
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

School of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

Knowledge Management using Business Process Modeling and
Workflow Techniques

by

Hsiang-Ling Kuo, Jessica Chen-Burger, Dave Robertson

Informatics Research Report EDI-INF-RR-0172

School of Informatics May 2003
http://www.informatics.ed.ac.uk/

Knowledge Management using Business Process
Modeling and Workflow Techniques

Hsiang-Ling Kuo, Jessica Chen-Burger, Dave Robertson

Informatics Research Report EDI-INF-RR-0172

SCHOOL of INFORMATICS
Centre for Intelligent Systems and their Applications

May 2003

To appear in the International Joint Conference in Artificial Intelligence, Knowledge Management and
Organisational Memories Workshop Proceedings, August 2003.

Abstract :
Enterprise Modeling (EM) methods are recognized for their value in providing a more organized way to describe

a complex, informal domain. A problem with EM is that it does not always provide direct input for software system
development. There is a ”gap” between EM and software systems. One way of bridging this gap is to provide a
formalization, here called that subsumes a wide variety of core modeling notations in a single using a business process
language. It is possible to have different views of what is core to such a language but our attempt at such a view
is articulated in the Fundamental Business Process Modeling Language (FBPML), which is a merger of IDEF3 and
PSL. A workflow language, the FBPML Workflow Language (FWFL), is constructed and used to provide a declarative
description of a workflow system. FWFL is tested in the ”PC-configuration” domain. We also suggest using a validation
and verification support framework to analyze and verify a business process model (BPM). Finally, some complexity
results are presented for this type of modeling, implemented based on ”FBPML” and ”FWFL”. This would play an
important communication role in the operation of an organization. In order to verify and analyze the BPM, a three-level
framework is also introduced as a means of analysing BPMs and workflow systems. Finally, the complexity of BPMs
and some comparisons with other related work are discussed.

Keywords : process modelling, knowledge modelling, workflow, knowledge engineering

Copyright c
�

2003 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, School of Informatics, The University of Edinburgh, 2 Buccleuch Place,
Edinburgh EH8 9LW, Scotland.

KnowledgeManagementusing BusinessProcessModeling and Workflow
Techniques

Hsiang-Ling Kuo
�
, Yun-Heh Chen-Burger

�
, DaveRobertson

�
�

Schoolof Informatics,TheUniversity of Edinburgh,UK
email: s0125762@ed.ac.uk�

AIAI, TheUniversity of Edinburgh,UK email: jessicac@inf.ed.ac.uk�
CISA, TheUniversity of Edinburgh,UK email: dr@inf.ed.ac.uk

Abstract

EnterpriseModeling (EM) methodsarerecognised
for theirvaluein providingamoreorganisedwayto
describea complex, informal domain. A problem
with EM is that it doesnot alwaysprovide direct
input for softwaresystemdevelopment.There is a
“gap” betweenEM andsoftwaresystems.Oneway
of bridging this gapis to provide a formalisation,
herecalled that subsumesa wide variety of core
modeling notationsin asingleusingabusinesspro-
cesslanguage.It is possibleto havedifferentviews
of whatis coretosuchalanguagebutourattemptat
suchaview is articulatedin theFundamentalBusi-
nessProcessModelingLanguage(FBPML),which
is a merger of IDEF3 andPSL. A workflow lan-
guage, the FBPML Workflow Language(FWFL),
is constructedandusedto provideadeclarativede-
scriptionof a workflow system.FWFL is testedin
the “PC-configuration” domain. We also suggest
usinga validationandverification support frame-
work to analyseand verify the businessprocess
model(BPM). Finally, somecomplexity resultsare
presentedfor this typeof modeling.

1 Intr oduction
Businessarebecoming larger andmorediverse, thusoper-
ationsare more complex than ever. Although information
technology is widely applied in businessoperations,it still
lacks a precisemeansof communicationbetweenbusiness
model andsoftwaresystemdevelopment. EM methods are
well recognisedfor theirvaluein providing anorganisedway
of describing acomplex, informaldomain,andareoftenused
asa tool for KnowledgeManagement(KM). Therearemany
typesof EM methods suchas businessmodeling methods,
processmodeling methods,organisational modelingmethods
andrelatedontology designmethods. However, EM doesnot
alwaysprovidedirectinput for softwaresystemdevelopment
whichleavesagapbetweenenterprisemodelingandsoftware
systems.

Thispaper triesto bridgethegapbetweenEnterpriseMod-
eling (EM) andSoftware Systems. To approachthis,we have
createda formalisationcalled“FWFL” for all models using

FBPML which providesa declarative descriptionof a work-
flow system.A workflow systemmaythenbedesignedand
implementedbasedon “FBPML” and“FWFL”. This would
play animportantcommunicationrole in theoperationof an
organisation.

In ordertoverify andanalysetheBPM,athree-level frame-
work is alsointroducedasa meansof analysing BPMs and
workflow systems. Finally, the complexity of BPMs and
somecomparisonswith otherrelatedwork arediscussed.

2 Literatu reReview
Many businessprocessmodeling languageshave beenin-
ventedfor differentbusinessprocessmodeling needs.In this
section,we will review two typesof processmodelinglan-
guageandintroduceathird one– FundamentalBusinessPro-
cessModeling Language(FBPML).

2.1 IDEF3 Process Description Capture Method
IDEF3, a processdescription capture method, has two as-
pects:capturing processflow andobjectstate. Theprimary
goal of IDEF3 is to provide a well-structured method by
which a domain expert canexpressknowledgeabouttheop-
erationof a particularsystemor organisation[Mayer et al.,
1995]. It also capturesthe behavior of an existing or pro-
posedsystemby structureddescription. Becauseof its well-
structured approach,we canuseIDEF3 asa knowledgeac-
quisitiondevice for describingwhata systemdoesor how an
organisationworks.

IDEF3 includes two forms of description: a processflow
descriptionandanobjectstatetransitionnetwork. A process
flow description describes “how thingswork” in an organi-
sation[Mayeret al., 1995]. It focuseson the processesand
their temporal, causal,andlogical relations.An object state
transitionnetwork focuseson objects andtheir statechange
behaviors. Thispaperfocusesontheprocessflow description
becauseit is relatedto whatweusein this paper.

An IDEF3 processflow descriptioncapturesa description
of processesandtherelationshipsbetweenthem. It provides
a graphical andstructural representationthatdomainexperts
andanalystsfrom differentdisciplinescanuseto communi-
catewith eachother. This includesknowledge about events
andobjectsinvolvedin theprocess,andtheconstraining rela-
tionswhich determine thebehavior of eachoccurrence(pro-
cessandobject).It usesUOB(unitsof behavior), links, junc-

tions, referentsandnotesto represent theprocessesandtheir
relationsh� ips (suchastemporal ordering).

2.2 ProcessSpecification Language
PSLstandsfor ProcessSpecificationLanguage.It is aninter-
changelanguagethatallowsapplicationstoexchangediscrete
processdata[Schlenoff et al., 1997]. It providesa common
languagebetweendifferent applicationsandcapturesthenec-
essaryprocessinformation from any givenapplication. The
goalof PSLis to facilitatecommunicationbetweenthoseap-
plicationsby usingPSL-basedtranslators. For example,sup-
posethereare n different applications, that will communi-
catewith eachother. If there is no intermediate language
like PSL, it requires �����
	�� translators for themto commu-
nicate.But with PSLlanguageasastandardizedcommunica-
tion medium, thenumberwill reduceto ������ .

PSLprovidesformalspecificationfor semanticsin process
models due to lacking or inadequate specificationin exist-
ing approaches.With PSL, processinformationcanbe ex-
changedbetweenavarietyof applications.This formal spec-
ification is thePSL “ontology” asit focusesnot only on the
termsof theontology but alsotheirmeanings.

ThePSLontology hasthreenotions:language, modelthe-
ory andproof theory. A language is a lexicon (a setof sym-
bols) anda grammar (a specificationof how thesesymbols
canbecombined to make well-formed formulas). The lexi-
con in PSL is a setof logical symbols (e.g. boolean, quan-
tifiers) andnonlogical symbols(i.e. PSL expressions, such
as constants, functions, symbols, andpredicates)[Schlenoff
et al., 2000]. In modeltheory, PSL providesa mathemati-
cal characterizationof thesemantics,or meaning, of thelan-
guage of PSL [Schlenoff et al., 2000]. Proof theoryconsists
of threecomponents: PSLcore, foundational theories, and
PSLextensions.

The PSLcore is a setof axiomswritten in the basiclan-
guage of PSL. Theseaxioms provide a syntacticrepresen-
tation and semanticdescription of the PSL model theory
[Schlenoff et al., 2000].

