
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

School of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

Fuzzy rrDFCSP and planning

by

Ian Miguel, Qiang Shen

Informatics Research Report EDI-INF-RR-0199

School of Informatics January 2003
http://www.informatics.ed.ac.uk/

Fuzzy rrDFCSP and planning

Ian Miguel, Qiang Shen

Informatics Research Report EDI-INF-RR-0199

SCHOOL of INFORMATICS
Centre for Intelligent Systems and their Applications

January 2003

appeared in Artificial Intelligence

Abstract :
Constraint satisfaction is a fundamental Artificial Intelligence technique for knowledge representation and infer-

ence. However, the formulation of a static constraint satisfaction problem (CSP) with hard, imperative constraints is
insufficient to model many real problems. Fuzzy constraint satisfaction provides a more graded viewpoint. Priorities
and preferences are placed on individual constraints and aggregated via fuzzy conjunction to obtain a satisfaction de-
gree for a solution to the problem. This paper examines methods for solving an important instance of dynamic flexible
constraint satisfaction (DFCSP) combining fuzzy CSP and restriction/relaxation based dynamic CSP: fuzzy rrDFCSP.
This allows the modelling of complex situations where both the set of constraints may change over time and there is
flexibility inherent in the definition of the problem. This paper also presents a means by which classical planning can be
extended via fuzzy sets to enable flexible goals and preferences to be placed on the use of planning operators. A range
of plans can be produced, trading compromises made versus the length of the plan. The flexible planning operators are
close in definition to fuzzy constraints. Hence, through a hierarchical decomposition of the planning graph, the work
shows how flexible planning reduces to the solution of a set of fuzzy rrDFCSPs.

Keywords : Constraint satisfaction, Dynamic CSP, Flexible CSP, AI planning, Flexible planning

Copyright c
�

2004 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, School of Informatics, The University of Edinburgh, 2 Buccleuch Place,
Edinburgh EH8 9LW, Scotland.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.1 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 1
Artificial Intelligence ••• (••••) •••–•••
www.elsevier.com/locate/artint

Fuzzy rrDFCSP and planning

Ian Miguel a, Qiang Shen b,∗

a Department of Computer Science, University of York, York YO10 5DD, UK
b School of Informatics, University of Edinburgh, Edinburgh EH8 9LE, UK

Received 16 July 2002; received in revised form 1 September 2002

Abstract

Constraint satisfaction is a fundamental Artificial Intelligence technique for knowledge represen-
tation and inference. However, the formulation of a static constraint satisfaction problem (CSP) with
hard, imperative constraints is insufficient to model many real problems. Fuzzy constraint satisfaction
provides a more graded viewpoint. Priorities and preferences are placed on individual constraints and
aggregated via fuzzy conjunction to obtain a satisfaction degree for a solution to the problem. This
paper examines methods for solving an important instance of dynamic flexible constraint satisfaction
(DFCSP) combining fuzzy CSP and restriction/relaxation based dynamic CSP: fuzzy rrDFCSP. This
allows the modelling of complex situations where both the set of constraints may change over time
and there is flexibility inherent in the definition of the problem. This paper also presents a means by
which classical planning can be extended via fuzzy sets to enable flexible goals and preferences to
be placed on the use of planning operators. A range of plans can be produced, trading compromises
made versus the length of the plan. The flexible planning operators are close in definition to fuzzy
constraints. Hence, through a hierarchical decomposition of the planning graph, the work shows how
flexible planning reduces to the solution of a set of fuzzy rrDFCSPs.
 2003 Elsevier Science B.V. All rights reserved.

Keywords: Constraint satisfaction; Dynamic CSP; Flexible CSP; AI planning; Flexible planning

1. Introduction

Constraints are a natural means of knowledge representation in many disparate fields.
A constraint often takes the form of an equation or inequality, but in the most abstract
sense is a logical relation among several variables expressing a set of admissible value

* Corresponding author.
E-mail addresses: ianm@cs.york.ac.uk (I. Miguel), qiangs@dai.ed.ac.uk (Q. Shen).

0004-3702/03/$ – see front matter 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0004-3702(03)00020-1

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.2 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 2

2 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

combinations. The following are simple examples: the sum of two variables must equal

30; adjacent countries on the map cannot be coloured the same; the helicopter is designed
to carry one passenger, but a second can be carried in an emergency; the maths class must
be scheduled between 9 and 11am, but it may later be moved to the afternoon.

Constraint satisfaction is the process of identifying a solution to a problem which
satisfies all specified constraints. The classical Constraint Satisfaction Problem (CSP)
[7,18,33] involves a fixed set of problem variables, each with an associated domain of
potential values. A set of constraints range over the variables, specifying the allowed
combinations of assignments of values to variables. To solve a classical CSP, it is necessary
to find one or all assignments to all variables such that all constraints are satisfied.
A constraint satisfaction solution procedure must find one/all such assignments or prove
that no such solution exists.

Despite its simplicity, a constraint-based representation can express real, difficult
problems. For example, the problems of interpreting an image, scheduling a collection
of tasks or diagnosing a fault in an electrical circuit can all be viewed as instances of the
CSP. One area that involves extensive use of constraint satisfaction is that of AI planning
[38]. Graphplan [3] reduces classical domain-independent planning [38] to the solution of
a CSP. By this method, large efficiency gains were made as compared to previous state-of-
the-art planning algorithms.

As classical constraint satisfaction has been applied to more complex real problems
it has become increasingly clear that the classical formulation is insufficient. Consider,
for instance, the opening example involving the capacity of the helicopter. In reality, if
no other solution could be found the helicopter would carry a second passenger to create
a compromise solution. Classical constraint satisfaction supports hard constraints which
are imperative (a valid solution must satisfy all of them) and inflexible (constraints are
either wholly satisfied or wholly violated). In reality problems rarely exhibit this rigidity
of structure. It is common for there to be flexibility which can be used to overcome
over-constrainedness (i.e., a problem with no solution) by indicating where a sensible
compromise can be made [22]. Classical CSP has been extended to incorporate different
types of ‘soft’ constraints often found in real problems. One successful example is fuzzy
CSP [9]. Rather than enforcing binary satisfaction/dissatisfaction, it provides a more
graded viewpoint through a fuzzy set-based representation. Priorities and preferences
are placed on individual constraints and aggregated via fuzzy conjunction to obtain a
satisfaction degree for each solution.

Another weakness of classical constraint satisfaction is that it cannot efficiently support
problems whose structure is subject to change. Once the sets of variables, domains and
constraints have been defined, they are fixed for the duration of the solution process. In
reality problems may change (e.g., the opening example concerning the scheduling of the
maths class) either as a solution is being constructed, or while a constructed solution is
in use. If so, the natural approach is to attempt to repair the old solution, disturbing it as
little as possible. Classical constraint satisfaction can deal at best only clumsily with this
situation, considering the changed problem as an entirely new problem to be solved from
scratch. To address these types of problem, dynamic constraint satisfaction techniques have
been developed [20]. To model problems which change over time, constraints are added
to (constraint restriction) and removed from (constraint relaxation) the current problem

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.3 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 3

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 3

(rrDCSP, [8]). Specialised techniques re-use as much of the solution or partial solution

obtained for a problem before it changed with respect to the new problem state [25,34,35].

However, current dynamic constraint satisfaction research is founded almost exclusively
on classical CSP, unable to take advantage of fuzzy constraints in a dynamic environment,
and fuzzy CSP research is limited to static problems. Little has been done to combine
dynamic and fuzzy constraint satisfaction to maintain the benefits of both individual
approaches to solve more complex problems. The combined approach will form an
important instance of dynamic flexible CSP [23] which will be referred to as rrDFCSP.
In this paper, an extensive empirical analysis is made of the structure and properties of
fuzzy rrDFCSP.

Furthermore, this paper applies fuzzy rrDFCSP to the field of AI Planning. This field
is an active and long-established research area with a wide applicability to such tasks as
automating data-processing procedures [5], game-playing [32], and large-scale logistics
problems [39]. As per classical CSP, classical AI Planning is unable to support flexibility
in the problem description. Providing such an ability is a significant step forward for the
real-world utility of planning research. An extension to the classical AI Planning problem
is presented here to incorporate fuzzy constraints to create a flexible planning problem
and to show how flexible plan synthesis is reduced to the solution of a hierarchy of fuzzy
rrDFCSPs. The flexible planner Flexible Graphplan (FGP) is developed as a means to
solve such problems and its performance is analysed theoretically and empirically.

The next section provides a more detailed background on classical, fuzzy and dynamic
CSP. Section 3 describes fuzzy rrDFCSP and solution methods for these problems. An
extensive empirical analysis of fuzzy rrDFCSP, using several solution algorithms, is made
in Section 4. Section 5 describes the flexible planning problem. Section 6 presents the
Flexible Graphplan algorithm for solving such problems, which is analysed experimentally
in Section 7. Section 8 concludes the paper and points out important future work.

2. Background

A more detailed description of classical, fuzzy and dynamic constraint satisfaction is
reviewed here. The Course Scheduling Problem (adapted from [9]), is used to illustrate the
utility of each approach and the need for fuzzy dynamic CSP. This problem consists of
deciding the number of lecture, exercise and training sessions for a course. In total, there
must be 8 sessions. Professor A agrees to give 4 or 5 lectures, Dr B agrees to give 3 or 4
exercise sessions and there must be an additional 1 or 2 training sessions.

2.1. Classical constraint satisfaction

A classical constraint satisfaction problem (CSP) comprises n variables, X = {x1, . . . ,

xn}, each with domain Di , describing its potential values. A variable, xi , is assigned one
of the values from Di . The Course Scheduling problem uses x1, x2, x3 for the number
of each session type. A set of constraints, C, ranges over these variables. A constraint
c(xi, . . . , xj) ∈ C specifies a subset of the Cartesian product Di × · · · × Dj , indicating

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.4 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 4

4 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 1. Course scheduling problem: constraint hyper-graph representation.

variable assignments that are compatible with each other. These constraints are imperative
(each one must be satisfied) and inflexible (fully satisfied or violated).

A CSP can be represented graphically as a constraint network [7], the structure of which
is used to guide CSP solution techniques. A common formulation represents variables as
nodes and constraints as edges. Fig. 1 shows a constraint hyper-graph representation of the
Course Scheduling problem. A solution to a classical CSP is a complete assignment to the
problem variables satisfying all constraints. A CSP may contain several solutions, and the
task for a constraint-based problem-solver is to find one or all of these. A solution to the
Course Scheduling problem is {x1 = 4, x2 = 3, x3 = 1}.

2.2. Fuzzy constraint satisfaction

Classical constraint satisfaction techniques support only hard constraints specifying
exactly the allowed variable assignment combinations. When an over-constrained problem
(i.e., which has no solution) is encountered, some constraints must be relaxed (removed
or weakened) before a solution to a less-constrained (but still interesting) problem can be
found. Without an indication of the relative importance of each constraint it is difficult to do
this consistently such that a useful solution will be found. Consider the Inconsistent Course
Scheduling problem, a variant of the Course Scheduling problem presented in Fig. 1, where
the total number of sessions is reduced to 7. This problem has no solution, how can a useful
solution be produced?

Real problems in general are not easily described in such definite terms as classical CSP
requires. A simple example is the expression of preferences among the set of assignments,
either to the whole problem or local to an individual constraint. Prioritised constraints
are also useful in the case of an over-constrained problem. If constraints with a lower
priority are relaxed it is more likely that the eventual solution will be useful. For real-time
tasks finding flexible solutions may be the only option. Classical techniques find a perfect
solution or no solution at all, presenting a serious problem if time runs out for the problem-
solver. A flexible system could return the best solution so far, embodying an anytime
algorithm, as noted in [11].

