
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

The Synthesis of a Java Card Tokenisation Algorithm

by

Ewen Denney

Informatics Research Report EDI-INF-RR-0143

Division of Informatics November 2001
http://www.informatics.ed.ac.uk/



The Synthesis of a Java Card Tokenisation Algorithm

Ewen Denney

Informatics Research Report EDI-INF-RR-0143

DIVISION of INFORMATICS
Centre for Intelligent Systems and their Applications

November 2001

appears in Proceedings of the 16th IEEE International Conference on Automated Software Engineering,
San Diego, USA

Abstract :
We describe the development of a Java bytecode optimisation algorithm by the methodology of program extraction.

We develop the algorithm as a collection of proofs and definitions in the Coq proof assistant, and then use Coq’s
extraction mechanism to automatically generate a program in OCaml. The extraction methodology guarantees that this
program is correct. We discuss the feasibility of the methodology and suggest some improvements that could be made.

Keywords : program synthesis, Java Card, type theory, Coq, specification

Copyright c
 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.



The Synthesis of a Java Card Tokenisation Algorithm

Ewen Denney
Division of Informatics
University of Edinburgh

Scotland
ewd@dai.ed.ac.uk

Abstract

We describe the development of a Java bytecode opti-
misation algorithm by the methodology of program extrac-
tion. We develop the algorithm as a collection of proofs and
definitions in the Coq proof assistant, and then use Coq’s
extraction mechanism to automatically generate a program
in OCaml. The extraction methodology guarantees that this
program is correct. We discuss the feasibility of the method-
ology and suggest some improvements that could be made.

1 Introduction

We describe the development of a substantial algorithm
by the methodology of program extraction. We develop the
algorithm as a collection of proofs and definitions in the
Coq proof assistant, and then use Coq’s extraction mecha-
nism to automatically generate a program in OCaml. The
beauty of the extraction methodology is that this program is
guaranteed to be correct. Of course, there is a lot of work
involved in formulating the appropriate concepts and actu-
ally doing the proofs, and this is what we describe here.

This work was part of a project1 concerned with Java
Card [11, 12], a dialect of Java aimed at programming smart
cards. Interest in formal methods is high within the smart
card industry, due to the potentially disastrous effects of
bugs in card software. Our project looked at formalising
a particular optimisation on the Java card bytecode used on
cards, and proving its correctness. This work is reported
elsewhere [3, 4]. In this paper we will develop an algorithm
to carry out this optimisation.

This has been one of the largest developments to date
which uses Coq’s extraction methodology. The combined

1Most of the work was done as part of the Action Incitative Java Card
at IRISA, Rennes.

size of the proofs is about 2700 lines and the generated (un-
optimised) code in OCaml is about 500 lines.

We start by giving an overview of the methodology of
program extraction, and a brief introduction to Coq and to
Java Card. In Section 4, we give the details of the formali-
sation of Java Card we adopt, followed in Section 5, by the
formalisation of the optimisation as a set of constraints. In
the next section, we describe a theory we need to develop
for the proof: enumeration of datatypes (Section 6). Then,
in the next two sections, we describe the proofs that corre-
spond directly to optimisations of (parts of) Java bytecode
files. The core of the algorithm is developed in Section 7,
and this is used to construct the tokenisation in Section 8.
Section 9 describes how an extraction is carried out in Coq,
and, finally, Section 10 draws conclusions on our applica-
tion of program extraction in Coq.

2 Program Extraction

The theoretical basis of program extraction is the Curry-
Howard isomorphism, the correspondence between con-
structive proofs and lambda-terms [7]. From the lambda-
calculus, it is a short step to programs in a conventional
functional programming language.

It should not be thought, though, that extraction some-
how gives programs for free. Without automation, it is far
more work to obtain a program by extraction than it would
be to just write it directly. A fairer comparison is between
program extraction and formal verification of a program af-
ter it has been written. The advantage of extraction over
post hoc verification stems from the fact that the difficulty
of verification proofs is due, in large part, to trying to match
the logical decomposition of properties to the structure of
the program. This is immediate with a development by ex-
traction.