A foundational theoryhassufficient expressive power for
givingprecisedefinitionsof, or axiomatizationsfor, theprim-
itiveconcepts of PSL[Schlenoff et al., 2000].

PSLextensionsareexpressionsthatarenot includedin the
PSLcore. It providesextra usagefor expressingmorecom-
plicatedprocesses.

2.3 Fundamental BusinessProcess Modeling
Language(FBPML)

FBPML, a visual modeling language, merges IDEF3 and
PSL.This language is designedto support bothsoftwareand
workflow systemdevelopment. It offers precisesemantics
andcanexpressbusinessprocessesin logicalsentences.

Therearethreetypesof nodes: Main Node, Junction and
Annotation. Main NodesincludeActivity, Primitive Activ-
ity, RoleandTimePoint. Processis themainconcept of pro-
cessmodeling languages. In FBPML, asin PSL,anactivity
is usedto represent a process.In this document,we will use
processandactivity interchangeably.

ActivityandPrimitiveActivity: An Activitydescribesatype
of processthatmaybedecomposedinto sub-processes.This

is called “decomposition”. Whenall sub-processesarefin-
ished,the high level processis alsofinished. Primitive Ac-
tivity is a leaf nodeactivity that may not be further decom-
posed. However, theremay be alternative ways of execut-
ing a process. Whenonealterative processis not executed
and finishedproperly, another alternative processmay col-
laborate with thecurrent oneto accomplish thetask.We call
thesesub-alternativeprocesses“specialisation”. In FBPML,
threemaincomponents of anactivity aretrigger(s), precon-
dition(s), andaction(s). An activity alsohasanunique hier-
archical position(HP) anda nameto identify it.

TimeandRole: Thedefinitionof Rolein FBPML is useful,
an enablermay play a Role that includes a setof activities
andmayhave responsibilities for theseactivities. TimePoint
indicatesa particular point in time during theprocessmodel.

Junctions arewidely usedin many processmodelinglan-
guages.In FBPML, therearefour differenttypesof junction:
Start, Finish, AndandOr. TheStartandFinish junctionsrep-
resentthebeginning andendof aBPM. Startis theentryof a
BPM. Finish is thepointat whichthemodelstops.

And or Or junctions indicatea one-to-many relationship,
andatemporal constraint betweentheactivitiesconnecting to
them[Chen-Burgeretal., 2002]. Bothof thesejunctionshave
two kinds of interpretation: joint andsplit. They represent
thedifferent topologiesof a BPM. Figure1 shows thesefour
differenttypes of topology.

Figure1: And Joint,Or Joint,And Split andOr Split Topol-
ogy

And Joint or Or Joint indicatesthat thereis more than
oneprocesspreceding the “And” or “Or” junctionbut there
is only oneprocessfollowing thejunction. 1(a)and(b) show
thesekindsof junction. Bothhave threein-comingprocesses
(A,B,C) andoneout-going process(D). And Joint indicates
the processexecution sequence andthe temporal constraint
on the process. It meansthat all the processes(A,B,C) on
the left-hand sidemustbe finishedbeforeprocessD canbe
started. If one of the left-hand side processescannot be
finished, the entire flow cannot continueto the next stage.
Or Joint meansthatwhenat leastoneof the left-hand side
processesis finishedthenprocessD canbestarted;it doesnot
needto wait for theotherprocessesto befinished.

And Split or Or Split meansthat only oneprocesswill
proceed to the “And” or “OR” junction, but more thanone
processwill follow the junction. 1(c) and(d) illustratethis.

And Split indicatesthat aslong asthepreceding processis
finished� thenall the following processesbecometemporally
qualifiedandmay alsobe started. It also indicatesthat all
thefollowing processesmustbetriggered, but areallowedto
be finishedat somelater time. Or Split meansat leastone
of following processeswill be triggeredandexecuted prop-
erly, after thepreceding processis finished.It doesnot have
any constraint abouthow many processeswill be triggered.
It maybeone,two or more, dependingon the trigger condi-
tionsof thoseprocesses.Theexecutionsequenceof triggered
processesmaybeparallelor sequential.

Combination of “ And” and “Or” Junctions: The“OR”
and “And” junctions may also be combined to represent a
more complicatedBPM. Thereare four different kinds of
combination. Suppose processA is connectedwith pro-
cessesB,C, andD. ProcessE follows processesB,C andD
in thesedifferent combination. Thefirst typeof combination
is “And Split” (figure1 (c)) and“And Joint” (figure 1 (a)). It
meansthatwhenprocessA is finishedthenprocessB,C and
D will beandmustbestarted.After all theprocessesB,C and
D arefinished1, thenprocessE canstart. It hasthestrictest
restrictionin a BPM. Thecombinationof “Or Split” (figure
1 (d)) and“Or Joint” (figure1 (b)) meansthat afterprocess
A is finished,at leastoneof theprocessesB, C andD will be
startedandexecuted.ProcessE will notbestartedunlessone
of thetriggeredprocessesis finished.It is a looserconstraint
thanan“And Split” and“And Joint” junction.

The combination of “And Split” (figure 1 (c)) and
“Or Joint”(figure 1 (b)) meansthat when process A is fin-
ished,all the processesB,C andD mustbe startedandexe-
cuted.If processB, C or D is finished,thenprocessE canbe
started.It is differentfrom an“And-And” junction in thatthe
“Or Split” (figure 1 (d)) and“And Joint” (figure1 (a)) junc-
tion indicatesthatat leastoneof theprocessesB,CandD will
be startedandexecuted after processA is finished. Process
E will not bestartedunless“all of thetriggeredprocesses” 2

arefinished. The triggeredprocessesmaybea combination
of someof them.Becauseof the“Or Split” junction, it does
not needto trigger all the preceding processes.It thushas
moreflexibility thanthe“And Split” junction.

Annotations include IdeaNoteandNavigationNote. Idea
Noterecordsinformationwhichis relatedto theprocessesbut
not part of the processmodel. Navigation Note records the
relationships betweendiagramsin a model [Chen-Burger et
al., 2002]. Neitherof themcontributeto theformal semantics
of theprocessmodel. Instead,they areusedto helpusersto
understandtheprocessesmoreclearlyfrom anintuitivepoint
of view.

Nodes(MainNodesandJunctions)areconnectedby links.
Two typesof links areprovided: theprecedence-linkandthe
synchronisation-bar. A precedence-link indicatesa temporal
constraint betweentwo processes.It meansthat activity B
cannot startuntil activity A hasfinished. A synchronisation-
bar also places a temporal constraint betweentwo time

1Thereis no restrictionabout the executionsequence of these
threeprocesses.

2Theseindicatethat the pre-processesof the “And Joint” junc-
tion which aretriggered.

ITEM IDEF3 PSL FBPML

Property Processmodeling
language

Interchange
language be-
tween different
manufacturing
applications

Business mod-
eling language
especially sup-
portssoftwareand
workflow system
development

Notation Rich GraphicNo-
tation

OntologyandFor-
mal Semantics

Simpler version
Notation but
semantics are
presented

Basic
Process
Description

UOB (Unit of Be-
havior)

Activity,
Primitive-Activity

Activity,
Primitive-Activity

Distinguish
terms
between
process,
activity and
task

� � �

Link
between
processes

Precedence
Links with
Dif ferent typesof
Constraints

Ordering Re-
lation over
Activities(ext)

Precedence-Link,
Synchronisation-
Bar

Junction AND, OR,XOR AND, OR, XOR
Junction(core)
Junction(ext)

�
(not the same

asPSLandIDEF3
but is anextension
and refinementof
both)

Time Not in the
notation but may
be expressed
informally

Duration(ext),
Temporal Order-
ing Relation(ext)

Time point, dura-
tion, length

Role
� � �

Annotation ReferentandNote
�

Idea Note and
NavigationNote

Decomposition A processmay be
decomposedinto
sub-processes

SubActivity(ext) A processmay be
decomposedinto
sub-processes

Specialisation
� � �

Execution
Logic

� � �

Table1: ComparisonBetweenIDEF3,PSLandFBPML�
– Yes�
– No/Not applied

core– PSLcoreconcept
ext – PSLextensionconcept

points. This notationenablesany time points to be made
equivalentandthereforeenablesprocessoperationstobesyn-
chronised.

2.4 ComparisonbetweenIDEF3, PSL and FBPML

After briefly reviewing theIDEF3,PSLandFBPML, wewill
focusontheirsimilaritiesanddifferences.Table1 summaries
this brief comparison.

Similarities: IDEF3, PSL andFBPML all focus on pro-
cessexpressiontechniquesto provide a standard methodol-
ogywhendescribing a process.Thesethreebusinessprocess
representationsallow domainexperts to expressknowledge
about how a systemworks,andcanprovide a common lan-
guage betweendifferent applications.