Fuzzy Constraint Satisfaction [9] supports prioritised and preference constraints. Both
are modelled by a fuzzy relation, R, defined by µR , a membership function associating
an assignment tuple in D1 × · · · × Dn with a value in a totally ordered satisfaction
scale, L = {l⊥, l1, l2, . . . , l
}. A preference constraint, ci , amongst a set, A, of potential
assignments to its constrained variables can be modelled as follows, where a ∈A:

µRi (a)= l
 if a totally satisfies ci,

µRi (a)= l⊥ if a totally violates ci ,

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.5 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 5

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 5

l⊥ < µRi (a) < l
 if a partially satisfies ci .
The scale V = {v⊥, v1, v2, . . . , v
} (effectively L in reverse) is used to support prioritised
constraints, representing possibility of violation (priority) of a constraint. A priority
degree, vj ∈ V , is associated with each prioritised constraint, cj . A constraint with priority
v
 is imperative and a constraint with priority v⊥ is totally irrelevant. The bijection b maps
from V to L such that L= b(V). A prioritised constraint cj with priority vj is modelled
as follows:

µRj (a)= l
 if a satisfies cj ,
µRj (a)= b(vj) if a violates cj .

A prioritised-preference constraint is represented by a fuzzy relation Rk , with µRi

describing the preference component. A constraint ck , represented by Rk will be satisfied
to at least the degree b(vk) since the priority degree defines a bound on the damage to the
solution that is incurred by the violation of this constraint. The constraint can be satisfied
above this level by satisfying the preference component to a higher degree.

µRk (a)=max
(
b(vk),µRi (a)

)
.

The consistency level of a partial assignment is calculated from the aggregated membership
values of the constraints involving the assigned variables as follows, where a is an
assignment to x1, . . . , xk ; ⊗ represents the conjunctive combination of fuzzy relations
(usually interpreted as the minimum membership value assigned by all relations); and
Vars(Ri) is the set of variables constrained by the constraint represented by Ri :

cons(a)=⊗µRi (ΠVars(Ri)x).

This quantity is an upper bound on the consistency of a complete assignment. It is
computed incrementally during search by considering only constraints that involve the
current variable, and is commonly used in a branch and bound search to find the best
solution [9].

Fig. 2 presents a fuzzy version of the Inconsistent Course Scheduling problem. The
fuzzified version allows the identification of the constraints that should be relaxed first and
a more precise specification (via preferences) of how each constraint is best satisfied. The
wish of Professor A to give about 4 lectures is assigned priority v3, with preference given

Fig. 2. Fuzzy course scheduling problem.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.6 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 6

6 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

to values close to 4. Similarly, the wish of Dr B to give 3 or 4 lectures is assigned priority

v2. The fact that there should be about 1 additional training session is represented by a
preference constraint. Finally, that there must be 7 sessions in total is a hard constraint
and so is assigned priority v
. As per the Inconsistent Course Scheduling problem, the
Fuzzy Course Scheduling problem has no perfect solution. However, a useful compromise
solution can still be found, i.e., {x3 = 3, x2 = 3, x3 = 1}. Since Professor A is relatively
happy with giving 3 lectures, the satisfaction degree of c1 and of the overall solution is l3.

2.3. Dynamic constraint satisfaction

In the description so far, problems have been assumed to be static, precluding any
changes to the problem structure after its initial specification. To a certain extent, fuzzy
CSP can be seen as adding dynamicity to the problem, which is effectively changed when
violated constraints are softened/removed. Many real problems, however, are subject to
change caused not by the need to find a compromise, but by the evolution of the problem
structure. Techniques for solving Dynamic Constraint Satisfaction Problems (DCSPs)
address this need.

Although several alternative DCSP formulations exist [20], this paper concentrates on
the earliest and most natural choice, as presented in [8]. A dynamic environment is viewed
as a sequence of CSPs linked by restrictions and relaxations, where constraints are added
to and removed from the problem respectively. This type of problem will hereafter be
referred to as rrDCSP. Naively, each individual problem in the sequence may be solved
from scratch using static CSP techniques, but this method discards all the work done in
solving the previous (probably similar) problem. Efficient rrDCSP solvers re-use as much
as possible of the effort required to solve previous problems in solving the current problem.

The oracles approach [34] searches through previously solved instances for a less
constrained version of the current problem. If one is found, the part of the search
space before the associated solution is not explored, since no solution exists in it for
the more constrained current problem. Local repair [25,35] maintains all assignments
from the solution to the previous problem to use as a starting point. Individual variable
assignments are modified until an acceptable solution is obtained. Constraint recording
methods [31,34] infer new constraints from the existing problem definition which disallow
inconsistent assignment combinations not directly disallowed by the original constraints.
The justifications of inferred constraints are recorded so that they can be used in future
problems, where the same justifications hold, to converge on a solution more quickly.

Returning to the Course Scheduling problem (of Fig. 1), consider the effects of changing
this problem as shown in Fig. 3. Professor A will now teach only 3 or 4 lectures, but
Dr B agrees to give 4 or 5 exercise sessions. The naive reaction is to simply apply a

Fig. 3. (Boolean) course scheduling problem (2).

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.7 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 7

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 7

static CSP solution procedure to the whole updated problem. This is wasteful of the work

done on the original problem. A solution to the updated Course Scheduling problem is
{x1 = 3, x2 = 4, x3 = 1}. The assignment to x3 is common to both problems. An rrDCSP
algorithm exploits this fact by focusing on the subset of variables whose assignments have
become inconsistent in light of the changed problem structure. Hence, there is a significant
efficiency saving made by avoiding re-solving a large part of the problem. This type of
technique also offers the benefits of stability: there is as little disruption from one solution
to the next as possible. An rrDCSP technique is more likely to achieve a reasonable level of
stability since a static CSP technique essentially discards all the work done on the previous
solution.

3. Fuzzy rrDFCSP

The combination of fuzzy CSP and rrDCSP to form fuzzy rrDFCSP enables the
modelling of a changing dynamic environment, retaining the greater expressive power
afforded by fuzzy CSP. In a dynamic environment where time may be limited, the ability
of fuzzy CSP to produce the best current solution anytime will prove even more valuable.
A fuzzy rrDFCSP can be thought of as a sequence of static flexible problems as per
rrDCSP, with all possible changes being realised through restriction and relaxation. When
applied to fuzzy CSPs, these operations can update a problem instance in more subtle
ways. For example, the priority of a fuzzy prioritised constraint may change, as might the
preferences of the individual tuples of a fuzzy preference constraint.

3.1. Fuzzy rrDFCSP solution techniques

The first solution technique examined for fuzzy rrDFCSP is based on the branch
and bound (hereafter referred to as BB) approach to solving static fuzzy CSP [9]. It
solves each instance in the dynamic sequence from scratch. However, the solution to the
previous problem in the sequence is maintained and used to make savings. The solution
to the previous problem in the dynamic sequence is checked against the current problem
before it is solved. If the previous solution also constitutes a solution with l
 satisfaction
degree for the current problem, no search is required. If it constitutes a solution for the
current problem with a satisfaction degree li , such that l⊥ < li < l
, the solution is stored
and used to set the necessary bound prior to search. During search, the solution to the
previous problem is used to guide domain element selection for assignment. Given several
possibilities with equivalent satisfaction degrees, an assignment is preferred which matches
that of the solution to the previous problem, if possible. This method is a simplification of
the oracles technique described in Section 2.3.

The second solution technique examined is a recently developed extension of the Local
Changes (LC) local repair algorithm [35]. LC searches for a solution by resolving conflicts
that occur when examining the solution to the previous problem in the sequence, within the
context of the current problem. It divides the variable set X into three subsets: X1, X2 and
X3 (such that X1 ∪X2 ∪X3 =X and Xi ∩Xj = ∅ where i, j ∈ {1, 2, 3}, i �= j). X1 is the
set of variables with fixed assignments and is used to ensure termination of the algorithm;

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.8 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 8

8 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 4. The local changes algorithm: example search structure.

X2 is the set of variables whose assignments are not fixed and X3 is the set of variables
currently without assignments.

Initially, only X2 and X3 are used. X2 contains those variables that were also part of the
previous problem in the sequence, and which therefore have assignments from the solution
obtained to that problem. Hence, X2 is the set of assignments that will be repaired to solve
the current problem. X3 contains variables that were not part of the previous problem, and
which therefore do not yet have assignments. LC searches for consistent assignments to
these variables. At the start of a problem sequence there is no previous problem, so X2 is
empty and X3 contains all variables in the initial problem.

Consider the example in Fig. 4. The exact nature of the search depicted is unimportant,
but note how the search process is controlled via the three variable sets. Starting from
scratch or a partial assignment, LC selects and attempts to assign a value to xi ∈ X3

(the selected variable is shown in bold in the figure after its transfer from X3 to X2). If
this assignment does not cause a conflict, LC selects another value from X3 and so on.
Otherwise, LC instigates a course of repairs with respect to the assignment to xi , hence xi

is placed in X1 to prevent a change to its assignment. The set of violated constraints is then
examined and the subset of X2 which is in conflict with xi is unassigned. LC recursively
solves the sub-problem of re-assigning this subset given the fixed assignment to xi and the
assignments to variables remaining in X2. A sub-problem is denoted by a bounded area.

During the solution of one sub-problem further repairs may be necessary, in which case
another variable is added to X1 and so on. If no repair is possible (since one or more of the
variables causing the conflict are in X1) LC backtracks to solve the parent sub-problem in
a different way. X1 can be seen as a type of tabu list [19], preventing a potentially infinite
cycle of repairs between mutually conflicting variables, ensuring termination.

Flexible Local Changes (FLC) [21], extends LC to support fuzzy constraints. The
method of identifying conflicts and then focusing on the sub-problem of resolving those
conflicts enables an effective use of the extra information afforded by fuzzy CSP in
reducing search. FLC is structurally similar to LC in its use of the variable sets X1,
X2 and X3 to control the search. FLC searches for an optimal assignment, as opposed
to an assignment that does not violate any hard constraint. FLC repeatedly selects a
variable, xi ∈X3 and assigns to it the domain element which results in the highest possible
consistency given the set of currently assigned variables in X1 ∪ X2. In making this

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.9 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 9

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 9

assignment repairs may be necessary to elements of X2. Termination is upon finding an

optimally consistent complete variable assignment.

The present work considers finding optimal solutions of fuzzy rrDFCSPs directly using
min aggregation. An alternative approach is to solve each problem in a dynamic sequence
via iteratively resolving successive classical CSPs, constructed by allowing all constraint
tuples with consistency degree greater than a prescribed α level. An optimal solution can
be found by moving α from l⊥ upwards one degree at a time up to the level where the
CSP becomes inconsistent. Where |L| is large, a binary search could be adopted to set α

[6,10]. This remains an important avenue of future work, as is the question of how best to
incorporate dynamicity into this method.

3.2. Fuzzy arc consistency

The idempotent min/max operators employed by fuzzy constraint satisfaction enable the
straightforward support of consistency enforcing techniques [30]. Fuzzy arc consistency
[9] can significantly enhance the performance of both BB and FLC. Fuzzy arc consistency
holds if any assignment involving one variable with a satisfaction degree li ∈ L can be
extended to any 2 variables, maintaining a satisfaction degree of li .

Enforcing fuzzy arc consistency is essentially the same process as for classical CSP
[17]. The FAC3() procedure [9], based on classical AC3() [17], is used. A queue of arcs
from the constraint network is maintained. An arc(xi, xj) is selected and revised, i.e., the
consistency degree of each di ∈Di is updated according to:

cons(xi = di)⊗max
j

(
cons(xj = dj)⊗ cons(xi = di, xj = dj)

)
.

If the consistency degree of any di ∈Di is updated by this revision, further revisions may
be possible to variables related to xi by constraints. Hence each arc(xh, xi), where h �= j ,
is added to the queue (if not already present). The algorithm terminates when the queue
is empty. The complexity of FAC3() is O(�m3e) [9], where �= |L| and e is the number
of arcs in the network. The upper bound, β , on the consistency of the whole problem is
the minimum over all the variables of the maximum consistency degrees of their domain
elements.