The paper [9] presents the theoretical background to ex-
traction in Coq, and illustrates this with a small example. It
does not really explain how to go about developing a signif-
icantly sized piece of software. Caldwell [2] explains how



to extract small recursive programs from inductive proofs
in Nuprl. The most significant extraction in Coq to date
appears to be Théry’s synthesis of Buchberger’s algorithm
[13].

3 Coq

The Coq proof assistant [1] is an implementation of the
Calculus of Inductive Constructions, allowing interactive
proof development. The type theory is sufficiently powerful
to concisely formalise logical and programming concepts.
It is a lambda-calculus extended with inductive definitions
[8]. Declaring a type to be inductive automatically gives
induction and recursion terms.

Since the underlying logic is constructive, each com-
pleted proof is assigned a proof object, actually a lambda-
term. The extraction mechanism converts these lambda-
terms to programs in a chosen functional language (either
OCaml, CamlLight, or Haskell), a process which we as-
sume to be correct. The system will automatically extract
all the proofs and definitions on which the selected proof
depends and output the resulting code in the same file.

A well-known problem with extracting computational
content from constructive proofs is deciding which parts
of the proof are computationally relevant, and which are
purely logical. For example, given a constructive proof of
∃x : τ . P [x], should we extract the witness to τ or not?
Coq’s solution to this problem is to have separate universes
for computational and logical data. Thus, as well as a log-
ical existential, Coq also has a computational existential,
defined as a subset type — {x : τ | P}— the x of type τ

such that P holds. Witnesses are only extracted for compu-
tational existentials.

For legibility, we will avoid Coq notation in this paper,
and simply write both as ∃. Where necessary, though, and
where it is best thought of as a type, we do distinguish the
computational existential as a subset type.

4 Java Card

In this section, we describe the class and CAP file for-
mats, and their formalisation in Coq.

As with Java, Java Card is compiled into bytecode, for
which various constraints are verified, and then executed on
a virtual machine [6] installed on a chip on the card itself.
However, the memory and processor limitations of smart
cards necessitate a further stage, in which the bytecode is
optimised from the standard class file format of Java, to the
CAP file format [12]. The core of this optimisation is a
tokenisation in which names are replaced with tokens, en-
abling a more direct lookup of various entities.

Java source code is compiled on a class by class basis
into the class file format. By contrast, Java Card CAP files

correspond to packages. They are produced by the conver-
sion of a collection of class files.

In fact, the conversion process also takes a number of
export files as input, but we will ignore these here. Indeed,
this is just one of several simplifying assumptions we make.
We discuss this in more detail later.

The conversion is presented in [12] as a collection of
constraints on the CAP file, rather than as an explicit cor-
respondence between class and CAP formats. Instead, we
adopt a simplified definition of the conversion, only consid-
ering classes and methods.

In the class file format, methods, fields and so on are re-
ferred to using a certain naming convention. In CAP files,
instead, tokens are ascribed to the various entities. The idea
is that if a method, say, is publicly visible2, then it is as-
cribed a token. If the method is only visible within its pack-
age, then it is referred to directly using an offset into the
relevant data structure. Thus references are either internal
or external.

One significant difference between the two formats is the
way in which the method tables are arranged. In a class
file, the methods item contains all the information relevant
to methods defined in that class. In the CAP file, this in-
formation is shared between the class and method compo-
nents. The method component contains the implementation
details (i.e. the bytecode) for the methods defined in this
package. The class component is a collection of class infor-
mation structures. Each of these contains separate tables for
the package and public methods, mapping tokens to offsets
into the method component. The method tables contain the
information necessary for resolving any method call in that
class. If a class inherits a method from a superclass then
it may be that the method token is included in the relevant
table, or that the table of the superclass should be searched.
There is a choice, therefore, between copying all inherited
methods, or having a more compressed table. The specifi-
cation does not constrain this choice.