Differ ences: Although IDEF3,PSLandFBPML arecon-
ceptuallysimilar, in table1 we lists themajordifferencesbe-
tweenthem. IDEF3 provides a graphical way to represent

processes,allowing the logic of processesto be more easily
represen� ted. Although IDEF3 hasthis advantage;it lacksan
unambiguous semanticdescriptionfor its notation. By con-
trast,PSLhasa well-definedontology andformal semantics
but lacksgraphical notations. Userscannot easilydefinepro-
cessesin this languagewithoutproper trainingin logical lan-
guages.FBPML combinesaspectsof bothIDEF3andPSLto
obtaintheadvantagesof their differentaspects.It providesa
simplerandmorepragmatic modeling language suitablefor
workflow systemdesign.

3 Devising a logic-basedWorkflow Language
for FBPML

FBPML is a visualandconceptual language.It capturesand
describesthebusinessprocessesof anorganisation.Besides
describing a model,it alsoallows BPMs to be analysed, re-
designedandchecked. Through FBPML, the tasksandop-
erationof anorganisationcanbemoreeasilyunderstood.In
ordertoprovidethepropertiesdescribedabove,FBPMLhasa
declarative reading (understoodindependentlyof any partic-
ularcomputationalprocedure) aswell asanoperational read-
ing whencombined with a particularcomputational proce-
dure.TheseareexactlytheprinciplesthatFBPML embodies.

While FBPML givespreciseexecution logic for processes,
it allowsmultipleversionsof implementationof theworkflow
engine. This is becausetheFBPML specifieshow processes
shouldbeenactedbut doesnot specifytheworkflow engine
that enactsthoseprocesses. In this section,we have con-
structeda workflow language“FWFL” (the FBPML Work-
Flow Language) basedon FBPML. In section5, oneversion
of theworkflow enginewill beintroducedbasedon“FWFL” .
Thedefinitions of FWFL will be introducedin thefollowing
section.

3.1 FBPML WorkFlow Language(FWFL) Design
Process: The predicatedefinesa process.It hassix param-
eters:ProcessId, ProcessName, Pstate, TrigCond, PreCond
andAction.������������� �"!#������������$&%(')!#������������*,+&-,� '.!
�0/�+�/�� '012� 354&67��89%('.!#� ��6
��89%(': �./3;��89<
ProcessIddefinestheID of aprocess.It mustbeuniqueto all
processesin the BPM. ProcessNamedescribesthe nameof
a process.It does not have any impacton theexecution, but
is usedonly for humaninterpretation. It’s purposeis to help
the userunderstandwhat the processis. Pstaterecordsthe
statusof a process.Therearetwo typesof statusin a process
– “Triggered” and“Completed”. “Triggered”meansthat the
processis already triggeredandis temporally qualifiedto be
executed. “Completed” meansthat the processhasalready
beenexecutedproperly, i.e. it is already finished. TrigCond
definesthetriggercondition(s)for theprocess.It is composed
of a triggeredeventor valuesabout astate,e.g.attributesand
theirvaluesof anentity. PreConddefinesthepre-condition(s)
for theprocess.It is composedof attributesandtheir values
of an entity that a processmanipulates3. A simpleexample

3It also hasa condition – delay time which describesa delay
condition.

will be usedto illustrate this later. A usercan understand
whattheprocesslookslike simplyby reading through its de-
scription. Example 1 shows thatprocess“a” needsanevent
to triggertheprocess.Thecontent of this triggereventcanbe
readsimply through thedescription.

Actions For Processes: In FWFL, eight differ-
ent types of action are provided. They are cre-
ate entity, get newValue from usr, get uptValue from usr,
add attribute, deleteattribute, update attribute, re-
fer attribute of entityanddeleteentity.

The actioncreateentity createsa new entity and adds it
into theentitydatabase.To carryoutthisaction– theattribute
andits valuefor thatentityareneededatexecution time. The
actionget newValue from usr getsa value from the userat
run time, asa workflow systemmay have interactions with
othersystemsaswell aswith the user. This actionprovides
aninterfacethroughwhichaworkflow systemcanobtainnew
datafrom a user. The actionget uptValue from usr is simi-
lar to get newValue from usr. The only differenceis that it
getsanupdatedvalueto updateanexistingattribute.Theac-
tions add attribute, deleteattribute or update attribute add,
deleteor updateattributesin an existing entity. The action
refer attribute of entityrefersto thevalueof anattributepro-
vided by another entity. The actiondeleteentity deletesan
existing entity. Sometimesthe actionsbeingcarriedout by
oneprocessmayconflictwith anotherprocess.Theworkflow
systemneedsto dealwith thissituationandprovideappropri-
atewarning messages.
Example 1:
process(a, receiveCustomerReq, Pstate,

[exist(event_occ(EventId,
custom_req_for_pc_spec,
created,
attribute(Attr)))],

[true],
[create_entity(attribute(Attr))]).

Instance: A processinstanceis anactualrunning process
at execution time. A process(type) mayhave more thanone
instancedependingonthenumberof events.Thedefinitionof
aninstanceis inherited from process,suchasTrigCond, Pre-
CondandAction. Theonly differencebetweenaprocessand
aninstanceis thatprocess’variablesProcessId, ProcessName
andPstateareusedinsteadof InstanceId, InstanceNameand
Istate, but thedefinitionsof theseparametersarethesame.In
addition, an instancehasa parameter– BeginT/EndT that is
differentfromprocess.It recordsthestartandendtimeof that
instance.As weknow, aninstanceis theactualexecutedpro-
cess,therefore,its variablesareinstantiatedat run time. The
workflow systemneeds to recordthis informationandcarry
outsomechecking atexecution time. A predicate–“instance”
is therefore:3=89�0/�+&8>��� �"$�89�0/�+&8>����$&%('.$�89�0/�+&8>����*,+&-,� '.$&�0/�+�/���'.1?��3"4&6
��89%(')!#����6
��89%(': �./3;��8@')A7��4�3=8B1DC E
89%�12<

Attrib ute: Attributesareusedeverywherein FWFL such
as “TrigCond”, “PreCond”, “Action”, “entity” and“event”.
Attributesaredefinedin predicate:+�/F/��3;G.HI/�� �"E�8B/35/JK*,+&-,�#L : /F/� 3=G.HI/���*,+&-,��C : /F/� 3=G.HI/���MN+�O5HP��<

This meansthat the attribute,AttributeNamebelongs to a
particular entity, EntityName. Its valuewill beassignedatex-
ecutiontime. For example, “customer-name/NameV”means
theentity “customer” hasanattribute“name”. Thevaluehas
notbeenassignedyet.

FWFL alsoallowstwo otherdifferent kindsof attributesto
beused.Q Thesetwo attributedefinitionsareslightly different
from thepreviousone.Thefirst typeis themultiple-valueat-
tribute. For example, “ioBoard-capability/(normal-graphics-
long)” meansthattheentity“ioBoard” hasanattribute“capa-
bility”, and“capability” hasmultiple valueswhich are“nor-
mal”, “graphics” and “long”. Thesethree values appear
at the sametime in the attribute “capability”. The second
type is the alternative-value attribute. For example, “box-
color/[white,silver,black]” meansthattheentity “box” hasan
attribute“color”. Thevaluesof colorareonly oneof “white”,
“silver” or “black”.

Attrib ute Domain and Attrib ute Value: Thedomain of
anattribute is definedby+�/F/ %&��-,+&3=8R�"6�O"+K��� ' : /F/��3;G.HI/���*,+&-,� '.SN��-,+&3=8B<
Theattribute,AttributeName, indicatesthat“AttributeName”
is anattributefor instancesin a class,“Class”. Thefield Do-
main defines the domainof valuesfor the attribute. For in-
stance, TVU�U W>X�YZTV[.�\�5]D^PXP_K`Pa�aIX�^Pb�U�c�]2`Vb(d U&e9b�U�f@b�U�ghb�U�i9jF� means
thatClass“processor”hasanAttributeName“type”, andits
domain is “t1”,”t2”,”t3” or “t4”. AttributeValueis definedby+�/F/ kK+�O5HP� �"6�O"+K��� ' : /F/� 3=G.HI/���*,+&-,� '�M�+�O"H���<
It means“AttributeName”belongs to class “Class”. The
value of this AttributeName is “Value”. For example,TVU�U lVTRm�n?`R��_Knoa(U�X�YZ`(^Pb X�^PW>`I^PpqXRb�lRTRmno`R��eI��� meansthatClass
“customer” hasanAttributeName“orderNo’, andits valueis
“1”.