A fuzzy version of the classical AC4() arc consistency algorithm has also been
developed, with complexity O(m2e) [6]. However, although AC3() has a poorer worst
case time complexity than AC4(), it is often preferred in practice because of its better
average case performance [36], hence the choice made here. It is of course important to
test the performance of FAC4() in practice, and this is an important item of future work.

Pre-processing a problem with fuzzy arc consistency provides a bound, β , on its
consistency. Both BB and FLC benefit from β since it facilitates early termination when
a solution of satisfaction degree of β is found. Furthermore, when FLC examines the
previous solution with respect to the current problem it is only necessary to repair
constraints whose consistency is below β , leading to a higher percentage of solution reuse.
Without β all constraints whose consistency degree is less than l
 are repaired, regardless
of the fact that a solution of consistency l
 may not exist. FLC may also employ β when
considering which constraints to repair during search.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.10 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 10

10 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 5. Sub-problem composition under repair.

It is also possible to enforce various levels of arc consistency during search. In the
case of branch and bound, whose search proceeds chronologically, the assignment and
unassignment of variables proceeds in an ordered manner such that it can be guaranteed
that a particular set of assignments is fixed for the duration of a sub-problem. Consistency is
enforced with respect to the current variable assignments at each search node, enabling the
calculation of a more accurate upper bound, β , on the satisfaction degree of the remaining
sub-problem. As per basic BB, if this bound does not exceed α, the satisfaction degree of
the best solution found thus far, this search branch can be pruned.

FLC’s search does not proceed chronologically: all variables in X2 can be unassigned
in any order to effect repairs. Hence, it is difficult to enforce consistency based on
assignments to elements of X2 as changes made by such propagation must be undone
upon unassignment. This is a potential weakness which will be tested in the following
section. The solution proposed for LC (and adopted for FLC) is to enforce consistency
with respect to X1 [35]: it is guaranteed that assignments to X1 are fixed for the duration of
a sub-problem, hence they cannot be undermined by repair. Consider Fig. 5(a). If x5 ∈X3
is selected and instantiated and the current assignments to x3 and x4 are found to be
inconsistent, the sub-problem of resolving these inconsistencies is depicted in Fig. 5(b).
Since only variables {x1, x2, x3, x4} can possibly be present in the sub-problem, it is at first
sight only worth filtering the domains of these variables with respect to an assignment to
x5. Generally, when considering an assignment to xi , the domains of the current elements
of X2 are updated through consistency enforcing because it is the elements of X2 which
are unassigned to be repaired in the sub-problem for which xi is fixed.

To combat the problem of FLC’s reduced constraint propagation ability, bounds
information can be extracted from the elements of X3 (x6, x7, x8 in the example). Although
these variables will not feature in the repair sub-problem, they do have to be assigned
eventually, and their assignments may interact with the variables under consideration for
repair. Consider again the example shown in Fig. 5. If consistency enforcing showed,
for example, that it was always the case that the current assignment to x5 precluded any
assignment to x6 because of some constraint c(x5, x6), then there is little point in resolving
the conflicts with x1 and x2. In general, constraint propagation using the elements of X3
can contribute in this way to the calculation of β for the repair sub-problem.

3.3. The deletion threshold

Once a necessary bound for a sub-problem is established, it can be exploited by
consistency enforcing hybrids of both BB and FLC. Given, for example, a necessary bound

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.11 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 11

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 11
Fig. 6. Branch and bound solution to the problem shown in Fig. 2.

of li ∈ L, all domain elements that can be shown to have a unary satisfaction degree of
lj ∈L such that lj � li can be deleted for the duration of the sub-problem. The justification
for this comes directly from the conjunction of satisfaction degrees implemented using the
min operator: any single assignment with a satisfaction degree of li or less can never form
part of a solution to the sub-problem with a satisfaction degree of greater than li .

The ability to delete domain elements early saves further revision of the deleted
elements. Otherwise, each of these elements could potentially be revised i more times
before reaching l⊥ and being deleted. Furthermore, constraint propagation would not
necessarily reduce the satisfaction degrees of the affected elements to l⊥. Hence, they
might never be deleted, but their presence degrades heuristics based on selecting variables
with the smallest domain first, whose use is popular in constraint satisfaction [22].

3.4. Solution of the fuzzy course scheduling problem

The BB approach solves the Fuzzy Course Scheduling problem as shown in Fig. 6,
where a triangle denotes a sub-tree in which the algorithm failed to find a solution better
than the best currently known. Since this is the first problem in the sequence, the problem
is treated as a static fuzzy CSP. In the figure, the domain element heuristic prefers the
assignment with the highest satisfaction degree. The algorithm rapidly finds the solution
{x1 = 4, x2 = 1, x3 = 2} with the satisfaction degree l2. This bound on further solutions
allows it to prune effectively the search tree subsequently. Hence, the optimal solution
{x1 = 3, x2 = 3, x3 = 1}, with satisfaction degree l3, is quickly found. FLC uses the same
domain element selection heuristic as BB. The solution procedure is shown up to the point
that an optimal solution is found:

• Select x1. Relevant constraint: c1(x1).
– x1← 4, consistency = l
.
– X1 = {},X2 = {x1},X3 = {x2, x3}.
• Select x2. Relevant constraint: c2(x2).

– x2← 3, consistency = l
.
– X1 = {},X2 = {x1, x2},X3 = {x3}.
• Select x3. Relevant constraints: c3(x3), c4(x1, x2, x3).

– For all assignments, consistency = l⊥.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.12 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 12

12 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 7. Fuzzy course scheduling problem—part 2.

Fig. 8. Branch and bound solution to the problem shown in Fig. 7.

– Start repair from x3← 1 (best local assignment).
– Repair c4(x1, x2, x3): Choose x1.
– X1 = {x3},X2 = {x2},X3 = {x1}.
• Select x1. Relevant constraints: c1(x1), c4(x1, x2, x3).

– x1← 3, consistency = l3.
– Assignment {x1 = 3, x2 = 3, x3 = 1}, consistency = l3, is optimal.

The next time the course is run (see Fig. 7), it is expanded to 8 sessions (c4) and the
preference is now for a greater number of training sessions (c3). Additionally, other
commitments mean that Professor A prefers to give fewer lectures (c1). The solution
procedures for both algorithms on this updated problem are shown below, illustrating the
savings that can be achieved through the maintenance of effort from previous problems.

BB first examines the solution to the previous problem with respect to this new problem.
Since it violates the hard constraint and therefore has a satisfaction degree of l⊥, it does not
help in setting a necessary bound on the satisfaction degree of any new solution. However,
the previous solution is used during domain element selection: the assignments x1 = 3 and
x2 = 3 are made because they match the assignments to those variables in the previous
solution. The optimal solution {x1 = 3, x2 = 3, x3 = 2} is then found with little effort
(Fig. 8). FLC’s examination of the solution to the previous problem reveals that constraints
c3 and c4 are violated. Since these constraints share a variable, x3, it is possible that by
reassigning just this one variable, both constraints can be satisfied. This proves to be the
case:

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.13 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 13

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 13

• Evaluate assignment {x1 = 3, x2 = 3, x3 = 1}: consistency = l⊥.

– Repair c3(x3), c4(x1, x2, x3): Choose x3 to cover both.
– X1 = {},X2 = {x1, x2},X3 = {x3}.
• Select x3. Relevant constraints: c3(x3), c4(x1, x2, x3).

– x3← 2, consistency = l3.
– Assignment {x1 = 3, x2 = 3, x3 = 2}, consistency = l3, is optimal.

For brevity of presentation, the steps performed by FLC to verify that this is indeed an
optimal solution are not given.

4. An empirical study of fuzzy rrDFCSPs

This section describes an empirical study of random fuzzy rrDFCSPs. Due to the size of
the study (almost 40,000 individual instances), selected results are presented to reflect the
general trend of the data. The problems are sequences of ten fuzzy CSP instances. Binary
constraints are considered, following the approach of many studies of classical CSP [13,
28]. Each instance is generated using the following parameters:

• n. Number of variables, taking values from {20, 30, 40} in order to gauge the effects
of increasing problem size.
• m. Domain size, fixed at 6 throughout to limit the size of this study. Further studies

should examine the effects of varying m.
• �= |L|. Takes values from {3, 4, 5} to examine the effects of an increasing amount of

flexibility on the difficulty of finding the best solution.
• con. Connectivity of the constraint graph, the proportion of the variables which are

related by a constraint. Takes values from {0.25, 0.5, 0.75}, allowing an examination
of the effects of an increasingly connected graph.
• t . Constraint tightness, the proportion of assignment combinations that are disallowed

by each constraint. Takes values from {0.1, 0.2, . . ., 0.8, 0.9}.

The granularities chosen for the connectivity and tightness parameters make this study
feasible. Interesting phenomena may occur between the values chosen, which future
studies might investigate. Constraints are divided into an equal number of fuzzy pri-
oritised, preference, and prioritised-preference types. Priority degrees are evenly distrib-
uted amongst the prioritised and prioritised-preference constraints. Similarly, preference
degrees are evenly distributed amongst the tuples of each preference and prioritised-
preference constraint.

Random restriction/relaxation operations are performed. A further parameter, ch,
determines the proportion of constraints that are removed and replaced (when ch = ‘1
constraint’, a single constraint is replaced between instances). To maintain a uniform
constraint graph connectivity, the same number of constraints are added as are taken away.
Each constraint removed is replaced by a constraint of the same type and tightness. If it
is a prioritised or prioritised-preference constraint, the priority assigned is the same as the
removed constraint to maintain the original distribution. The justification for the effort of

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.14 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 14

14 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

maintaining a uniform problem structure is to eliminate the effects of differing proportions

of fuzzy constraint types or priority/preference distributions.

Five dynamic sequences of ten instances were generated per parameter combination.
Mean results are reported, hence each point on the graphs presented represents the solution
of 50 instances. In all, 3645 dynamic sequences were generated, totalling 36450 individual
problem instances to be solved.

4.1. The algorithms studied and evaluation criteria

The performances of basic BB and FLC were so poor compared to refined versions that
they were not chosen for inclusion in this study. The naming convention for the variants
tested is as follows. An ‘AC’ prefix denotes that fuzzy arc consistency is established once
prior to search. If the suffix is ‘FC’, then the consistency enforcing process corresponds
to classical Forward Checking [15]: the domains of unassigned variables are revised once
with respect to each new assignment. Similarly, if the suffix is ‘FMAC’ then, as per the
classical MAC algorithm, fuzzy arc consistency is established initially and with respect to
each new variable assignment. Unless otherwise stated, the deletion-threshold is used to
enforce fuzzy arc consistency. A comparison with dynamic backtracking [14] is omitted
since, as recognised by [35], this algorithm has strong similarities with LC. Updating
dynamic backtracking to support dynamic CSPs and flexible constraints would produce
a very similar algorithm to FLC.

The variants of BB tested are: BBFC, ACBBFC, BBFMAC. A similar number of
basic variants of FLC are also tested. In addition, three extra hybrids are tested which
also take into account the domains of variables not immediately in line for repair, as
detailed in Section 3.2. These are denoted by the suffix ‘ft’ (for ‘full test’): FLCFC,
FLCFCft, ACFLCFC, ACFLCFCft, FLCFMAC, FLCFMACft. Performance is judged by
three criteria:

• Constraint checks. Every time a constraint is queried for the consistency degree of a
pair of assignments, this is counted as a constraint check.
• Search nodes expanded. Every assignment of di ∈ Di to xi corresponds to a node in

the search tree.
• Solution stability. Since, in this study, the set of variables does not change within a

dynamic sequence, the stability of the solution to each problem as compared with the
last can easily be measured as the proportion of assignments that are the same. It is
appropriate to use this measure, since there may be a number of solutions with optimal
satisfaction degrees.