The proof described in [3, 4] is based on formulating an
abstract definition of the bytecode formats, which can be in-
stantiated to either class or CAP files. This is organised into
a family of abstract types. The two formats are formalised
as recursive interpretations of these types, and the correct-
ness constraints (in the next section) are defined recursively
(formally, as a logical relation) between corresponding in-
terpretations.

Inductive Abstract_type : Set :=
Package_ref : Abstract_type

| Ext_class_ref : Abstract_type
| Class_ref : Abstract_type

2We follow the terminology of [12], where a method is public visible if
it has either a protected or a public modifier, and package visible if
it is declared private or has no visibility modifier.



| Virtual_method_ref : Abstract_type
| Class : Abstract_type
| Method_info : Abstract_type
| Pack_methods : Abstract_type
| Package : Abstract_type
| Fun : Abstract_type → Abstract_type

→ Abstract_type.

When a type is defined inductively, Coq will automati-
cally generate proof terms giving the corresponding princi-
ples of induction and recursion. These are used to give
interpretations of abstract types in the two models. (Here,
and below, we sometimes just give the types of definitions,
and omit the actual body.)

Definition name_interp :
Abstract_type → Set.

Definition tok_interp :
Abstract_type → Set.

Abstract Model

	�
�

�
�

name interp
@

@
@

@

tok interp

R
Class files �

correctness relation
- CAP files

For example, we interpret package references as package
names and tokens, in the name and token interpretations
respectively, and (abstract) functions are recursively inter-
preted as either partial functions (on names) or total func-
tions (on tokens). We will discuss the definition of (con-
crete) partial functions using PFun in Section 6.1 below.

name_interp Package_ref = Package_name
tok_interp Package_ref = Package_tok

name_interp (Fun X Y)
= PFun (name_interp X) (name_interp Y)

tok_interp (Fun X Y)
= (tok_interp X) → (tok_interp Y)

Similarly, packages are interpreted as partial functions
from Class name to Class file, and as the type
CAP file, respectively. We omit details of how the other
abstract types are interpreted, as well as definitions of the
concrete types.

In actual Java Card bytecode, these formats are se-
quences of bytes, so would be more faithfully represented
using lists than functions. We will adopt a more high-level
representation using partial functions from indices to ele-
ments, which is more convenient for reasoning. A further
reason is compatibility with the proof of correctness de-
scribed in [10, 3, 4]. Although total functions were used

there, simplifying the formalisation considerably, we must
take account of the function domains for developing the al-
gorithm.

5 Optimisation Constraints

The input to the conversion process is a collection
of class files, which we take to be arranged into an
environment. At the abstract level, we define this as
a function Abs environment = Fun Package ref
Package. Roughly speaking, the correctness theorem
which we want to prove is

∀env_name : name_interp Abs_environment.
∃env_tok : tok_interp Abs_environment.

correct(env_name, env_tok).

where correct expresses the relation between environ-
ments in the two formats. However, we must alter this in
a number of ways. Firstly, since the proof will be for arbi-
trary abstract types, we need separate correctness relations
at each abstract type.

Secondly, although the goal is to construct conversion
functions, we must also construct correctness relations,
themselves subject to constraints.

In practice, however, combining the specification of the
conversion functions with the specification of the corre-
sponding correctness relations proved too unwieldy.

One particular problem was that proving the correctness
of the conversion functions requires access to the definition
of the correctness relations. Now, if the relations are com-
bined with their own proof of correctness, then, in addition
to the content giving the relation, we also get a large amount
of proof annotation. This doesn’t just make the proof hard
to read — it typically becomes too large for Coq to expand
the definitions. Presumably, in retrospect, we should have
strengthened the specification sufficiently so its properties
would be enough to reason with and we would never need to
look at the proof terms, but it is often more natural to reason
using the structure of the term directly. Unfortunately, we
found this to be a frequent problem with the subset types.
Thus, in the end, we were forced to separate the definitions
into:

Definition JCrelation :
∀X:Abstract_type .
(name_interp X) → (tok_interp X) → Prop.