Entity: An entityrepresentsaclassin theworld. It defines
thepropertiesof anentity.
Thepredicateis:��8B/35/J��=E�8P/3"/JK*,+&-,� '�E�8P/3"/JK$&%(')E�8B/35/J�r>/�+�/���'.E�8B/35/J : /F/� 3;G)HI/���<
The EntityNameis the name of the entity. The EntityId is
theID of theentity. Thesameentity typewill have thesame
entitynamebut differentIDs. Thus,theID is unique. TheEn-
tityStaterecords thestateof theentity. Therearetwo typesof
thestate:“valid” and“invalid”. Theentity is “valid” whenit
is created; it is “invalid” whenit is deletedor after it reaches
a particular time point. The EntityAttribute containsthe at-
tributesand their values for that entity. At execution time,
everyoccurrenceof this entity mustbebound by theseprop-
erties.An entityoccurrenceis definedas��8B/35/J �������=E�8P/3"/JK*,+&-,� ')E
8P/35/J�$�%('.E�8P/3"/J�r>/�+�/�� '0E�8P/3"/J : /F/� 3=G.HI/���<
which is inherited from theentitydefinition.

Event: An eventdefinesthepropertiesof atriggered event.
It is representedas��kK��8P/0�"E�kK��8P/$&%('0E
kK��8P/1?J �(� '.E
kK��8P/stO"+&4('�E�kK��8P/ : /F/��3;G.HI/�� '01?3=-u��<
TheEventIdindicatesthe ID of an event. The EventType is
the type of an event. The EventFlag records the stateof an
event 4. TheEventAttributecontains theattributesandtheir
valuesfor the event. Time records the trigger time for this
event. The event predicatedefines the properties that are
neededin an event. In the sameway, the event datais rep-
resentedasanevent occurrence.An event mayhavedifferent
occurrences.We use��kK��8P/ � �����"E�kK��8P/$&%(')E�kK��8B/12J �(� '0E�kK��8B/stO"+�4I'�E�kK��8P/ : /F/� 3;G)HI/�� '�1?3"-,��<

4Two flags– “new” and“created”aredefinedin FWFL.

to expressit.
Junctionsand Models: Thepredicatev H�89���=w�� %&�0O5$&%('0x9H�89�./3=��8B1?J �(� '.!�� ��!�� � ����������� '0!
���0/!�� � ������������<

is usedto representa junction. For example, if we want
to represent a junction Or Split which is connectedwith
“b” and“c,d,e,f” for Model “m1”, we canrepresentedis asy n2�#_9�Yze9b�X�^ a�]2m�[0U&b(d { j.bId _Bb�W2b�`Vb |2j�
4 Validation and Verification Support

Framework for BusinessProcessModeling
In this research,a three-level framework is providedto anal-
yse the BPM. The framework includes“model behavior”,
“detailedmodel testing” and“ instantiation of businesssce-
nario – casestudy.” This framework is intended to giveusers
a more systematicstructure when analysinga BPM. The
framework first addressestheprocessflow control issuesand
thenfocusesonthedetailedprocessanalysis.Theanalysisof
this framework mayalsobedividedinto two categories:syn-
tactic andsemantic[SadiqandOrlowska,1996]. Theinvalid
useof abusinessprocessmodeling languageresultsin syntac-
tic errors. Semanticerrors occurdueto incorrect modeling
of businessprocessesor gettinginto erroneoussituationsbe-
causeof unanticipatedcombinationsof taskexecution [Sadiq
andOrlowska, 1996]. Basedon thesetwo typesof error, we
defineour two typesof critiqueassyntacticcritique andse-
manticcritique. We verify themandgiveadvicein thethree-
level framework.

Figure 2 demonstratesour three-level framework and
shows the relationships betweenlevel 1, 2 and3. Level 1
considers the overall model behavior to find the appropriate
topology for theBPM andcarriesout thesyntacticcritiques.
Level 2 capturesthe topology featuresfrom level 1, carries
out the semanticcritiquesandeliminatesimpossibleexecu-
tion sequences. Level 3 executes the BPM using business
scenarios(entity data)in a particular domain and attempts
to validatethemodel. Becausetheexaminedproblem space
for possibleexecutionpathsis reducedby eachlevel asmore
informationis presentedby themodel,we presentour three-
level approachin a three-layeredoval graph. The detailed
descriptionswill beintroducedin thefollowing sections.

Model Behavior
(syntactic critique)

Detailed
Model Testing

(semantic critique)

Instantiation of
Business Scenario

-- Case Study

Figure2: OverallFramework for BusinessProcessModeling

4.1 Model Behavior Level
Syntactic critiquesarechecked at the modelbehavior level.
The typesof syntacticcritiques are shown in tables2 and
3. This includestwo parts–syntacticerrors and syntactic
warnings. “Model behavior” is alsoexamined at this level.
Themodel behavior indicatesall thepossibleactionsthatthe

ErrorTypes Type of
junction

Errorandexplanation

Junctionlogical error And Joint morethanoneoutgoingnode

Or Joint morethanoneoutgoingnode

And Split only oneoutgoingnode

Or Split only oneoutgoingnode

Start& Link morethanoneoutgoingnode

Table2: SyntacticErrors

WarningTypes Explanation

Connectingwarning Thelink doesnot connectproperly

Redundancy warning More thanoneof thesamenodeconnectedtogether

Table3: SyntacticWarnings

model maycarryout. Thefirst level in this framework gener-
atesthiskind of model behavior. At this level, all thepossible
triggeredresultsandtheresultingexecutionsequencesarede-
termined. Theusersmayknow all of possiblebehaviorsof the
BPM usingthis facility. This facility is usefulin understand-
ing thebehavior of a similarly complicatedmodel. Through
this simplebehavior enumeration,theusermayhavea rough
ideaabout whatkindsof flow maybeexecuted. Particularly,
theusermayknow thestateenumerationandall possibleex-
ecutionsequences.Although the BPM that we dealwith is
written in FBPML, this approachis genericto otherbusiness
processmodeling languages.

4.2 Detailed Model TestingLevel
Themainpurposeof level 2 – detailedmodeltesting– is to
provide semanticcritiquesfor theBPM suchasreachability
analysis5, potential deadlocks and irr elevant nodes. As for
syntacticcritiques,it maybedividedinto semanticerrorsand
semanticwarnings. Table4 and5 summariesthesecritiques.

This detailed testing mechanismconsiders the logical
meaning of the junctions, preconditions and actions of the
processestogether to verify thesemanticsof a BPM. It also
figuresout thepossibleexecutionresultsof theBPM.

At this level, notonly thelogicalmeaningof thejunctions,
but also the detailedpreconditions and actionsof the pro-
cessesareconsidered. Neither level 1 nor level 2 consider
trigger conditions, becauseall possibletriggered resultsare

5“Reachability analysis”is usedto describethe constructionof
a state-transitionmodelof a systemfrom modelsof individual pro-
cesses[YehandYoung,1991]

ErrorTypes Explanation

Unreachabilityerror Thepreconditionof theprocesscannever besatis-
fied,andtheprocesswill neverbeexecuted.

Deadlockerror A process(A)waitsfor anotherprocess(B)andpro-
cess(B)waitsfor process(A)at thesametime.

Terminationproblem Determining whether a workflow structure can
reachaterminatingstate[terHofstedeetal., 1996].

Table4: SemanticErrors

WarningTypes Explanation

Irrelevancewarning A processthatdoesnot useoutputsfrom any other
processesand doesnot produceinputs for other
processesto use.

Table5: SemanticWarnings

listed at thesetwo levels. The analysisof level 2 is based
on the resultsfrom level 1. Theanalysisof level 1 enumer-
atesall possibleresultsof theBPM. Somedetailedchecking
areaddedat level 2 to eliminateall impossibleexecutionse-
quenceswhile keeping all possibleones. A termination prob-
lemmayalsobedetectedat this level.

4.3 Instantiati on of BusinessScenarioLevel

At level 3, instantiation of businessscenario– casestudy, the
entity datais instantiatedto a BPM. At this level, a usersce-
nario adapted from AKT project6 in the “PC configuration”
domain hasbeenusedto testtheseideas.TheBPM is shown
in figure3. It is differentfrom level 1 andlevel 2 in thatlevel
1 and2 focuson overall businessprocessmodelsimulation,
whereaslevel 3 focuseson a specialcasestudy. At level 3,
a workflow systemis executedandmay createinstancesof
processesat run time which dependon thegiveninput data.
Thefinal flow is determineddueto theattributesof this data.
At this level, conflictingactionsarealsocheckedandaresig-
naledby warningmessages.