Run-times are not reported, although they have been observed to track consistency checks.
Due to the size of the study, results were collected over a large network of machines of
varying capabilities and under differing loads. It would be difficult, therefore, to place any
great faith in run-time results.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.15 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 15

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 15

4.2. Heuristics investigated
Three operations which are ordered heuristically are the selection of a variable to
instantiate next, the choice of domain element to instantiate, and the order in which
constraints are checked. Apart from those presented here, a variety of other heuristics were
tested extensively (see [23] for details).

As the analogue of classical Backtrack, it is simple to use the Brelaz heuristic [4] with
BB. That is, to select the variable with smallest remaining domain first, breaking ties by
preferring the variable with the greatest connectivity to the currently unassigned variables.
FLC may also use a Brelaz-type heuristic, but the search structure of this algorithm,
controlled by the sets X1, X2 and X3 provides the possibility of creating novel variations on
the variable selection heuristic. The heuristic employed in this study, SmallestD-X23,
starts by selecting the variable with the smallest remaining domain and breaks ties using
the connectivity of the variables in X2∪X3, i.e., all those variables whose assignments are
free to change. Note that even though elements of X3 do not figure in the sub-problem of
repairing assignments, they do have to be assigned eventually and hence interact with the
current variable.

The domain element selection heuristic is the main method by which the BB algorithms
make use of dynamic information. In order to attempt to find the best solutions first, the
element with the highest consistency degree is chosen first. However, if there are several
such elements, ties are broken by examining the solution to the previous problem in the
sequence, and if one of the tied elements matches the assignment in the previous solution,
it is chosen.

For FLC, value selection is split into two cases, where repairs are and are not necessary.
Taking the latter case first, the element with the highest consistency degree is selected first
to find the solution with the highest consistency degree earlier. As per BB, ties are broken
by assigning the same element to a variable as appeared in the previous solution. This
may appear counter-intuitive, but a conflict commonly necessitates the unassignment of
multiple variables. Re-assigning each of these may trigger further repairs, and as a side
effect remove conflicts with some previous solution assignments. If so, it is possible to
reinstate the previous solution assignments, promoting stability.

When repairs are necessary, it is intuitive to select a repair that is most likely to
succeed. The domain element selection heuristic used for repair, ConsDeg-PrevSoln-
con, follows the approach of the BB algorithm to an extent in first breaking ties by matching
against the previous solution. Ties are broken further by preferring to repair the set of
variables with the least connectivity to the remainder of the problem.

The process of checking constraints is ordered such that the constraint most likely to
fail is checked first. This is achieved by examining the size of the domains Di , Dj at the
end of each arc(xi, xj) to be checked. The heuristic prefers those arcs with the smallest
summed domain size. Ties are broken by restricting the comparison to each Di , since this
is the domain being filtered.

4.3. Results: search effort

This section investigates the relative search effort required by each algorithm to solve
the set of random fuzzy rrDFCSPs. The three variants of BB are tested against three

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.16 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 16

16 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

hybrids of FLC. The ‘ft’ (see Section 4.1) variants hold a small but consistent advantage

over those variants of FLC that do not perform constraint propagation on elements of
X3. For clarity, therefore, only representative results for the ‘ft’ variants are presented in
Figs. 9–16.

Throughout the results the forward-checking algorithms require many fewer constraint
checks than the algorithms maintaining fuzzy arc consistency. The increased cost of
enforcing fuzzy arc consistency (see Section 3.2) is a contributing factor to this result.
In terms of search nodes the roles are reversed, with the arc consistency-maintaining
algorithms performing significantly better. This is unsurprising: by performing more
constraint propagation, these algorithms can detect dead ends in the search tree more
quickly. BBFC dominates FLCFCft by both search cost measures. This is as predicted
in Section 3.2, with the more rigid chronological search structure of BB allowing greater
propagation.

ACBBFC and ACFLCFCft typically require fewer constraint checks than BBFMAC
and FLCFMACft respectively. The MAC algorithms fail to exploit the extra propagation
gained from maintaining fuzzy arc consistency throughout search to the extent that the
overall number of constraint checks is reduced. The reverse is true of search nodes, as
would be expected: the forward checking algorithms are unable to detect dead ends as
early as the MAC variants of both BB and FLC.

Fig. 9. Mean constraint checks: �= 3, ch=‘1 constraint’, n= 20, con= 0.25.

Fig. 10. Mean nodes: �= 3, ch=‘1 constraint’, n= 20, con= 0.25.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.17 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 17

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 17

A comparison of ACBBFC versus ACFLCFCft and BBFMAC versus FLCFMACft

reveals that, on easier, more flexible problems the FLC variants both require fewer
constraints checks and explore a smaller search tree. This situation changes as more
difficult problems are considered (see Figs. 13 and 14), when the greater propagation
enabled by chronological search results in a large reduction in overall effort.

A prominent feature in the results is the presence of multiple phase transitions. This is
predictable, with the number of phase transitions corresponding to the number of degrees
of consistency available above l⊥. Transitions exist as t increases from problems that are
solvable to a consistency degree, la , to being unsolvable to la yet still solvable to the
adjacent consistency degree below la in L. The phase transitions, corresponding to peaks
in search effort, are particularly evident when �= 5 (see Figs. 11 and 12). The final phase
transition, from a problem solvable with consistency degree l1 to an unsolvable problem,
corresponds to the single phase transition widely observed in Boolean problems [28].

Within the constraint check results on easier problems, phase transitions are most clear
for those algorithms that perform an initial fuzzy arc consistency step, but not for those
that do not. The cost, in constraint checks, of enforcing fuzzy arc consistency initially
(as noted, a more expensive process than Boolean arc consistency) dominates the cost of
the rest of the search. The peak observed for the pre-processing algorithms is therefore
indicative of a phase transition in the cost of enforcing fuzzy arc consistency also observed

Fig. 11. Mean constraint checks: �= 5, ch=‘1 constraint’, n= 20, con= 0.25.

Fig. 12. Mean nodes: �= 5, ch=‘1 constraint’, n= 20, con= 0.25.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.18 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 18

18 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 13. Mean constraint checks: �= 4, ch= 0.1, n= 40, con= 0.5.

Fig. 14. Mean nodes: �= 4, ch= 0.1, n= 40, con= 0.5.

in Boolean problems [12]. A single peak might be explained by the fact that enforcing
fuzzy arc consistency, as opposed to searching for a solution, is centred around constraint
propagation. When the constraints are less tight, independent of the number of consistency
degrees, less propagation is possible, hence enforcing fuzzy arc consistency costs less.
Conversely, when the constraints are tighter, strong propagation is possible, revising the
unary consistency degree of many domain elements rapidly. Between these two cases,
revisions are possible, but in small amounts, resulting in the need to check many more
constraints before fuzzy arc consistency is enforced. Multiple phase transitions are not
obscured when search nodes results are considered. These reflect only the search process,
the cost of the pre-processing step having been factored out.

Increasing n, con and (to a lesser extent) � produces problems that are in general
significantly more difficult to solve. Enforcing fuzzy arc consistency is no longer the
dominant cost in terms of constraint checks. Thus, a more uniform behaviour pattern is
observed for each algorithm. The fact that a single transition peak is visible in results
such as those in Figs. 13 and 14 is due to the resolution of the tightness axis: the high
connectivity means that the phase transitions occur more quickly as the tightness parameter
is increased.

Search effort increases with the proportion of change between problem instances for all
algorithms. This trend is indicative of the extra effort required to maintain a stable solution

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.19 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 19

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 19
Fig. 15. Mean constraint checks: �= 4, ch= 0.25, n= 20, con= 0.25.

Fig. 16. Mean nodes: �= 4, ch= 0.25, n= 20, con= 0.25.

in the face of an increasingly dynamic problem structure. The comparative performance
of the BB and FLC algorithms is skewed as ch increases. The repair-based strategy of
the FLC variants appears to be most effective when constraints are loose and a targetted
repair of a relatively small sub-problem is enough to produce an optimal solution. BB does
not attempt repairs and so is unable to focus on small areas of the problem. Forcing the
‘wrong’ stable assignment early in the search can cause a significant increase in overall
effort. As t increases, however, the stronger propagation of BB begins to tell, revealing
poor assignment choices earlier.

4.4. Results: stability

This section examines the ability of variants of BB and FLC to maintain stable
solutions, i.e., to minimise the difference between consecutive solutions to problems
in the dynamic sequence. Although stability is not an explicit optimisation criterion,
it is expected that FLC’s method of repairing the previous solution and the domain
element selection heuristics of both BB and FLC will produce stable solutions. In future,
preservation of stability could be added as a means of breaking ties between solutions with
optimal consistency degrees, although at a greater computational cost. Figs. 17–20 present
representative results. Entries corresponding to the highest tightness values are typically

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.20 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 20

20 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 17. Stability: �= 3, ch=‘1 constraint’, n= 20, con= 0.25.

Fig. 18. Stability: �= 3, ch= 0.25, n= 20, con= 0.25.

based on stability results for fewer problems since this entry coincides with the final phase
transition to unsolvable problems. In this case, stability is measured between the previous
solvable problem and the current solvable problem, rather than simply between adjacent
problems in the sequence.

The variants of BB and FLC that enforce fuzzy arc consistency, whether as a pre-
processing step or during search consistently produce more stable solutions than forward
checking versions. Enforcing fuzzy arc consistency provides a bound, β , on the remaining
problem (Section 3.2). In the case of FLC, constraints already satisfied to consistency
degree at least β need not be repaired, aiding stability by not unnecessarily disturbing
assignments. Similarly for BB, a stable assignment of at least consistency degree β can be
preferred over another with a higher consistency degree: in all circumstances the overall
problem cannot have a consistency degree exceeding β .

Given the utility of a more informed bound on the remaining problem, it is unsurprising
that BBFMAC and FLCFMACft produce, almost uniformly, the most stable solutions
of the BB and FLC variants respectively. Enforcing fuzzy arc consistency appears to
be particularly important to the stability of FLC. Without this, FLCFCft produces less
stable solutions than BBFC, whereas ACFLCFCft and FLCFMACft maintain a consistent
advantage over their BB counterparts. The advantage of the FLC algorithms is also a result
of the type of search they employ. Not only are stable assignments preferred at all choice

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.21 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 21

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 21
Fig. 19. Stability: �= 5, ch=‘1 constraint’, n= 20, con= 0.5.

Fig. 20. Stability: �= 5, ch= 0.25, n= 20, con= 0.5.

points, but FLC’s repair-based search actively seeks to leave in place assignments that
match the previous solution.

As expected, the ability of all algorithms to produce stable solutions decreases as
the amount of change between instances increases (Figs. 18 and 20). Varying � or n

affects overall stability levels since a less flexible problem structure allows less freedom
to find a stable solution. However, varying these parameters does not change the relative
performance of the algorithms tested.

4.5. Utility of dynamic information

BB and FLC make extensive use of information stored in the solution to the previous
problem in a dynamic sequence to improve the efficiency of searching for a solution to the
current problem. This section compares ‘crippled’ variants of BB and FLC that do not have
access to dynamic information against their fully dynamic counterparts. In the case of BB,
this means that it no longer has a heuristic ‘guide’ when making variable assignments, and
FLC must solve each new problem instance from scratch. The algorithms chosen for this
part of the study are BBFC, BBFMAC, FLCFCft and FLCFMACft. The suffix ‘noDyn’
indicates those algorithms whose dynamic capability has been removed. Representative
results are presented in Figs. 21–24.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.22 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 22

22 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 21. Mean constraint checks: �= 5, ch=‘1 constraint’, n= 20, con= 0.25.

Fig. 22. Mean nodes: �= 5, ch=‘1 constraint’, n= 20, con= 0.25.