Definition Relation_constraints :
∀X:Abstract_type .
((name_interp X) → (tok_interp X) → Prop)

→ Prop

and



Lemma JCrelation_correct :
∀X:Abstract_type .
(Relation_constraints X

(JCrelation X)).

Here, the (polymorphic) relation JCrelation is ex-
pressed as a map into Prop (i.e. for each X, the proposition
whether or not a (name interp X) and (tok interp
X) are related), Relation constraints is a (poly-
morphic) predicate on these relations, and JCrela-
tion correct asserts that each such relation satisfies the
corresponding predicate).

Thus, we construct the relations and then prove their
correctness separately. This is a pity, since we are going
against the spirit of extraction where, ideally, the computa-
tional content is constructed implicitly.

The third modification to our original theorem is that we
must account for relation domains. The conversion func-
tions convert entities in a given environment (of class files).
Here, dom X x holds when x is in the domain of the type
X. For example, dom Package ref p holds when p is
the name of a package in the set of class files we want to
convert.

Definition dom :
∀X:Abstract_type .

(name_interp X) → Prop.

The specifications of the relations, conversion func-
tions, and domains, must be parameterised over a
name interp Abs environment, but in this case it is
clearer to exploit a feature of Coq which lets us declare this
as a local variable rather than an explicit parameter. Hence
we can leave this implicit.

The conversion functions are specified, then, as

Definition conversion :
Abstract_type → Set :=
λX:Abstract_type .
∃f:{x:(name_interp X) | (dom X) x}

→ (tok_interp X).
(respects (dom X)

(JCrelation X) f).

where respects d r f holds when function f respects re-
lation r on domain d. A constructive proof of this will give
a conversion function for each X, which is correct with re-
spect to JCrelation X.

The relation for environments, themselves, is different,
though, since it relates, rather than assumes, environments,
so we have a separate R Environment. Similarly, the
top-level theorem, for the conversion of environments, is
not expressed in terms of the generic conversion.

Finally, then, the top-level theorem is:

Theorem convert_env :
∀e:(name_interp Abs_environment)
∃e’:(tok_interp Abs_environment) .

(R_Environment e e’).

This looks like our original theorem! The difference is that
R Environment defines the correctness condition in terms
of conversion at smaller types, each of which is parame-
terised on e.

6 Enumeration

The tokenisation part of the conversion consists of as-
signing tokenised references to the name references, subject
to various constraints. For the ‘atomic’ references, the to-
ken is simply a number and the constraint is (in most cases)
bijectivity; for compound references, consisting of several
names, we also require the relation to respect the relations
on the component parts.

Computationally, this is easy — we simply enumerate
the appropriate list of names. This gives the correspond-
ing relation directly. The conversion function can then be
constructed by treating the relation as an association list.

We need a number of basic definitions and lemmas for
partial functions, injections, relations, and enumerations.
The proofs are fairly straightforward but not trivial.

6.1 Basic Definitions

We need to use an explicit domain in our definition
of partial functions, so a partial function from A to B is
represented as a pair, consisting of a list for the domain,
listdom : (list A) and a total function taking two argu-
ments — a member of the domain, and a proof that the el-
ement is in the domain — to B. Since lists are an induc-
tive datatype in Coq, they are finite. As well as being more
natural to represent the domain as a list rather than a set
in the type-theoretic setting of Coq, it also leads to a more
straightforward extract. Most of the other definitions are
self-explanatory. They all have constructive content. We
use the notions of countable and listable. The constructive
content of a proof of countability of a set is an enumeration
— an embedding in nat — and the content of a proof of
listability is a listing without duplicates of the members of
the set.

Record PFun : Set :=
mkPFun
{listdom : (list A) ;
parfun : ∀a:A.(In a listdom) → B}.