A workflow systemdirectly mappedto FWFL is imple-
mentedat this level. A BPM describedin FBPML is usedat
this level, andmaybecheckedandrun in this workflow sys-
tem.Thedetailedsystemarchitectureandimplementationare
discussedin section5. The three-level framework becomes
complete becausemodel behavior is testedandsomemodel
checking is provided in level 1 and2, anda caseis usedto
analysetheBPM at level 3.

start autoCreateOrderNumber

b

Or And

determineProcessor

c

determineIoBoard

d

determineDiskController

e

specReqforbox

f

specReqforcase

g

examPCspecification

h

EndreceiveCustomerReq

a

Figure3: BPM adaptedfrom AKT Project

6Advanced KnowledgeTechnologies (AKT) Projectis an IRC
(InterdisclipinedResearchCouncil)project. This projectis usedto
developandintegraterelevantAI techniques in thelargerprocessof
knowledge management. Variouspublic web sitesareavailableat:
http://www.aktors.org/

CaseStudy
The caseused in this researchis adapted from the AKT
project [Chen-Burger, 2002a] in the “PC configuration” do-
main asshown in figure 3. A BPM andan entity database
are needed for this workflow engine7. The BPM is com-
posedof aProcessSpecification, aJunctionSpecificationand
an Entity Specification. Definitionsof processesarestored
in the ProcessSpecification. It is written in FWFL which
provides direct input to the workflow engine. If a BPM is
changed, the definitions of the processeswritten in FWFL
change correspondingly. Thepurposeof Junction Specifica-
tion is to record the logical connections of the BPM. Entity
Specificationstoresthe definitionsof the entitiesandevents
(i.e. theeventoccurrencesandentity occurrencesarestored
in theentity database). Becausetheuserneedsto determine
how many stepsthat theflow needsto run, theflow canstop
at astepwhich is stipulatedby theuser.

Example 1 in section3.1 illustratesa part of the Process
Specification. JunctionSpecification is shown in example 2.
Example 2:
junc(m1,start,[],[a]).
junc(m1,link,[a],[b]).
junc(m1,or_split,[b],[c,d,e,f,g]).
junc(m1,and_joint,[c,d,e,f,g],[h]).
junc(m1,link,[g],[h]).
junc(m1,end,[h],[]).

Example 3 illustratesapartof theEntitySpecification.
Example 3:
event_occ(e1,

custom_req_for_pc_spec,
new,
attribute([entity-id/’e1’,

customer-name/’John’,
customer-doB/’13-06-70’,
customer-gender/male,
customer-tel/’0131-5563432’,

spec([box-color/white,ioBoard-length/short,
ioBoard-capability/(fast-_A-_B)])]),1).

entity_occ(ioBoard,io1,valid,attribute(
[ioBoard-type/io1,ioBoard-slot/3,
ioBoard-length/short,
ioBoard-capability/(fast-graphics-short)])).

The BPM in example 3 describesa processflow for “PC-
configuration for the customer”as shown in figure 3. The
triggerconditionsof processc, d, ande are“true” (i.e. they
may be triggered automatically), so they must be triggered
whentheflow is running. Theusercaneasilyunderstandthe
processbecausea PCmustconsistof thesethreeparts.Pro-
cesses“f” and“g” aredifferent. They aretriggeredonly if the
customerhasa specialrequirement.TheOr Split junction is
usedhere. It indicatesthat not all following processesneed
be triggered. The And Joint is usedin the next junction. It
indicatesthat all the triggered processesmustbe finishedat
sometime(i.e. theworkflow mustfind asolutionfor thecus-
tomer). The testingresultabouta caseis shown in example
4.
Example 4:
Model: Model1
customer: (Mary, John)

SpecialRequirements : John’sspecialrequirementis satis-
fied,Mary’s is notsatisfied.

John’s specialrequirementis:
sepc([box-color/white,ioBoard-length/short,

ioBoard-capability/(fast-_-_)])

7We constructa BPM here,but FBPML may also be usedto
constructamanufactory processmodel.

Display

Process
Specification

Business ProcessModel

Junction
Specification

Entity
Specification

FWFL FBPML

ProcessAgenda Execution Queue

Workflow Engine
} Entity

Database

Figure4: SystemArchitecture of the FWFL Workflow En-
gine

Mary’s specialrequirementis:
sepc([case-type/c1,box-color/black])

TheExecution Sequence:
a1-i-(e1-John),a1-i-(e2-Mary),b1-i-(e1-John),b1-i-(e2-Mary),
f1-i-(e1-John),e1-i-(e1-John),d1-i-(e1-John),c1-i-(e1-John),
g1-i-(e2-Mary),e1-i-(e2-Mary),d1-i-(e2-Mary),c1-i-(e2-Mary),
h1-i-(e1-John)

TheExecution Result:
The process f1-i-e2-Mary cannot be executed.
The reason may be the precondition cannot be
satisfied or the action has errors!
The requirement of customer --
Mary cannot be satisfied
The solution for customer --
John is [customer-orderNo/1,box-color/white,

diskController-type/dc1,ioBoard-type/io1,
processor-type/p3]

The flow is finishedat step10. We find that John’s special
requirementsinclude “case”, so processesc, d, e and f are
triggeredandfinished.On theotherhand, Mary’s specialre-
quirementsinclude“case”and“box”, soprocessesc, d, e, f
andg are triggered. But asMary’s specialrequirement for
box-color/black cannot be found in the entity database,the
solutioncannot beprovidedto Mary. Theflow stopsat step
“10” in example 4 becausethetermination“step” definedby
theuseris “10”.

5 FWFL Workflow Engine
5.1 SystemAr chitectur e
The systemarchitecture of the FWFL workflow engineis
shown in figure 4. A BPM andanentitydatabaseareneeded
for thisworkflow engine. TheBPM is composedof aProcess
Specification, a Junction Specification andan Entity Speci-
fication8. The definitions of the processesarestoredin the
ProcessSpecification. It is written in FWFL which provides
direct input to theworkflow engine.If theBPM is changed,
thedefinitions of theprocesseswritten in FWFL is changed
correspondingly. Becauseof thedirectmapping, it doesnot
require mucheffort to dealwith thesechanges.Thepurpose
of theJunction Specification is to recordthe logical connec-
tionsof theBPM; it alsofollowstheFWFL.TheEntitySpeci-
ficationstoresthedefinitionsof theentitiesandevents. Event
occurrencesand entity occurrencesare storedin the entity
database.

8An entity is a datastoredin theentity database.

Theuserneedsto determine how many stepsthattheflow
needs~ to run. Theflow maystopat a stepwhich is stipulated
by theuser. After acceptingtheinput data,theworkflow en-
ginestartsrunning the processesbasedon the definitions of
theprocessesandtheBPM. It checksthetriggeredeventsfirst
andtriggersall theprocesseswhosetriggerconditionsaresat-
isfied.Thelogicalmeaningsof thejunctions directtheflow.

Whenprocessesaretriggered, instancesof thoseprocesses
arecreatedandexecuted. In eachtick9, all the possiblein-
stancesarerun within thegiven time until they arefinished.
Sometimessomeinstancesmaynot beexecutedandfinished
in thecurrent tick; theworkflow enginekeepsthemuntil the
next tick. The enginerechecks all remaining instancesand
runsthemagainin thenext tick. This procedureloopsuntil
theflow reachesthestepdefinedby theuserat thebeginning
or until it reachesthe“END” of theBPM. Thetimeandflow
stateareupdatedin eachtick, thustheusercanknow thetime
pointandflow statein eachstep.

BPM 2002Market MilestoneReport[Group, 2002] clas-
sifies workflow processesinto threecategories “process-to-
process”, “person-to-process”, and“person-to-person”. The
FWFL workflow engineimplemented in this researchcap-
tures formal descriptions of the processesand provides a
structured methodto capture the businessprocess. In addi-
tion to handling “person-to-person”or “process-to-process”
workflow processes,it alsoprovidesinteraction betweenthe
user and the workflow system. As well it can deal with
“person-to-process”workflow processesbecauseit hassome
exception handling so the usercan choose when he/sheis
asked for input datafrom outsidethe workflow system. In
mostsituations,however, theworkflow still worksautomati-
cally.

Therearetwo typesof interaction in theFWFL workflow
systemthatdealwith the“person-to-process”workflow pro-
cess.First, theworkflow engine asksfor new values(or up-
datedvalues)from the user. In this case,the flow may stop
andwait for input from the user. Second,the workflow en-
ginemayalsodetectconflictingactionswhich happen when
differentinstancestry to dealwith thesameentitydatasimul-
taneously. Warningmessagesareprovide to theuser, andthe
systemasksfor adecision.

Figure5 shows the flowchartof the FWFL workflow en-
ginewhich is implementedandbasedonthisworkflow meta-
interpreter. Table6 showsthesummaryof thepredicatesused
in theworkflow system(meta-interpreter).