With respect to constraint checks (Fig. 21), BBFMAC suffers the most from losing
the dynamic capability. This algorithms appears to use dynamic information to target
the greater amount of propagation it does most effectively. For the other algorithms the
benefit of making use of dynamic information is less pronounced in terms of constraint
checks. The number of search nodes by each algorithm, however, is significantly affected
(Fig. 22). The use of dynamic information allows each algorithm to make a more informed
exploration of the search tree, hence reducing its overall size.

Unsurprisingly, the advantage of trying to re-use information from the solution to the
previous problem is eroded as the proportion of the problem which changes from instance
to instance is raised. A clear advantage is still evident even when fully one quarter of the
problem changes between instances. Also, as constraint tightness increases to the point that
the problems are unsolvable, dynamic information is no longer helpful to reduce search
effort. Nor does it hinder search, however, which might have been the case if the domain
element selection heuristics had made poor choices with respect to the effort to prove
unsolvability. The number of consistency degrees, �, has minimal effect on the size of the
advantage gained by using dynamic algorithms.

Stability results are presented in Figs. 23 and 24. When the proportion of change
between instances is very small, the non-dynamic algorithms find relatively stable
solutions simply because the problem structure has not changed sufficiently to affect their

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.23 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 23

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 23
Fig. 23. Stability: �= 5, ch=‘1 constraint’, n= 20, con= 0.25.

Fig. 24. Stability: �= 5, ch= 0.25, n= 20, con= 0.25.

heuristics. Even so, the dynamic algorithms use the extra information available to produce
significantly more stable solutions. As expected, the ability to find stable solutions is
diminished as the proportion of the problem that changes between instances is increased.
However, the dynamic algorithms are still able to maintain a large advantage over their
uninformed counterparts.

4.6. Utility of the deletion threshold

Section 3.3 described the deletion threshold, which allows consistency-enforcing
hybrids to filter domain elements as early as possible. This method was tested on BBFC,
BBFMAC, FLCFCft and FLCFMACft with representative results presented in Figs. 25
and 26. The suffix ‘noDel’ indicates algorithms with deletion threshold l⊥. Overall, the
utility of the deletion threshold increases with � since an ever greater number of revisions
are otherwise required to revise the consistency degree of a domain element to l⊥. At high
connectivities more constraint propagation is possible, increasing the likelihood that the
consistency degree of a domain element is revised to l⊥ and decreasing the utility of the
deletion threshold.

Most benefit is gained in terms of constraint checks by algorithms maintaining fuzzy
arc consistency as they perform more constraint propagation. In terms of search nodes,

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.24 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 24

24 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 25. Mean constraint checks: �= 5, ch= 0.1, n= 20, con= 0.25.

Fig. 26. Mean nodes: �= 5, ch= 0.1, n= 20, con= 0.25.

however, the forward checking algorithms are most improved. Forward checking is weak
propagation, hence the ability to filter more domain elements has greater impact. In
turn, filtering domain elements early can improve the performance of variable ordering
heuristics (see Section 3.3).

4.7. Summary of empirical results

One of the most important conclusions that can be drawn from these results is that
the use of dynamic solution techniques is justified: effort required to maintain and re-use
information from the previous problem in a dynamic sequence is compensated for by an
increase in the quality of results as measured by all three criteria given in Section 4.1.
However, it is difficult to choose a clear ‘winner’. Although the forward checking
algorithms consistently gave better results in terms of constraint checks, they were often
poorer when search nodes were considered. Conversely, the algorithms that maintain fuzzy
arc consistency consistently explored fewer search nodes, but made many more constraint
checks. One general rule is that the BB algorithms are more efficient, as predicted, on the
harder problems, since their more rigid search structure allows more effective constraint
propagation. Another is that the FLC variants produce more stable solutions since they

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.25 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 25

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 25

actively work to maintain the assignments in the solution to the previous problem in an

instance rather than simply re-assigning the same domain element as a tie-breaker.

5. Flexible planning problems

Many real-world planning problems present the need for soft constraints. Consider an
example from the logistics domain where a valuable package must be loaded onto a truck.
The preconditions of the Load-truck action state that (i) the truck and (implicitly)
valuable package must be co-located, and (ii) a guard must be present. While precondition
(i) is imperative, precondition (ii) is a preference or soft constraint and can be relaxed with
an associated damage to the resultant plan. Classical AI Planning [1] is too rigid to model
such problems, being founded on hard constraints, and hence has no capability of making
compromises. A flexible planning problem is introduced to allow a tradeoff between plan
length and the compromise decisions made. Fuzzy CSP is the formal foundation underlying
the definition of a flexible planning problem. Subjective truth degrees are associated
with propositions while satisfaction degrees are associated with plan operators and goals,
expressing how well their preconditions are satisfied by a set of flexible propositions.
Plan satisfaction degrees are calculated from the satisfaction degrees of their constituent
instantiated operators and goals, enabling a direct comparison amongst a number of plans
containing different compromises.

More formally, a flexible planning problem, Ψ , consists of a 4-tuple, 〈Φ , O, I, Γ 〉,
denoting sets of plan objects, flexible operators, initial conditions consisting of flexible
propositions, and flexible goal conditions. Boolean propositions are herein replaced by
flexible propositions, ρ, of the form (ρ φ1, φ2, . . . , φj ki), where each φj ∈ Φ and ki is
an element of a totally ordered set, K , which denotes the subjective degree of truth of
the proposition. K is composed of a finite number of membership degrees, k⊥, k1, . . . , k
.
The original Boolean proposition type is captured at the end points of K , with k⊥ ∈K and
k
 ∈ K indicating total falsehood and total truth respectively. For brevity, when dealing
with propositions which only ever take a truth value of k⊥ or k
, the Boolean style of ¬(ρ

φ1, φ2, . . . , φj) and (ρ φ1, φ2, . . . , φj) is adopted.
A flexible proposition can easily be described by a fuzzy relation [27], R, defined by a

membership function µR(.) : Φ1×Φ2 × · · · ×Φj →K , where Φ1×Φ2× · · ·×Φj is the
Cartesian product of the subsets of Φ allowable at this place in the proposition. A flexible
operator, o ∈ O (Fig. 27(a)) is described by a fuzzy relation mapping from the precondition
space onto a totally ordered satisfaction scale, L and a set of flexible effect propositions.

a) (operator o b) (goal γ

(params param1, param2, . . .) {when θi li)}
σi : {when (preconds θi1 θi2 . . .) {when θj lj)}

(effects ρi1 ρi2 . . .) li} etc)
σj : {when (preconds θj1 θj2 . . .)

(effects ρj1 ρj2 . . .) lj }
Fig. 27. General formats of flexible operators and goals.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.26 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 26

26 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

L is distinct from K in that it represents the degree of compromise required to apply an

operator in the current situation as opposed to the truth of a proposition. As per K , L is
composed of a finite number of membership degrees, l⊥, l1, . . . , l
. The endpoints, l⊥ ∈L

and l
 ∈ L respectively denote a complete lack of satisfaction and complete satisfaction.
A flexible operator consists of a set of disjoint conditional clauses, Σ . Each σ ∈Σ is a

triple 〈Θ, E, ki〉 denoting a conjunction of flexible preconditions, a conjunction of flexible
effect propositions and the satisfaction degree of this operator given these preconditions.
Each θ ∈Θ has the form (ρ φ1, φ2, . . . , φj τ κ), where τ is a precondition operator with
argument set κ . Allowed precondition operators encompass equality, inequality, ranges of
truth degrees and sets of discrete truth degrees. Each σi maps a subset of the space of
preconditions to a set of effects and a satisfaction degree in L. Again, when dealing with
preconditions which only ever take a truth value of k⊥ or k
, the Boolean style of ¬(ρ

φ1, φ2, . . . , φj) and (ρ φ1, φ2, . . . , φj) is adopted for θ .
A flexible goal γ ∈ Γ maps from the space of flexible propositions to L. Each goal

is defined using a number of clauses, as shown in Fig. 27(b). Preconditions are defined
exactly as those used in the flexible operators. More than one set of mutually-consistent
propositions may satisfy the plan goals to some extent. Hence, the satisfaction degree of a
plan is the fuzzy conjunction of the satisfaction degrees of each operator and each goal used
in the plan. A plan’s quality is its satisfaction degree combined with its length, where the
shorter of two plans with equivalent satisfaction degrees is better. A significant advantage
of this formalism is in the over-constrained case: when Boolean planning returns no plan
at all, compromise plans may still be constructed.

The disadvantage of using an idempotent operator is the so-called drowning effect [30],
where a low satisfaction degree resulting from one assignment ‘drowns’ several others
whose satisfaction degrees, whether optimal or sub-optimal, are not reflected in the overall
satisfaction degree. This effect can be counteracted to an extent by exploring the path of
highest satisfaction first, as demonstrated in the following section.

Fig. 28 presents an illustrative example, the Valuable Package Problem. Here, K =
{k⊥, k1, k2, k
}, L= {l⊥, l1, l2, l
}. The goals (Fig. 29) are to transport the two packages
to city c3. The two packages have different values, described by: (valuable pkg1 k2) and
(valuable pkg2 k1). Since pkg2 is of a lower value, one option is to choose not to transport
it, but at a very low satisfaction degree. Transportation is by means of a truck, initially

Fig. 28. A flexible planning example. The ri are roads and the ci are cities.

(goal pkg1-destination (goal pkg2-destination
(when (at pkg1 c3) l
)) (when (at pkg2 c2) l1)

(when (at pkg2 c3) l
))

Fig. 29. Flexible goals for the valuable package problem.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.27 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 27

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 27

a) (operator Drive-truck

params (?v vehicle) (?o location) (?d location) (?rMj mj-rd) (?rMt mtn-rd))
{when (preconds (at ?v ?o) (connects ?rMj ?o ?d))

(effects (not (at ?v ?o)) (at ?v ?d)) l
}
{when (preconds (at ?v ?o) (connects ?rMt ?o ?d))

(effects (not (at ?v ?o)) (at ?v ?d)) l1})
b) (operator Load-truck

params (?t truck) (?p package) (?d location) (?g guard))
{when (preconds (at ?t ?l) (at ?p ?l) (valuable ?p <= k1))

(effects (not (at ?p ?l)) (on ?p ?t)) l
}
{when (preconds (at ?t ?l) (at ?p ?l) (on ?g ?t) (valuable ?p >= k2))

(effects (not (at ?p ?l)) (on ?p ?t)) l
}
{when (preconds (at ?t ?l) (at ?p ?l) (not (on ?g ?t)) (valuable ?p >= k2))

(effects (not (at ?p ?l)) (on ?p ?t)) l2})
Fig. 30. The Drive-truck and Load-truck operators.

at c1. Road r3 is mountainous and should be avoided if possible, while the remainder are
main roads. The flexible operator Drive-truck (Fig. 30(a)) describes how the truck
moves across the map. Fig. 30(b) presents Load-truck which considers the value of the
package and the presence of a guard. If the package is not very valuable (e.g., pkg2), the
guard’s presence is immaterial—a satisfaction degree of l
 is assigned. If the package is
quite valuable, however, loading it onto the truck without a guard results in a satisfaction
degree of l2. A similar flexible operator, Unload-truck, also exists. Further (Boolean)
operators allow the guard to board and leave the truck.

6. Flexible Graphplan: synthesising plans under soft constraints

Similarly to Graphplan, Flexible Graphplan (FGP) constructs and analyses Flexible
Planning Graphs in two interleaved phases: a forward phase where the graph is extended
until the plan goals are found, and a backward phase where the graph is searched for a plan.
A planning graph is divided into a number of levels. Leveli contains actions (actionsi) and
propositions (propositionsi). Level0 contains proposition nodes which capture the initial
problem state.