Definition countable :=
λA:Set . ∃f:A → nat .

(fun_injection A nat f).



Definition lists :=
λA:Set.λl:(list A) .

(∀a:A . (In a l)) ∧ (nodups A l).

Definition listable :=
λA:Set . ∃l: (list A) . (lists A l).

We want to extract to algorithms which use the equality
of the programming language. What should this correspond
to logically? We cannot use the built in notions of equal-
ity in Coq. The propositional equality is non-constructive
and cannot be extracted, and giving an explicit definition
for each type would lead to user-defined equalities in the
extracted program.

Rather, with program extraction in mind, we will sim-
ply assume equalities for the primitive types we use. These
can then be linked at extraction time to the equality of the
programming language. Correctness of the extraction, then,
requires that the OCaml equality correctly implements the
Coq equality for those types we use it at (see Section 9).
We make the following parametric definition of an equality
type, defined as a record consisting of the equality function
(but without any definition) paired with the property that it
does correspond to Coq’s own equality.

Record equality : Set :=
mkeq {fun : A → A → bool;

prop : ∀x,y:A .
(fun x y)=true ←→ x=y}.

Then, equality Package name, for example, is the
type of an equality for package names. We construct equali-
ties for complex types, making use of the following theorem
(which extracts to the identity).

Definition sub_equality :
∀A:Set . ∀P:A → Prop .
(equality A) →

(equality {a:A | P a}).

6.2 Counting Lists

We use most of the above definitions and lemmas to de-
fine count list, which converts a list into an enumera-
tion function. Once the elements of a type are listed we can
enumerate them. The full statement is

Lemma count_list :
∀A:Set .

(equality A) → (listable A)
→ (countable A).

The proof uses two subsidiary lemmas. The assoc func-
tion is used to construct a function out of an association list.
The lemma says that for list l and index a, if l contains a pair
(a, b) (i.e. it exists ‘logically’), then it can be found (i.e. it
exists constructively).

Lemma assoc :
∀A,B:Set .
(equality A) →
∀l:(list A*B) . ∀a:A . ∃b:B .
(In (a,b) l) → {b:B | (In (a,b) l)}.

The number function pairs elements of a list with natu-
rals, counting up from a given n. This cumbersome defini-
tion is needed to get the proofs to go through. It says that for
n and l, we can construct a list of pairs, l′, the first elements
of which form l itself, which has no duplicates, and such
that for each paired index, i, n ≤ i < n + 1 + length l.

Lemma number :
∀A:Set . ∀n:nat . ∀l:(list A).
∃l’:(list A*nat).
(((map fst l’)=l) ∧ (nodups A l’) ∧
∀an:(A*nat) .
(In an l’) →
(n ≤(snd an)) ∧

((snd an) < (n+1+(length l)))).

Then count list eq l x will be extracted to assoc eq

(number 0 l) x.

6.3 Inverses

Computationally, to say that the partial function, f , is
surjective on its range, is for each element, b, in the range,
to find an a in the domain, such that fa = b.

Lemma pfun_surjective_on_range :
∀A,B:Set . ∀f:(PFun A B) .
∀b:B . (In b (range f)) →
∃a:A .∃H:(In a (listdom f)) .

(f a H) = b.

To construct the inverse, g, of injection, f , we must give
the domain and the function. The domain is given as
listdom g = range f, and the function, parfun g, is con-
structed using pfun surjective on range.

Theorem injection_inverse :
∀A,B:Set . ∀f:(PFun A B) .
(pfun_injection A B f) →
∃g:(PFun B A).∀a:A.
∀H:(In a (listdom f)).
∃ H’:(In (f a H) (listdom g)) .

(g (f a H) H’) = a.

Here, pfun injection defines the injectivity of a partial
function.



7 Method Tables

As discussed in Section 4, one of the main differences
between the class and CAP formats is the arrangement and
location of method information. Thus, the construction of
the method tables is central to the conversion. This is the
most intricate part of the proof, and requires the most proof
obligations. The proof structure is strongly guided by the
algorithm and we describe it along these lines.