5.2 StateTransiti on and Dynamic Behaviors
Once a workflow is implemented, we need to monitor
its progress. We can do this by checking the statusof
a workflow [Georgakopoulos et al., 1995]. The FWFL
workflow systemrecords the flow stateusing the predicate|om�X�� a�U�TVU�`R����a(U�TVU�`Vb���� whichindicatestheflow stateattime
T. Figure6 shows an example of the statetransitionof the
workflow system.

In figure6, supposewehaveasimpleBPM:

9A tick indicatesa time point. It is a counterin the workflow
system(i.e. after all the possibleprocessesareexecutedproperly,
thetick increasesby one.)

check_event

WorkFlow Engine
�

do_junction_process
all_triggered_completed

create_instance

execute_process

update_time�
update_step

Entity
�

Database

(Reach the end of all process
model and ProcessAgenda=[])

or (Step ='usr_defined')

Junction
Specification

Step

Process
Specification

Yes

END

Entity
Database

t = t +1

Step = Step +1

Entity
Specification

Business Process Model

No

Figure5: Flowchart of theFWFL Workflow Engine

PredicateName Purpose

executeflow Controlthewholeprocessflow

checkevent Checkthenew event

do junction process Executethejunctionsof theBPM

executeprocess Executetheinstancesof theprocesses

updatetime Updatethetime point

updatestep Updatethestepcounter

flow state Indicatetheflow stateat time T

checkmstate Checkthemodelstate

Table 6: Main Predicatesof the FWFL Workflow Meta-
Interpreter

junk(m1,start,[],[a]).
junk(m1,link,[a],[b]).
junk(m1,end,[b],[]).

andtwo trigger eventsat timepoint t1. Whatwill bethestate
transition?In this case,the initial stateis “flow state([],t0)”.
The model stateindicatesthe instancesof the BPM for all
triggerevents. At theinitial time,no trigger event occurs, so
no instancesof theBPM arecreated. Theinitial model state
is “[]”. Whentwo events– “customer-John”and“customer-
Mary” aretriggered,two instancesof themodelarecreated:

[start/john/[]/[a],link/john/[a]/[b]],
[start/mary/[]/[a],link/mary/[a]/[b]] 10

After the instancesof the model arecreated, the flow starts
to run. Theinstancesof thefirst processfor eachmodel may
alsobecreatedandexecutedaslong asthepreconditions are
satisfied. In this example, the precondition of processin-
stance– “customer-John” is satisfiedbut theprecondition of
processinstance– “customer-Mary” is not satisfied.Perhaps
this is becausetherequired input datais not availableimme-
diately. Theinstanceof theprocess– “customer-Mary” is left
in theexecution queueandwaitsfor data.Thesekinds of in-
stancearerun againat a later time point. Thewholeprocess

10Themodelinstanceof customer-Mary andcustomer-John.

Time:t0
�
State :s0

Time:t1
�
State:s1

Time:t2
�
State:s2

END
�

New event : john, mary
�

No new event
�

Step : 0
�
ModelState = []
flow_state([], t0)
�

Step : 1
�
ModelState = [[link/john/[a]/[b]], [link/mary/[a]/[b]]]
�
ProcessAgenda=[a-i-e2-mary]
flow_state([a-i-e1-john], t1)
�

Figure 6: StateTransitionof theFWFL Workflow Engine

flow of “customer-Mary” maystayat this stageuntil this in-
stanceis finished.On theotherhand,theinstanceof thefirst
process– “customer-John”– is executedandfinishedat time
point t1 (Tick 1). Theinstancesof theBPM changeto

[link/john/[a]/[b]],[lin k/mary/[a]/[b]]

Theflow staterecordstheexecuted result– [[a1-i-(e1-john)],
t1], andthe processagenda storesthe remaining instance–
[a1-i-(e2-mary)] which maybeexecutedlater. Thedatacre-
atedhavebeensavedin theentitydatabase,andthatdatamay
alsobe modifiedor removed later. The flow continuesrun-
ning,andtheflow statechangesat eachstageuntil it reaches
theendof theflow. Therearetwo waysto reachtheendof the
processflow. First, when“ModelState”is anemptylist and
the“processagenda” is alsoanemptylist, it indicatesthatthe
wholebusinessprocesshasexecutedcompletely. Second, the
flow reachesastepdefinedby theuser. In thiscase,thewhole
businessprocessmayor maynotbefinished.

5.3 Validation and Verification to Workflow
System

Errorsandwarnings mayhappenin two situations:First, two
or moreinstancestry to dealwith thesameentity data.Sec-
ond, someinstancesmay be left in the execution queuefor
too long. This delaytime duration is defined by theuserus-
ing the predicate“delay time duration(Time)”. Table7 and
table8 containdetaileddescriptions of this.

ErrorTypes Description

TypeI Two or more different instancesadd,
deleteor updatethe sameentity dataat
thesametime.

TypeII Oneor moreinstancesreferto entitydata
andotherstry to add,deleteor updateit.

Table7: Error Typesof theFWFL Workflow Engine

WarningType Description

TypeI An instancemay not be executedfor a
long time.

Table8: WarningTypeof theFWFL Workflow Engine

Whentheworkflow engineencountersthesecases,theflow
stops,a messageis displayedandthesystemwaits for a re-

sponsefrom the user. Example 1 shows the messagefor a
type I warning. It shows that the instanceof processb-i-
id(e1-John,e1-John)is alreadydelayed for morethann- ticks
(time). The systemwill show the warning messageto ask
whetherthisdelayed instanceof theprocessshouldbekeptor
deleted.Theuserthenmakesa decisiontakinginto account
the impactof the decision. Seriousproblemsmay occur in
this case.Theflow maynotbeableto continue.
Example 1:
There is a delay in Process=> b-i-id(e1-John,e1-John)
Do you want to continue?(y/n)y.
Continue.....
Keep Process=>b-i-id(e1-John,e1-John)
There is a delay in Process=> b-i-id(e1-John,e1-John)
Do you want to continue?(y/n)n.
delete current process.....

6 Complexity of BusinessProcessModels
Thecomplexity of theBPM is discussedin this section.The
complexity we calculatehereis thecomplexity of theverifi-
cationof the program usingsimulation/world statestepping
techniques. The result shows that this program will be in
practiceneedto carryout anexhaustive searchto execute of
all thepossiblepermutationenactments of abusinessprocess
model andfind if thereis any inconsistency. It alsoleadsto
a conclusion that“Or split” junctionsmake a processmodel
substantiallymorecomplicatedas it allows rapid growth of
different dynamic behaviours. In the following paragraphs
we will show how we calculatethe complexity of this pro-
gram.

6.1 Complexity of a SingleModel
In this section,we will calculatethe complexity of a single
model. Definitionof thevariablesusedin thefollowing com-
plexity analysisare:� n: The number of branches from an And- or Or-Split

junction.� m: Whentwo models (suchasfigure1 (a)+(d), (a)+(c),
(b)+(c), (b)+(d)) are connected, n is the number of
branchesfrom the first modelandm is the number of
branchesfrom thesecondmodel.

An “Or-Or” model is usedto illustratehow to compute the
complexity. Supposean“Or split” junctionhasn branches.It
is possiblethatall n branches,or only n-1branches,arebeing
triggered.In total,thereare �������,��eI������,��f>�
���(���\��e
different possibletriggeredresults. For eachtriggeredpro-
cessset,theexecution sequencemayalsodiffer. Thepossible
permutationsof theseprocessesshouldbe considered at the
sametime.
The possibleexecution sequences of the “Or-Or” model are
therefore:� �=��+����o�(� ����3;G�O=�h/� 354�4K������%t������HIO�/ �+�O5O��(����-uHI/�+�/3;��8>�D� �#/��������h/��3"4�4K��� ��%2��� � ������������<
Thesecondtermin theproductcomesfrom:� �5/����R8BH�-,G0���t����/����h�I3"8B3;������%D�����������������DG0������� �/����R��������89% v H�89�./3;��8 � ������-uHI/�+�/3;��8�� �o/��������9��� � ����������� ��(��� -uH(/�+&/3=��8�� �#/���� ���@����-,+&3=8B3"8B4?�K��� ������������<
Basedon the result computed by “Mathematica”. We find
thatwhen“n=10”, thevalueof formula 1 is �9��� eI¡t¢ which
is a very big number. The complexity of this kind of BPM
is high andhasa factorialrateof growth [Bard,2001]. It is

Businessprocessmodeltypes Complexity

“And Split” and“And Joint” model(“And-And” modelin
figure1 (a)+(c))

£ �"8V¤ <
“And Split” and“Or Joint” model(“And-Or” modelin
figure1 (a)+(d))

£ �"8,¥�8>¤ <
“Or split” and“And Joint” model(“Or-And” modelin
figure1 (b)+(c)) ¦

£ �"8V¤ <
“Or split” and“Or Joint” model(“Or-Or” modelin figure1
(b)+(d)) ¦

£ �"8§¥�8>¤ <

Table9: TheComplexity of Different BPM Types

impossibleto list all thepossibleexecution sequenceswhen
a BPM becomessocomplex. Table9 lists thecomplexity of
four differenttypesof BPM.