Plan synthesis can be simplified greatly by adding mutual exclusion constraints to the
planning graph. Two propositions are exclusive if they express different truth degrees for
the same proposition or all ways of creating one are exclusive of all ways of creating
the other. Exclusion constraints between action nodes express that no valid plan contains
both actions. Two actions are mutually exclusive for three reasons, as per Graphplan:
Inconsistent Effects—an effect of one action expresses a different truth degree from
an effect of the other for the same proposition; Interference—an effect of one action
expresses a different truth degree from a precondition of the other for the same proposition;
Competing Needs—the actions have mutually exclusive preconditions.

When extending the planning graph to leveli from leveli−1 (Fig. 31), each clause of each
operator is instantiated in all possible ways to mutually consistent nodes in propositionsi−1.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.28 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 28

28 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 31. Flexible planning graph levels1,2 for the problem of Fig. 28. All pairs of non-Noop nodes in actions2
except {G-T l
 , L-T l
} are mutually exclusive.

An action with the satisfaction degree for this instantiation is added to actionsi . A Noop
records the persistence of a proposition. Mutual exclusion relations are added according to
the above conditions.

6.1. Limited graph expansion and satisfaction propagation

Flexible graph expansion has an increased cost compared with Boolean graph
expansion, though reducible by imposing limits on graph expansion. If a plan of
satisfaction degree lα < l
 has been found, FGP searches onwards to look for a plan with
a higher satisfaction degree. Yet, there is no point in instantiating flexible operator clauses
with a satisfaction degree less than or equal to lα : a plan with this satisfaction degree has
been found already—a longer plan with the same satisfaction degree is deemed to be of a
lower quality. The conjunctive combination rule implemented via the min operator ensures
that no plan of satisfaction degree lb can contain an action of satisfaction la , where la < lb .
Hence, the completeness of the search is not affected by omitting such actions in further
graph levels.

Propagating satisfaction degrees forwards as the graph is expanded can also consid-
erably reduce search effort. The conjunctive combination rule guarantees that the overall
satisfaction degree of an action plus its supported preconditions is the minimum satisfac-
tion degree over all the actions involved. Hence, while expanding the graph to leveli ,
keep track of the maximum satisfaction degree of all actions that produce each node in
propositionsi . When expanding the graph to leveli+1 the satisfaction degree of a node in
actionsi+1 is the minimum of the satisfaction degree of the instantiated operator clause
and the minimum of maximum satisfaction degrees of each of its preconditions. Search is

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.29 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 29

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 29

reduced because it is obvious at an earlier stage that, say, a certain action can never be part

of a plan with satisfaction degree l
. For instance, Unload-truck (Fig. 31) requires
‘on pkg1 truck1’ as a precondition. The sole way of asserting this proposition at level1 is
via a Load-truck action which has a satisfaction degree of l2. The other precondition
of Unload-truck, ‘at truck1 c1’, is an initial condition, so the minimum of maximum
satisfaction degrees attached to the preconditions of this action is l2. The satisfaction de-
gree of Unload-truck at level2 is the minimum of l2 and the satisfaction degree of the
instantiated operator clause (l
), resulting in a satisfaction degree of l2.

6.2. Flexible plan extraction via fuzzy rrDFCSP

A node in propositionsi can be viewed as a fuzzy CSP variable, its domain comprising
the set of nodes in actionsi which assert this proposition as an effect. A unary preference
constraint is constructed from the domain elements and their associated satisfaction
degrees. Consider ‘at truck1 c1’ in propositions2 (Fig. 31) with a domain of two Drive-
truck actions and a Noop action. A unary preference constraint specifies that the
assignment of one of the Drive-truck actions and that of the Noop action have
satisfaction degree l
, while the assignment of the other Drive-truck action has a
satisfaction degree of l1. Boolean binary constraints are generated directly from the mutual-
exclusion relations in the planning graph.

If levelg contains the goal propositions, each set of supporting actions specifies (via
preconditions) a sub-problem at levelg−1. Solutions to these sub-problems specify new
sub-problems at levelg−2, etc. A sub-problem sequence associated with a graph level is
viewed as a fuzzy rrDFCSP (Fig. 32). FGP uses ACFLCFC to solve these sequences
since individual sub-problems are relatively easy to solve, and ACFLCFC is relatively
lightweight. This algorithm is also able to maintain solution stability. A stable solution to
a sequence of sub-problems enables FGP to focus on conflicts that prevent the subgoal
propositions under consideration from being supportable.

If solutions to the sub-problem at leveli intersect (likely in all but the most tightly
constrained cases), there will be similarities between sub-problems at leveli−1. An
rrDFCSP algorithm exploits these similarities, re-using effort applied to the previous
problem in the sequence when solving the current sub-problem. Effort used in levels visited
in a failed plan extraction is also re-used when the graph is expanded and a further attempt
is made.

Fig. 32. Plan extraction as a hierarchy of fuzzy rrDCSPs.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.30 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 30

30 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

6.3. Memoisation
To increase efficiency in searching for a valid plan, branches of the search which
necessarily lead to failure must be pruned early. A mutually-consistent set of nodes in
propositionsi is conjunctively unsupportable if all combinations of nodes in actionsi that
assert these propositions are either directly inconsistent or their own preconditions are
unsupportable. Memoisation is the process of recording such unsupportable sets, known as
memosets [24]. If a memoset (or its superset) is encountered again at the level at which it
was recorded, the current search branch can be pruned immediately. Naively, the entire
set of nodes currently considered at propositionsi may be recorded if it is established
that they are unsupportable. However, it is likely in general that certain propositions
are irrelevant to the failure. More effective memoisation can significantly improve plan
extraction efficiency.

Memoisation is implemented via enforcing fuzzy arc consistency. A reduction explana-
tion for la of xr for domain element di records the fact that xr is responsible for the revision
of the unary consistency of di below la . This situation occurs when there are no elements in
Dr that are compatible with di and have a satisfaction degree of at least la . Figs. 33(a) and
(b) show a sub-problem before and after the revision of arc(2, 1) and arc(2, 3). Consider
the first two elements of D2: both are compatible only with elements in D1 with satisfaction
degrees of at most l2. Their satisfaction degrees can therefore be reduced to l2. Reduction
explanations record that x1 is responsible for this reduction. Similarly, the consistency of
the third element of D2 is reduced to l1 due to the constraint with x3. Now the maximum
satisfaction degree of any element in D2 is l2. Hence, the satisfaction degree of the problem
is also reduced to l2, since some element in D2 must be assigned to x2 in any solution.

Using the reduction explanations, a memoset is constructed containing the variables
which conjunctively do not admit a solution with a particular satisfaction degree. This
is done by tracing recursively the reduction explanations as detailed in [23]. Enforcing
fuzzy arc consistency is not guaranteed to detect that a problem does not contain a solution
of satisfaction degree la . A more complex inconsistency may only be uncovered during
subsequent search. The current search branch cannot lead to a solution of satisfaction
degree la when all elements of Di that are compatible with assignments to existing
variables have a unary satisfaction degree below la . In this case, the currently assigned

Fig. 33. Constructing memosets by tracing reduction explanations.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.31 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 31

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 31

variables form a conflict set with xi with respect to la . This inconsistency can be recorded

as a partial memoset for the satisfaction degree la . Since flexibility is present only in
the unary preference constraints associated with each variable, variables with assignments
having a satisfaction degree of la or above are irrelevant to this conflict and removed. If no
solution exists with satisfaction degree la , an la -memoset is constructed from the union of
the recorded partial memosets.

Memoset information from child sub-problems is used to guide further solution extrac-
tion at the parent sub-problem. Memosets from a sub-problem at leveli−1 are mapped back
onto action nodes in a solution assignment at leveli , which generated the sub-problem at
leveli−1, using precondition relations in the planning graph. Sub-assignments thus speci-
fied represent new constraints that can be added to the current instance of a sub-problem
at leveli , creating a new instance in the dynamic sequence. This process is not the same as
conflict recording during the solution of a single CSP, since the new constraints come from
an external source. FLC solves the new instance by repairing the previous solution. Propa-
gation means that FLC only has to discover one solution for each of a limited sequence of
increasingly constrained sub-problems, rather than attempting to enumerate all solutions
to a single sub-problem. This is more efficient since each propagated repair can poten-
tially exclude many solutions to the original sub-problem. The propagated repair process
emphasises the usefulness of rrDFCSP techniques in this hierarchical context.

6.4. The FGP algorithm

FGP is presented in pseudo-code form in Fig. 34. For reasons of space, the proof
of the soundness and completeness of FGP is omitted (see [23]). FGP can solve
Boolean problems by restricting the truth and satisfaction scales to {k⊥, k
} and {l⊥, l
}
respectively. The procedure FGP() is the top level of the algorithm. The planning graph
(graph), the current (planβ) and best known (planα) plans have global scope. Lines 4–9
extend the graph and search for plans until a compromise-free plan is encountered. At each
graph level, the goalSets of proposition nodes which are mutually-consistent and match the
plan goals are determined (line 6). Since flexible goals associate a satisfaction degree with
different propositions, a combined satisfaction degree is generated for each goalSet. The
goalSets are sorted in descending order of satisfaction degree (line 7) before attempting to
find a plan containing them (line 9). Sorting increases the likelihood of finding a good plan
early, which becomes a bound for future search.

The extract() and extractLevel() procedures control the solution of the
hierarchy of fuzzy rrDFCSPs created from the planning graph. The former simply
initialises a partial plan with the satisfaction degree of the current goalSet (line 2) before
calling the latter. The base case of this recursion is when level0 of the planning graph
is reached (lines 2–4). If the subgoals now match the initial conditions (line 2), a new
best plan has been found and becomes the bound against which future partial plans are
compared (line 3).

At all other levels, FGP first checks whether a previously recorded memoset shows
that the current branch cannot lead to a new best plan. If so, this branch of the search is
pruned, and the memoset is returned to the level above for propagation (line 6). Otherwise,
the instance of BBFCLex dealing with this level of the graph is retrieved (line 7) and a

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.32 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 32

32 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

1. Procedure FGP(ψ)

2. graph← graph-initialise(ψ)
3. level← 0, lα← l

4. While Not compromise-free(planα)
5. level← level+1
5. extend(graph)
6. goalSets← getGoalSets (graph, ψ)
7. sort(goalSets)
8. Foreach goalSet ∈ goalSets
9. If (satDegree(goalSet) > lα) extract(level, goalSet)

1. Procedure extract(level, goalSet)
2. planβ ← plan-initialise(level, satDegree(goalSet))
3. extractLevel(level, getPropositionNodes(goalSet))

1. Procedure extractLevel(level, subGoals)
2. If (level = 0 And matchInitConds(subGoals))
3. planα ← planβ

4. Return ∅
5. memoset← getMemoset(graph, level, subGoals)
6. If (memoset �= ∅) Return memoset
7. ACFLCFCl← getSolver(graph, level)
8. subProb← translate(subGoals)
9. memoset← solve(ACFLCFCl, subProb)
10. If (memoset �= ∅) recordMemo(memoset, level)
11. Return memoset

Fig. 34. Overview of FGP.

new sub-problem in the corresponding rrDFCSP is generated (line 8). This sub-problem is
solved, returning a new memoset to be recorded and propagated (lines 9–11). ACFLCFC()
and extractLevel() are mutually recursive: once the former has found a solution, it
invokes the latter to search the next level down.

6.5. Complexity issues of FGP

The flexibility inherent in the flexible planning graph contributes to the increased
complexity of FGP over Graphplan. As �, the number of satisfaction degrees in the scale
L increases, there is an increase in the number of sub-problems that FLC must solve. This
is because solutions of all satisfaction degrees above l⊥ must be explored. This increase
is, however, in the average rather than the worst case, since with a constant number of
sub-problem variables and domain size (neither of which are affected by �) the maximum
number of potential solutions to explore remains the same.