We make the simplification of only considering package
visible references. The public visible references have dif-
ferent constraints, but could be handled similarly. The goal
in this section is to construct a compressed (package) vir-
tual method table for each class as well as global offset and
tokenisation functions for the package virtual methods.

We construct the tables in a number of stages. We write
sig ∈def c when the method signature sig is defined in class
c, and sig ∈inh c when sig is inherited by c.

Signature and offset for defined methods
The first stage is to construct a function which lists the sig-
natures of the methods defined in each class, together with
their offsets.

We specify a function f1 as listing the signatures and being
injective on the method offsets.

Lemma package_def_sig_os :
∃f1: {c : Class_name | dom Class_ref c}

→ (list Sig*Offset).
∃m_offset :
{(c,sig): Class_name*Sig | sig ∈def c}

→ Offset .
(fun_injection m_offset) ∧
∀c:{c : Class_name | dom Class_ref c}.
∀sig:Sig . ∀os:Offset .

(In (sig,os) (f1 c)) ←→
(sig ∈defc) ∧

(m_offset (c,sig) = os).

Then f1 is defined, roughly, as

f1 c =
number (sig_count c) (class_sigs c)

where sig count c is defined by recursing through the
class hierarchy as the number of method signatures above
class c in the hierarchy, and class sigs c is the list of
method signatures in c.

Signature and Offset for Inherited Methods
For each class, we calculate the list of methods which it
can inherit, together with their offsets. Having calculated
the offsets at the previous stage, we ensure that inherited
methods will have the same offset. We construct

f2: {c : Class_name | dom Class_ref c}
→ (list Sig*Offset)

This is calculated from package def sig os by class
recursion, and using

merge : (list Sig*Offset)
→ (list Sig*Offset) → (list Sig*Offset)

which combines the method lists of a class and a subclass,
taking account of overriding. We refine the specification of
f2 c into a constructive definition in a number of stages. We
have

〈sig, os〉 ∈ f2 c

⇐⇒ sig ∈inh c ∧ m offset(c, sig) = os

⇐⇒ ((sig ∈inh sup c ∧ sig 6∈def c) ∨ sig ∈def c)
∧ m offset(c, sig) = os

⇐⇒ (sig ∈inh sup c ∧ sig 6∈def c ∧
m offset(c, sig) = os) ∨
(sig ∈def c ∧ m offset(c, sig) = os)

⇐⇒ (〈sig, os〉 ∈ f2 (sup c) ∧ sig 6∈def c)
∨ 〈sig, os〉 ∈ f1 c

⇐⇒ 〈sig, os〉 ∈ merge (f2 (sup c))(f1 c).

Signature, Offset and Token for Inherited
Methods

We then add the tokens. Again, we refine the spec-
ification to the definition in stages, using f2 and its
properties.

f3: {c : Class_name | dom Class_ref c}
→ (list Sig*Offset*Virtual_method_tok)

The (package) tokens are calculated on a class by class ba-
sis, numbering the inherited methods upwards from 128 (as
specified by [12]).

〈sig, os, m tok〉 ∈ f3 c

⇐⇒ 〈sig, os〉 ∈ f2 c ∧ sig is (m tok − 128 )′th in c

⇐⇒ 〈sig, os〉 ∈ f2 c ∧
〈sig, m tok〉 ∈ number128 (class sigs c)

⇐⇒ 〈sig, os, m tok〉 ∈ number128 (f2 c).

Token and Offset for Compressed Method
Tables

Now we construct the actual method tables.

f4: {c : Class_name | dom Class_ref c}
→ (list Virtual_method_tok*Offset)



It is at this point that we make the choice to compress. For
each class, the base is computed as the minimum token of
the methods defined in that class, and we cut off at that
point, retaining all the methods from that token upwards.