As a result,we find the “Or-Or” model is the mostcom-
plex modelasit hasthehighestcomplexity. The“And-And”,
“And-Or” and “Or-And” are specialcasesof the “Or-Or”
model. The“And-And” model caseoccurs whenn processes
aretriggeredat thesametime andall thetriggeredprocesses
must be finishedbeforeexecuting the following processof
thenext junction. The “And-Or” model caseoccurs whenn
processesaretriggered at the sametime andat leastoneof
the triggeredprocessesis finishedat a later time point. The
“Or-And” model is another specialcasewhenall triggered
processesmust be finishedbeforeexecuting the following
processof the next junction. The following resultsarealso
found:� TheOr split andOr Joint havethegreatestinfluenceon

the complexity. For instance,the complexity of “And-
Or” is n timeshigher than“And-And”.� Thecomplexity of thesetypesof BPMsis veryhigh, and
it is difficult to carry out all of the possibleexecution
paths.

6.2 Complexity of Combination Models
In this section,we try to combine someof thepreviousmod-
els and compute the complexity of them. They are cate-
gorisedas:

1. A model finishingwith anAnd Joint junction.
2. A model finishingwith anOr Joint junction.

A model finishingwith anAnd Joint junctionis considered
first becauseit enables possibleexecution sequencesof one
independentmodel. In general, thecomplexity of this caseis
computedas:¨ �"1o���h����-N�KO"��©I3"/J�����/����@-,��%&��O(�I3"8B3;���I3=8P4#ªt35/���+&8« : 89% x>��3=8P/F¬ v HI8>�./3=��8B<
Modelsthat finish with an Or Joint have many possibleex-
ecutionresults,especiallywhen more than one Or Joint is
combined. Thesemodelsmaybecome very difficult to carry
out.

A simpleexample – thecombinationof And-Or andAnd-
Andmodels– is usedto describethecomplexity. An assump-
tion hasbeenmadeto simplify thisproblem. Wealsoremove
theassumptionto show theextent of thecomplexity. Theas-
sumptionis thatall triggeredprocessesmustbefinishedbe-
fore thefinal processof eachconnectedmodel(whereasin a
real processmodel, an unfinished process may ”propagate”

andexecuteparallelto aprocessin thelattermodel).
Basedon this assumption, thecomplexity of this problemis:� 8 &®
¯ 8V¤�"8@L <)¤o° ��Y±�²�³�²´h�Kµ¶�.|oX�^�Y·nom�T¸f9�\¹º���Y±�»���&µ 11

As a result, formula 2 only provides the complexity under
theassumption.If we relax theassumption, an“assumption
term” hasto beadded. Thentheresultis:1?���>������k&3;��HP�D������-uHIO"+¼ 1o�������h��+K�����h3"8\ª#�I3;���
����-,�>�����������������+&���h��©����0HI/���%t+K�(/����2/����h�I3"8>+�O���� � �������
It will be larger than formula 2. Its complexity remains in�����µ½� . Theassumptiondoesnot have a big influenceon the
complexity.

As ��µ hasa factorial rateof growth which is biggerthan
polynomial rates,[Garey andJohnson, 1979] alsoshows that
anNP-completeproblemneedsmorethanpolynomialtimeto
solve (i.e. it needsexponentialtime or greater). Thegrowth
rateof ��µ is bigger thanthe growth rateof ´ 8

, so we know
that thebusinessprocessproblem is at leastanNP-complete
problem. [Chen-Burger, 2002b] indicatesthatworkflow sys-
temsmayberequired to handle over 300processesbasedona
realmilitary BPM. Thepossibleexecution sequencesof such
alargemodel maybemorethan ¾9¡Dµ>¿À�D� g���e(¡oÁ

¯
, if thereare

many different types of thejunctionin theBPM (i.e. if there
is a totalof 300processesandthereare5 junctions,theneach
junctionwill have approximately60 branches).So thenum-
berof possibleresultsmaybeenormousif wedonotconsider
thedetailedsemanticsof theprocesses.

7 Other RelatedWork
In orderto show thedifferencebetweenFBPML + FWFL and
other workflow processlanguages,the applicationof Petri
netsto workflow management[van der Aalst, 1998] is com-
paredin this section. The most significant differencebe-
tween“FBPML + FWFL” andthisresearchis that“FBPML +
FWFL” hasa formal businessprocessmodeling mechanism
which separatesthe businessandthe implementation logic.
Hencetheworkflow systemis more flexibly reactive to a dy-
namicenvironment.

A Petri net that modelsa workflow process definition is
calledWorkflow net(WF-net).Comparing theformalmethod
(FBPML + FWFL) thatwe provide, andPetri net (WF-net),
thefollowing resultshave beenfound (thedetailsof WF-net
arenot explained here,we focus only on thecomparisonbe-
tweenthem):� Becausea Petri net is a processmodeling technique, it

focuseson workflow processeswhich are designedto
handle cases(called instancesin FWFL). However, it
doesnotfocusonresources,suchaspeople,machinesor
organizationunits,which maybe involvedin thework-
flow system. The concept of “Role” is ingrained in
FBPML+FWFL in orderto representresourcesanduse
themin theBPM.� Tasksaremodeled by transitionsin Petri net, whereas
in FBPML, activities areusedto describetasks.In Petri
nets,casesaremodeledby tokens,whereasin FBPML
+ FWFL, instancesareusedto describecases.

11Whenm=0,this formularepresentsthecomplexity of the“And-
Or” model.

� In Petrinet,eachconditionis modeledby a “place” and
it mayrepresent aprecondition or apostcondition of the
process. In FBPML + FWFL, logical meanings of the
junctionandpreconditions in theattributesof a process
replacetheusageof “place”.� To definea processanda BPM, FBPML + FWFL has
a formal, declarative semantics.A processdescribedin
WF-netdoesnothavecleardefinitions of its attributes.� To represent differenttokens (casesor instances),there
aretwo waysto represent andlist themin Petrinet(WF-
net): 1. Usedifferentcolorsin a high-level Petri net12.
2. Useinstancesto describe them.Thelatteris thesame
in FBPML + FWFL, but instancesin FBPML+FWFL
arenot listed in the BPM. Using FWFL, they areonly
describedas instanceoccurrencesinside the workflow
engine.� High-level Petrinethasa time extensionto describethe
temporal behavior of thesystem.In FBPML + FWFL,
“Precedence-Link” is usedto indicatea temporal con-
straintbetweentwo processes.It is similar to Petrinet.� High-levelPetrinetprovidesahierarchy constructcalled
“subnet”whichcanbeusedto structure largeprocesses.
In FBPML + FWFL,ahigh-level processcanbedivided
into two different typesof low-level sub-processes(de-
composition andalternation) representinga similar no-
tion.� Both PetrinetandFBPML+FWFL have a “trigger” no-
tion. The trigger condition is clearly definedasan at-
tributeof aprocessin FWFL.Theusermayformally de-
scribethe trigger condition of this process.Thedeclar-
ative descriptionin FWFL makesthe trigger condition
easyto understand.
In Petrinet(WF-net)thetriggerconceptis distinguished
by differentsymbols andfocuseson theenabler (Auto-
matic,User, Message,Time)whichtriggers theprocess.
It doesnot focuson the dataor world stateconditions.
In FBPML + FWFL, trigger conditionsareflexible; the
usermaydefineany triggercondition aslong ashe/she
follows thelanguage.� Junctionnotionsusedin Petrinet(WF-net)aremodeled
by ordinary transitions.Transitionsaretreatedascon-
trol tasks. In FBPML + FWFL, eachjunction hasits
own formal definition. Logical meanings of And Split
andAnd Joint arethesamein FBPML+FWFLandPetri
net (WF-net).However, in Petrinet (WF-net)the“OR-
split” is categorised into “implicit OR-split” and “ex-
plicit OR-split” (thesameas“OR-join”). Although this
mayprovide a cleardefinitionof workflow modeling, it
makesnotationmorecomplex13. FBPML + FWFL does
not distinguish this caseso that the modeling language
is easyto learnbecauseit is morenatural. Usersdo not
needto rememberspecificmeaningsof notations.

12A Petri net extendedwith color, time and hierarchyis called
high-level Petrinet.