The time complexity of FLC has been established as O(nmn) [23]. If the number of
plan goals in a g-level planning graph is G, m is again the domain size (i.e., the maximum
number of action nodes that assert a particular proposition) and p is the maximum number
of preconditions for any of the operators in the problem, the worst-case time complexity of
synthesising a plan can be expressed by (see [23] for proof):

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.33 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 33

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 33

g∑
i−1 2Gpi−1

i∏
Gpj−2 [

g−1 2Gpg−1 Gpg−1]
i=1

Gp m

j=2

m ≈ g Gp m m .

That is,

O
(
gGpg−1m3Gpg−1)

.

If there are G flexible goals, the worst case occurs when each can be satisfied in all
�− 1, producing G�−1 goal combinations. Hence, the worst case time complexity of plan
synthesis from levelg of a flexible planning graph is:

O
(
gG�pg−1m3Gpg−1)

.

The worst-case space required by a flexible planning graph is no greater than that
required by a Boolean planning graph. Reconsider the space complexity analysis made in
[3] of a Boolean planning problem with n objects, i propositions in the initial conditions,
s STRIPS operators each with k parameters and an effects list of size e. Operators
cannot create new objects, so the number of different propositions that can be created
by instantiating an operator is O(enk). Hence, the maximum number of nodes in any
proposition level is O(i + senk). Since any operator can be instantiated in at most O(nk)

different ways, the maximum number of nodes in any action level of the graph is O(enk).
Flexible operators have several clauses, but these clauses must be disjoint (Section 5).
Hence, the number of ways any operator can be instantiated remains as O(nk). Including
memoisation, FGP has exponential worst case space complexity because an exponential
number of sub-problems is solved in the worst case, each of which can lead to the recording
of a memoset. This result reinforces the need for informed memoisation.

6.6. Synthesised plans for the valuable package problem

The first short plan synthesised by FGP is as follows, the major compromises being the
route across the unsafe track and the fact that only pkg1 is delivered.

(1) Load-truck pkg1 truck1 (l2)

(2) Drive-truck truck1 c1 to c3 via r3 (l1)

(3) Unload-truck pkg1 truck1 (l
)

Using main roads, both packages can be carried to c3 in 5 steps, with a satisfaction degree
of l2 since the guard is not present when pkg1 is loaded.

(1) Load-truck pkg1 truck1 (l2)

(2) Drive-truck truck1 c1 to c2 via r1 (l
)

(3) Load-truck pkg2 truck1 (l
)

(4) Drive-truck truck1 c2 to c3 via r2 (l
)

(5) • Unload-truck pkg1 truck1 (l
)

• Unload-truck pkg2 truck1 (l
)

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.34 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 34

34 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

The above plan is still not regarded as having the highest satisfaction degree because

the guard was not present when the first package was loaded. The ‘no compromise’ plan
contains seven steps and is shown below.

(1) Drive-truck truck1 c1 to c2 via r1 (l
)

(2) • Guard-gets-on-truck truck1 guard1 (l
)

• Load-truck pkg2 truck1 (l
)

(3) Drive-truck truck1 c2 to c1 via r1 (l
)

(4) Load-truck truck1 package1 guard1 (l
)

(5) Drive-truck truck1 c1 to c2 via r1 (l
)

(6) Drive-truck truck1 c2 to c3 via r2 (l
)

(7) • Unload-truck pkg1 truck1 (l
)

• Unload-truck pkg2 truck1 (l
)

This simple example demonstrates how a range of plans of different lengths and containing
alternative compromises can be synthesised from a given flexible planning problem. The
user can then select the one which is deemed to offer the best compromise between length
and satisfaction degree.

7. FGP: experimental results

A test suite of twelve problems containing plans of three satisfaction degrees at
different distributions of plan length is used to examine the relationship between solution
distribution and search effort. Boolean versions of the twelve problems are also solved to
investigate the overhead incurred by searching for a range of plans. The utility of limited
graph expansion and satisfaction propagation (Section 6.1) is also examined. The Rescue
problem [24] is then described. It exhibits complex interactions between flexible operators
and goals, testing the ability of FGP to trade plan length versus the compromises made.
For reasons of space, results on Boolean benchmarks are omitted here, but can be found in
[24].

7.1. The test suite

The test suite contains logistics problems of the same type as the example in Section 5:
the target is to transport packages to their respective destinations. To compare the effort
of searching for a range of solutions with synthesising a single plan from a Boolean
version of the same problem, two sets of operators are used. The first are flexible and
allow compromises to be made to synthesise one or more shorter plans as well as a
plan containing no compromises. Let K = {k⊥, k1, k2, k
} and L = {l⊥, l1, l2, l
}. The
12 problems have been constructed such that it is always possible to synthesise three
different plans (Fig. 35). It is preferred that the guard is present when a package is loaded
onto a truck (if not, the satisfaction degree of Load-truck is l2). It is also preferred
not to transport valuable packages through dangerous areas (otherwise the satisfaction
degree of Drive-truck is l1). A second set of Boolean operators make imperative the

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.35 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 35

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 35
Fig. 35. Test suite: plan lengths per satisfaction degree.

Fig. 36. Test suite: flexible and Boolean operators.

preferences in Load-truck and Drive-truck, using the endpoints of K and L. This
creates a Boolean version of each problem, allowing the synthesis of the shortest plan with
satisfaction degree l
 only.

The 12 problems are solved using FGP and both flexible and Boolean operators
(Fig. 36). As expected, it always takes longer to find a compromise-free plan when also
searching for shorter compromise plans than to solve the Boolean problem. However, the
time taken to produce compromise plans is significantly lower than to solve the Boolean
problem, providing ‘anytime’ behaviour.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.36 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 36

36 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

The difficulty of Boolean plan synthesis tracks the use of the flexible operators to find

the l
 plan (Fig. 36). Although problems 3–12 all have the same length of compromise-free
plan, the increasing effort required to solve them is reflected in the increasing difficulty of
making compromises to find shorter plans using the flexible operators. When a plan with
satisfaction degree li has been found, FGP no longer needs to search for plans nor consider
actions of satisfaction degree less or equal to li . This explains why the earlier problems in
the test suite, where the l1 and l2 plans have short lengths, are easiest to solve. In problems
10, 11 and 12 FGP spends a lot of time looking for plans of all three non-l⊥ satisfaction
degrees before one of l1 is discovered.

The difficulty of synthesising the l1 plan closely corresponds to its length. All
propositions are asserted by an action with at least satisfaction degree l1, hence all actions
in the planning graph can be considered for inclusion in an l1 plan, resulting in a less
complex search process. The difference in length between the l1 and l2 plans seems to be
most influential on the amount of overall search effort (e.g., problem 10). The region of
the search where only an l1 plan has been found is likely to be the most intensive. Prior to
the discovery of the l1 plan, a significant number of levels of the graph can be constructed
without any search being required since a mutually-consistent set of propositions matching
the plan goals do not yet exist. After the l2 plan has been found, the search becomes easier,
discarding all actions with a satisfaction degree below l
.

7.2. The utility of limited graph expansion and satisfaction propagation

To gauge the efficacy of limited graph expansion and satisfaction propagation (Sec-
tion 6.1) results were first obtained on the test suite with a version of FGP which uses nei-
ther technique (Fig. 37). A clear deterioration is evident compared with times in Fig. 36.
Time to synthesise the l1 plan is, however, unaffected. Limited graph expansion has no
effect until at least the l1 plan is found. Since l1 is the lowest non-l⊥ satisfaction degree,

Fig. 37. Test suite: no limited graph expansion or satisfaction propagation.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.37 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 37

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 37
Fig. 38. Test suite: flexible operators and limited graph expansion only.

satisfaction propagation cannot revise the satisfaction degree of any action below this de-
gree.

Effort required to synthesise the l2 plans is increased, but not to the same extent as
that required for the l
 plans. The utility of limited graph expansion increases with the
number of satisfaction degrees it can rule out. Without limited graph expansion, actions of
all satisfaction degrees are continually added to the graph, increasing its size and the cost
of processing it into sub-problems. Satisfaction propagation also provides most benefit
to search for plans with the highest satisfaction degrees. Revision of action satisfaction
degrees is down L; without satisfaction propagation, many more actions have higher
satisfaction degrees associated, requiring more search to exclude them.

To determine which technique has the most beneficial effect on the plan synthesis
process, the test suite problems were solved twice more, using only limited graph
expansion or satisfaction propagation in each case (Figs. 38, 39). On this test suite,
satisfaction propagation is the more effective technique. This is expected to be generally
true: limited graph expansion decreases the size of the flexible planning graph and the time
taken both to expand it and to construct sub-problems, whereas satisfaction propagation
improves the efficiency of plan extraction, the dominant cost of plan synthesis.

7.3. The rescue problem

To demonstrate the utility of flexible planning on a more substantial problem, the
example given in Fig. 40 is used. The scenario is a rescue operation: a volatile volcano on
Volcano Island has started to erupt. The target is to evacuate scientists and civilians present
on the island and preferably their equipment and belongings. There are three points to
make the evacuation to, with ascending degrees of satisfaction: the (relatively) ‘Safe Point’
on the other side of Volcano Island, the nearby village on Neighbour Island and finally the
safety of Far Island. A minimum target is to evacuate the people to Safe Point. Slightly

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.38 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 38

38 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••
Fig. 39. Test suite: flexible operators and satisfaction propagation only.

Fig. 40. Overview of the rescue problem.

better is to save also the equipment and possessions. A target with a higher satisfaction
is to remove people and possessions to Neighbour Village. The ‘no compromise’ target is
to evacuate all people to Far Island and make sure that all equipment and possessions are
removed from Volcano Island.

There are several other constraints and sources of flexibility which lead to a range
of different plans. Firstly, the helicopter is small and usually carries only one passenger.
Because of the emergency it is possible to get two passengers on board, although this is
not a preferred option. There is no facility to carry equipment/belongings in this vehicle.
The pilot would also like to avoid Volcano Island, if at all possible. The trucks and boat

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.39 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 39

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 39

can carry people or possessions. One of the routes that the boat may take between Volcano

Island and Neighbour Island is treacherous, and to be avoided if possible.

This problem uses the satisfaction scale L = {l⊥, l1, l2, l3, l4, l
} and a truth degree
scale, K , of the same size. This is not a trivial problem: there are 432 possible flexible goal
combinations alone. FGP synthesises 5 plans for the rescue problem in under 30 seconds,
one per satisfaction degree, discounting l⊥. This is not the case for all problems since,
as noted, given two plans of the same length the one with the higher satisfaction degree
is returned. There are, of course, alternative plans with the same satisfaction degree and
length, but this is no different from the situation found in Boolean planning.

The shortest plan of four steps is shown below. Although other actions in the plan are
‘drowned’ by the fact that the helicopter must fly to Volcano Village, by exploring goals
with highest satisfaction degree first this has been counteracted: the helicopter is flown to
Far Village when a plan with an equivalent satisfaction degree would be to take the civilians
to the Safe Point.

(1) LOAD-TRUCK lab-truck scientific-equipment (l
)

LOAD-TRUCK lab-truck scientist (l
)

FLY-HELICOPTER Far Village, Volcano Village (l1)

(2) LOAD-HELICOPTER civilian1, civilian2 (l4)

DRIVE-TRUCK lab-truck Science-lab, Safe Point (l
)

(3) UNLOAD-TRUCK lab-truck scientific equipment (l
)

UNLOAD-TRUCK lab-truck scientist (l
)

FLY-HELICOPTER Volcano Village, Far Village (l
)

(4) UNLOAD-HELICOPTER civilian1, civilian2 (l
)

A 5-step plan (satisfaction degree l2) transports people and possessions to Safe Point. The
major compromise is that the people remain on Volcano island. A 9-step plan (satisfaction
l3) evacuates the people from Volcano Island in the least number of steps. The boat takes
the scientist and equipment to Neighbour Island, while a helicopter rescues both civilians
from Safe Point. Drowning is avoided: for example, the civilians are flown to Far Village,
when flying them to Neighbour Village produces a plan with the same satisfaction degree.
An 11-step (satisfaction l4) plan compromises only in the destination of the people: the
boat evacuates the people, equipment and possessions (avoiding dangerous waters) to
Neighbour Village. A ‘no compromise’ plan takes 12 steps. The helicopter avoids volcano
island and the boat avoids the dangerous route between Volcano Beach2 and Neighbour
Beach. The flexible goals are also completely satisfied, with all people, equipment and
possessions safely at Far Village. Each plan is returned as soon as it is found, providing
anytime solutions. Each offers a different balance between compromises made and plan
length. A user can select the plan considered to make the optimal tradeoff.

