as we do in Example 13.

References

[1] R. Blackwell, G.M. Kelly, and A.J. Power. Two-dimensional Monad
Theory. J. Pure Appl. Algebra, 59:1–41, 1989.

[2] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to Extensive and
Distributive Categories. J. Pure Appl. Algebra, 84:145–158, 1993.

[3] M. Hyland, G. D. Plotkin, and A. J. Power. Combining Computational
Effects: Commutativity and Sum. In Proc. IFIP Conf. On Theoretical
Computer Science, pages 474–484, Kluwer, 2002.

24

[4] M. Hyland, G. D. Plotkin, and A. J. Power. Combining Computational
Effects: Sum and Tensor. Theoretical Computer Science, to appear.

[5] Guen Bin Im and G.M. Kelly. A Universal Property of the Convolution
Monoidal Structure. J. Pure Appl. Algebra, 43:75–88, 1986.

[6] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of
London Mathematical Society Lecture Notes Series, Cambridge University
Press, 1982.

[7] G. M. Kelly. Structures Defined by Finite Limits in the Enriched Context.
Cahiers de Top. et Geom. Diff., 23: 3–42, 1982.

[8] Y. Kinoshita and A.J. Power. Data-refinement in Call-by-Value Languages.
In Proc. CSL, in volume 1683 of Lecture Notes in Computer Science, pages
562–576, 1999.

[9] P. B. Levy, A. J. Power, and H. Thielecke. Modelling Environments in
Call-by-Value Programming Languages. Information and Computation,
185:182–210, 2003.

[10] S. Mac Lane. Categories for the Working Mathematician, Berlin: Springer-
Verlag, 1971.

[11] E. Moggi. Computational Lambda-Calculus and Monads. In Proc. LICS
1989, IEEE Computer Society Press, pages 14–23, 1989.

[12] E. Moggi. Notions of Computation and Monads. Information and
Computation, 93:55–92, 1991.

[13] G.D. Plotkin and A.J. Power. Adequacy for Algebraic Effects. In Proc.
FOSSACS 2000, in volume 2030 of Lecture Notes in Computer Science,
pages 1–24, 2001.

[14] G.D. Plotkin and A.J. Power. Notions of Computation Determine Monads.
In Proc. FOSSACS 2001, in volume 2303 of Lecture Notes in Computer
Science, pages 342–356, 2002.

[15] G.D. Plotkin and A.J. Power. Semantics for Algebraic Operations. In Proc.
MFPS 2001, in volume 45 of Electronic Notes in Theoretical Computer
Science, 2001.

[16] G.D. Plotkin and A.J. Power. Algebraic Operations and Generic Effects.
in Applied Categorical Structures 11:69–94, 2003.

[17] G. D. Plotkin and A. J. Power. Computational Effects and Operations:
an Overview. in Proc. Domains 2002, in volume 73 of Electronic Notes in
Theoretical Computer Science, 2002.

[18] G. D. Plotkin and A. J. Power. Logic for Computational Effects. in
Proc. IWFM 2003, British Computer Society Electronic Workshops in
Computing, 2003.

25

[19] A. J. Power. Enriched Lawvere Theories. Theory and Applications of
Categories, 6:83–93, 1999.

[20] A.J. Power. Models for the Computational λ-Calculus. In Proc. MFCSIT
2000, in volume 40 of Electronic Notes in Theoretical Computer Science,
2001.

[21] A.J. Power. Premonoidal Categories as Categories with Algebraic
Structure. Theoretical Computer Science, 278:303–321, 2002.

[22] A. J. Power. A Universal Embedding for the Higher Order Structure of
Computational Effects. In Proc. TLCA 2003, in volume 2701 of Lecture
Notes in Computer Science, pages 301–315, 2003.

[23] A. J. Power. Canonical Models for Computational Effects. In Proc.
FOSSACS 2004, in volume 2987 of Lecture Notes in Computer Science,
pages 438–452, 2004.

[24] A. J. Power. Countable Lawvere Theories and Computational Effects.
Submitted.

[25] A. J. Power and E. P. Robinson. Premonoidal Categories and Notions of
Computation. In Proc. LDPL 96, Math Structures in Computer Science,
7: 453–468, 1997.

26