13Theauthoralsosaysthat thereis no compellingneedto distin-
guishbetweenimplicit andexplicit OR-joins,but thereis for “OR-
split”.

� TheWF-netis designedto require thattherearenodan-
gling tasksand/or conditions in WF-net. Every task
(transition) and condition (place)should contribute to
the processingof cases.The conceptis similar to “ir -
relevant nodes” in our three-level framework.� Triggers and workflow attributes are removed when
analysingworkflow in Petrinet (WF-net). In our three-
level framework, we also only consider trigger condi-
tions at the level 3 – casestudy. The reason14 is the
sameasthatdescribed in [vanderAalst, 1998]. In our
framework, in orderto actuallysimulatepossiblemodel
behaviors,somesemanticsanddetailsof theprocessare
considered in the analysis.This is different from Petri
net(WF-net)analysisin which all verificationandvali-
dationaredoneatagraphical level; although it hasmore
formal definitions for verification thanours.

8 Conclusions
In this research,we try to bridge thegap betweenEnterprise
Modelings (EMs) andSoftware Systemsin orderto provide
support whereEMs areusedasa partof KM initiative. This
gap exists primarily betweenthe capabilities for gathering
andpresentingknowledge,andthecapabilityfor performing
semantic-basedautomatic manipulation of this knowledge.
Formality needsto be introduced to the informal or semi-
formal enterprise modeling paradigm to provide precision
andenable automaticsupport. A workflow systemis built to
bridge this gap, andallow domainknowledgeto bechecked
for consistency andcorrectnessduring enterprise modeling.
Thefollowing conclusions aremade:� FBPML is a merger of two standardisedprocessmodel-

ing languages:IDEF3 andPSL.Thebenefitof merging
the two languagesis that the former hasgraphic nota-
tion but lacksformalprocessconceptualisation,whereas
thelatterprovidesformal processtheorywithout any vi-
sualisation.Although the two languagesarenot equal,
their coreconcepts overlap. Suchcoreconcepts arein-
cludedin FBPML, andarecarefully disposedsothatthe
consistency of FBPML is maintained.� The graphical notation usedin FBPML is intended to
make it easierfor thoseunfamiliar with predicate logic
to describemodels in the language. Although we have
not conducted extensive empirical evaluations of the
FBPML graphical language,it is verysimilar in styleto
othergraphical processmodelling languagesthat have
achieved widespreaduse. Our aim hereis to conform
to currently acceptedmodelling practices.The graphi-
cal languagein FBPML, however, translatesautomati-
cally to apredicatelogic description thatsupportsbotha
declarative reading (helpful in checkingthelogicalcon-
sistency of themodel) andmultipleoperationalreadings
(allowing different forms of enactment enginesto exe-
cutea processmodel by interpretingthemodeldescrip-
tion). As usual,wemakeourenactment enginesgeneric
for all forms of FBPML model so that we can freely

14Thereasonis that it is impossibleto modelthebehavior of the
environment completely.

changethedeclarativedescription withoutneeding to al-
ter theenactmentengines.� The workflow meta-interpreter is basedon FBPML +
FWFL. It acceptsinput specificationsandexecutes the
BPM directly. It maybe implemented asa “person-to-
process” workflow systemso that somevalidationand
exception handlingmaybeconfirmedby theuser. This
makesit a moreusefultool for theuserdueto this flex-
ibility . Mostof thetime,flow is executedautomatically.
Thuswe have a flexible way to execute a businesspro-
cessflow in adynamic environment.� Our three level-framework provides a thorough test
which is useful in analysinga BPM. At level 1, after
carryingoutsyntacticcritiques,theappropriatetopology
for a complex BPM is mapped out. At level 2, the de-
tailsof theprocessareconsidered,andfeaturesfromthis
topology areinferred. Becauseof this explicitnessdue
to inferenceof themodel,someimpossibleexecution re-
sultsareeliminatedafterperformingsemanticcritiques.
Problemsizeis therefore reduced. Level 3 corroborates
a BPM written in FBPML + FWFL with respectto a
specialdomain. Thus, thethree-level framework is use-
ful for thesefour reasons:

1. A BPM is alwayscomplicated.
2. Detailsof processesmustbeconsideredwhenexe-

cutinga process.
3. Errors andwarnings alsoneedto becheckedto in-

suretheaccuracy of amodel.
4. A casestudyfor testinga BPM is a good way to

simulatepossibleexecution results,and to make
a model and workflow system more accurate.
Thisdetectssomepossiblemalfunctionsbeforethe
modelrunsonlinewhichsavestimeandcost.

This three-level framework is usedto analyseabusiness
processmodel, andit doesnot have restrictionson the
languageusedto describea model.� Thecomplexity of aBPM has,at least,afactorialrateof
growth. The program usedto verify a process model
needsto carry out an exhaustive searchto execute of
all thepossibleenactmentsof a businessprocessmodel.
This will behard. That is why we provide a three-level
framework to analysea BPM in a moreorganisedway.

References
[Bard,2001] Jonathan F. Bard. Classificationof integer

programming problems. www.me.utexas.edu/b̃ard/NP-
Complete.doc,2001.

[Chen-Burgeret al., 2002] Yun-Heh Chen-Burger, Austin
Tate,andDaveRobertson. Enterprisemodelling: A declar-
ative approachfor fbpml. European Conferenceof Artifi-
cial Intelligence, Knowledge ManagementandOrganisa-
tional MemoriesWorkshop, 2002.

[Chen-Burger, 2002a] Yun-Heh Chen-Burger.
Akt business process model akt project,
akt web site (http://www.aktors.org), 2002.

http://www.aiai.ed.ac.uk/project/akt/work/jessicas/pc-
config/onto-mode/top-level.html.

[Chen-Burger, 2002b] Yun-Heh Chen-Burger. Sharingand
checking organisationknowledge. Knowledge Manage-
mentand Organizational Memories, ISBN 0-7923-7659-
5, July 2002. Publisher:Kluwer AcademicPublishers,
Boston Hardbound, Editors: Rose Dieng-Kuntz, Nada
Matta.

[Garey andJohnson,1979] M. Garey andD. Johnson. Com-
puters and Intractability; A Guide to the Theoryof NP-
Completeness. W.H. FreemanAndCompany, 1979. ISBN:
0716710455.

[Georgakopoulos et al., 1995] Diimitrios Georgakopoulos,
Mark Hornick, andAmit Sheth. An overview of work-
flow management: From processmodeling to workflow
automation infrastructure. Distributed and Parallel
Databases,3, 119-153, 1995.

[Group, 2002] Delphi Group. Bpm 2002: Market mile-
stonereport. Web site: www.delphigroup.com/coverage/
bpmwebservices.htm, February2002.

[Mayeret al., 1995] Richard Mayer, Christopher Men-
zel, Michael Painter, Paula Witte, Thomas Blinn,
and Benjamin Perakath. Information Integration
for Concurrent Engineering (IICE) IDEF3 Pro-
cess Description Capture Method Report. Knowl-
edge Based Systems Inc. (KBSI), September1995.
http://www.idef.com/overviews/idef3.htm.

[SadiqandOrlowska,1996] WasimSadiqandMaria E. Or-
lowska. Modeling and verification of workflow graphs.
No. 386, Department of Computer Science,The Univer-
sity of Queensland, Qld 4072Australia,November1996.

[Schlenoff et al., 1997] Craig Schlenoff, Amy Knutilla, and
StevenRay. Proceedingsof theprocessspecificationlan-
guage (psl) roundtable. NISTIR6081, National Institute
of Standards and Technology, Gaithersburg, MD, 1997.
http://www.nist.gov/psl/.

[Schlenoff et al., 2000] C. Schlenoff, M. Gruninger, F. Tis-
sot, J. Valois, J. Lubell, and J. Lee. The process
specificationlanguage (psl): Overview and version 1.0
specification. ISTIR 6459, National Institute of Stan-
dards and Technology, Gaithersburg, MD (2000), 2000.
http://www.nist.gov/psl/.

[terHofstedeet al., 1996] A.H.M. ter Hofstede, M.E. Or-
lowska,andJ.Rajapakse.Verificationproblemsin concep-
tualworkflow specifications. International Conferenceon
Conceptual Modeling/ theEntity RelationshipApproach,
1996.

[vanderAalst,1998] W.M.P. vanderAalst. Theapplication
of petrinetsto workflow management.TheJournal of Cir-
cuits,SystemsandComputers,8(1):21-66, 1998.

[YehandYoung, 1991] Wei Jen Yeh and Michal Young.
Compositional reachability analysisusing process alge-
bra. Symposiumon Testing, Analysis,and Verification,
1991. SoftwareEngineeringResearchCenter, Department
of Computer Sciences,PurdueUniversity WestLafayette,
IN 47907.