8. Conclusion

This paper has been concerned primarily with fuzzy dynamic flexible constraint
satisfaction problems (fuzzy rrDFCSPs). These problems represent the integration of

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.40 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 40

40 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

two previously separate extensions to classical constraint satisfaction which address

two of its main limitations: the inability either to cope gracefully with changes to the
problem structure or to support compromise in an over-constrained problem. The structure
and properties of fuzzy rrDFCSP were investigated using a range of random problem
sequences and two types of solution procedure. The first extends a branch and bound (BB)
approach to static fuzzy CSP [9] to cope with dynamic changes, the second (FLC) extends
the Local Changes [35] Boolean DCSP approach to support fuzzy constraints.

Results from solving these sequences showed a number of peaks in solution difficulty
corresponding to multiple phase transitions caused by a number of degrees of consistency
above l
. This generalises the phenomenon of a single phase transition found in empirical
studies of classical CSP. Around the hardness peaks, the enhanced BB algorithm found
solutions most efficiently, due to its relatively more effective constraint propagation. FLC
variants consistently produced more stable solutions, which is important if significant effort
has been invested in the execution of the current solution.

Fuzzy rrDFCSP was applied to AI Planning. The flexible planning problem is founded
on the use of subjective truth and satisfaction degree scales. Truth degrees associated
with propositions support uncertainty concerning the exact state of the environment.
Satisfaction degrees associated with operators and goals enable the planner to make
compromises, assigning an appropriate degree of satisfaction to each instantiated operator
and goal according to how well their preconditions are satisfied. Flexible plans trade plan
length versus compromises made, supporting an anytime behaviour: given limited time,
the best plan found so far can be returned. To synthesise plans from an input flexible
planning problem, Graphplan was extended to create the Flexible Graphplan (FGP). FGP
hierarchically decomposes the planning graph, creating a fuzzy rrDFCSP from each graph
level which is solved with FLC.

FGP was tested on a suite of problems containing plans of certain satisfaction degrees
of particular lengths, and also on a more complex benchmark problem. Performance
was sensitive to internal structure. If a short ‘compromise’ plan can be found, FGP can
concentrate on finding plans with fewer compromises for the remainder of the search,
reducing effort. Unsurprisingly, it is more expensive to look for a range of plans than
to search for one compromise-free plan. However, it is often possible to find short, low
satisfaction plans quickly, supporting the anytime behaviour. The user is provided with a
range of options trading plan length versus the number and severity of the compromises
made.

A principal element of future work is the development of a greater number of fuzzy
rrDFCSP solution techniques. Further solution techniques could be created through the
extension of alternative existing dynamic or flexible algorithms. For example, a local search
based algorithm could be used, performing hill climbing on the quality of the current
solution as dictated by the fuzzy constraints. As has been shown for purely dynamic CSP
[37], hill-climbing can be especially useful in rapidly evolving problems, since it is not
reliant on the stability of previously assigned variables. This point is equally valid for the
dynamic flexible case.

The flexible planning problem uses idempotent min/max aggregation operator to
calculate satisfaction degrees, allowing the straightforward application of efficient classical
CSP techniques. The disadvantage is the drowning effect, as noted in Section 5. Leximin

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.41 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 41

I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–••• 41

fuzzy CSP [26] is one possible solution. This approach combines additive and min/max

operations to consider the satisfaction of all constraints, but has a higher computational
cost. Alternatively, additive aggregation could be employed. This supports a finer-grained
form of flexibility, and avoids the drowning effect. Recently developed means of enforcing
arc consistency for non-idempotent operators could then be brought to bear [6,29]. As
described in [23], FLC could easily be modified to support various types of flexible
CSP, such as those covered by valued or semiring CSP [2], to support other instances of
dynamic flexible CSP. The structure of the algorithm need not be changed, but the method
of consistency degree aggregation must be considered when enforcing consistency and
generating bounds for repair sub-problems. A similar empirical analysis to that made here
could then be performed to establish the utility of FLC in each case.

Finally, apart from AI Planning, it is interesting to investigate the application of fuzzy
rrDFCSP to many other AI problems. Work is, for instance, ongoing in using fuzzy
rrDFCSP to the selection of the most preferred model in compositional modelling [16].

Acknowledgements

This work is partially supported by UK EPSRC grants 97305803 and GR/N16129. The
authors thank Peter Jarvis for his assistance in this research and the anonymous referees
for their insightful comments which were very useful in revising this paper.

References

[1] J. Allen, J. Hendler, A. Tate, Readings in Planning, Morgan Kaufmann, San Mateo, CA, 1990.
[2] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, H. Fargier, Semiring-based csps and valued

csps: Frameworks, properties, and comparison, Constraints 4 (3) (1999) 199–240.
[3] A. Blum, M. Furst, Fast planning through planning graph analysis, Artificial Intelligence 90 (1–2) (1997)

281–300.
[4] D. Brelaz, New methods to colour the vertices of a graph, J. ACM 22 (4) (1979) 251–256.
[5] S. Chien, Static and completion analysis for planning knowledge base development and verification, in: Proc.

3rd International Conference on Artificial Intelligence Planning Systems, Eidinburgh, UK, 1996, pp. 53–61.
[6] M. Cooper, Reduction operations in fuzzy and valued constraint satisfaction, Fuzzy Sets and Systems 134

(2003) 311–342.
[7] R. Dechter, Constraint networks, in: Encyclopedia of Artificial Intelligence, Wiley, New York, 1992,

pp. 276–285.
[8] R. Dechter, A. Dechter, Belief maintenance in dynamic constraint networks, in: Proc. AAAI-88, St. Paul,

MN, 1988, pp. 37–42.
[9] D. Dubois, H. Fargier, H. Prade, Possibility theory in constraint satisfaction problems: Handling priority,

preference and uncertainty, Appl. Intelligence 6 (1996) 287–309.
[10] H. Fargier, Problèmes de satisfaction de constraintes flexibles: Application à l’ordonnancement de

production, Ph.D. Thesis, Université Paul Sabatier, Toulouse, 1994.
[11] E. Freuder, Partial constraint satisfaction, in: Proc. IJCAI-89, Detroit, MI, 1989, pp. 278–283.
[12] I. Gent, E. MacIntyre, P. Prosser, P. Shaw, T. Walsh, The constrainedness of arc consistency, in: Proc.

3rd International Conference on Principles and Practice of Constraint Programming, Linz, Austria, 1997,
pp. 327–340.

[13] I. Gent, E. MacIntyre, P. Prosser, B. Smith, T. Walsh, An empirical study of dynamic variable ordering
heuristics for the constraint satisfaction problem, in: Proc. 2nd International Conference on Principles and
Practice of Constraint Programming, Cambridge, MA, 1996, pp. 179–193.

ARTICLE IN PRESS
S0004-3702(03)00020-1/FLA AID:1973 Vol.•••(•••) P.42 (1-42)
ELSGMLTM(ARTINT):m1a v 1.139 Prn:2/04/2003; 15:19 aij1973 by:ML p. 42

42 I. Miguel, Q. Shen / Artificial Intelligence ••• (••••) •••–•••

[14] M. Ginsberg, Dynamic backtracking, J. Artificial Intelligence Res. 1 (1993) 25–46.

[15] R. Haralick, G. Elliot, Increasing tree search efficiency for constraint satisfaction problems, Artificial

Intelligence 14 (1980) 263–313.
[16] J. Keppens, Q. Shen, On compositional modelling, Knowledge Engineering Rev. 16 (2) (2001) 157–200.
[17] A. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 99–118.
[18] A. Mackworth, Constraint satisfaction problems, in: Encyclopedia of Artificial Intelligence, Wiley, New

York, 1992, pp. 285–293.
[19] B. Mazure, L. Saïs, E. Grégoire, Tabu search for SAT, in: Proc. AAAI-97, Providence, RI, 1997, pp. 281–

285.
[20] I. Miguel, Q. Shen, Hard, flexible and dynamic constraint satisfaction, Knowledge Engineering Rev. 14 (3)

(1999) 199–220.
[21] I. Miguel, Q. Shen, Dynamic flexible constraint satisfacton, Appl. Intelligence 13 (3) (2000) 231–245.
[22] I. Miguel, Q. Shen, Solution techniques for constraint satisfaction problems: Advanced approaches, Artificial

Intelligence Rev. 15 (2001) 269–293.
[23] I. Miguel, Dynamic flexible constraint satisfaction and its application to ai planning, Ph.D. Thesis, Division

of Informatics, Edinburgh University, 2001.
[24] I. Miguel, Q. Shen, P. Jarvis, Efficient flexible planning via dynamic flexible constraint satisfaction, Engrg.

Appl. Artificial Intelligence 14 (3) (2001) 301–327.
[25] S. Minton, M. Johnston, A. Philps, P. Laird, Minimizing conflicts: A heuristic repair method for constraint

satisfaction and scheduling problems, Artificial Intelligence 58 (1992) 161–205.
[26] J. Moura Pires, F. Moura Pires, R. Almeida Ribeiro, Structure and properties of leximin fcsp and its

influence on optimisation problems, in: Proc. 7th Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, 1998, pp. 188–194.

[27] W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, Cambridge, MA,
1999.

[28] P. Prosser, An empirical study of phase transitions in binary constraint satisfaction problems, Artificial
Intelligence 81 (1996) 81–109.

[29] T. Schiex, Arc consistency for soft constraints, in: Proc. 6th International Conference on Principles and
Practice of Constraint Programming, Singapore, 2000, pp. 411–424.

[30] T. Schiex, H. Fargier, G. Verfaillie, Valued constraint satisfaction problems: Hard and easy problems, in:
Proc. IJCAI-95, Montreal, Quebec, 1995, pp. 631–637.

[31] T. Schiex, G. Verfaillie, Nogood recording for static and dynamic constraint satisfaction problems, Internat.
J. Artificial Intelligence Tools 3 (2) (1994) 187–207.

[32] S. Smith, D. Nau, T. Throop, Total-order multi-agent task-network planning for contract bridge, in: Proc.
AAAI-96, Portland, OR, 1996, pp. 108–113.

[33] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London, 1993.
[34] P. van Hentenryck, T. Provost, Incremental search in constraint logic programming, New Generation

Computing 9 (1991) 257–275.
[35] G. Verfaillie, T. Schiex, Solution reuse in dynamic constraint satisfaction problems, in: Proc. AAAI-94,

Seattle, WA, 1994, pp. 307–312.
[36] R. Wallace, Why AC-3 is almost always better than AC-4 for establishing arc consistency in CSPs, in: Proc.

IJCAI-93, Chambéry, France, 1993, pp. 239–245.
[37] R. Wallace, E. Freuder, Stable solutions for dynamic constraint satisfaction problems, in: Proc. 4th

International Conference on Principles and Practice of Constraint Programming, Pisa, Italy, 1998, pp. 447–
461.

[38] D. Weld, Recent advances in AI planning, AI Magazine 20 (2) (1999) 93–123.
[39] D. Wilkins, K. Myers, A multiagent planning architecture, in: Proc. 4th International Conference on

Artificial Intelligence Planning Systems, Pittsburgh, PA, 1998, pp. 154–162.