By enforcing the copying of methods with token numbers
greater than those overridden, we can ensure that for each
class c,

〈m tok, os〉 ∈ f4 c⇒ m tok ≥ base c.

8 Conversion Functions

In this section, we describe how some of the various con-
version functions are constructed, using the machinery de-
veloped in the previous sections.

We first illustrate the tokenisation, and then the com-
ponentisation. Algorithmically, the most natural split is
to think of the conversion as being in two parts: on the
one hand, there are the functions which are involved in or
subsume the construction of the method tables, and on the
other, those which use the tables. These latter are defined in
a Coq section which is parameterised over the method offset
and token functions, which are themselves computed from
the tables.

8.1 Tokenisation

We show how package references are tokenised. The
input is the list of package references in the current environ-
ment. This is constructed using the domain of the current
environment.

Lemma list_packages :
listable {p: Package_name |

dom Package_ref p}.

We construct an injection of names into tokens.

Lemma package_ref_inj :
∃f:{p:Package_name |

dom Package_ref p}
→ Package_tok . (fun_injection f).

Proof. We must show the countability of
{p : Package name | dom Package ref p}. Applying
the count list lemma, this reduces to two subgoals: an
equality for {p : Package name | dom Package ref p},
and the proof of its listability. The first is proven by
applying sub equality to the equality for Pack-
age name (recall that we assume primitive equalities
for the basic types), and the second is just our lemma,
list packages.

8.2 Componentisation

By ‘componentisation’ we mean the grouping of the
various entities together into components for each pack-
age. Here we describe the construction of conversion
pack methods, which takes methods name of type

Class name→ Sig→ (name interp Method info),

and returns a method component, of type

Offset→ (tok interp Method info).

We use the bijection (for each package) between the de-
fined Class name × Signature and Offset; in particu-
lar, os2sig : Offset → Class name × Sig is calculated
using injection inverse. Given methods name :
Class name → (Sig → name interp Method info),
rearranged as uncurry(methods name) : Class name×
Sig→ name interp Method info, we construct

Offset
os2sig
−→ Class name× Sig

uncurry(methods name)
−→

(name interp Method info)
convert Method info

−→
(tok interp Method info).

Here, convert Method info does a straightforward rear-
rangement of a method information structure.

9 Extraction

We now describe what is involved in extracting code
from the proof. All primitive constants and types (parame-
ters in Coq), such as Package name, must be realised.

Link Package_name := (list char).

We also want to override lists, booleans, naturals, and equal-
ity with definitions in the programming language. For ex-
ample,

Extract Constant nat_128 => "128".

Extract Constant eq_pack_name => "(=)".

Extract Inductive bool => bool[true false].

We only link to equalities at non-function types, such as sig-
natures and package names, so the OCaml and Coq equal-
ities clearly match. We have some control over the degree
of definition expansion and simplification involved in the
extraction process, and it is worth using this to get more
perspicuous code. Many of the proofs are computationally
just the identity and these will be expanded automatically.
There is some experimentation to get the most comprehen-
sible program.



10 Concluding Remarks

This has been one of the largest developments to date
which uses Coq’s extraction methodology. The combined
size of the proofs is about 2700 lines and the generated code
in OCaml is about 500 lines.

We have simplified the model by only considering
classes, methods, and package tokens, and by representing
byte sequences by partial functions. As a methodology, ex-
traction ranges from direct programming in a high-level lan-
guage (effectively a form of automated data refinement), to
full synthesis.

The definitions and theorems we have developed for
injections, enumerations, partial functions, and inverses
should be useful for similar constructions concerned with
the transformation of data formats, although much more
work is needed in writing libraries of certified software
components.

The main conclusion we draw, in this regard, is that spec-
ification must take account of the intended implementation:
develop a library of lemmas which extract appropriately,
then build up the top-level specifications. In this case, par-
tial functions would be represented as byte sequences.

As a case study in the extraction methodology, it has re-
vealed a number of problems with Coq, both with the ex-
traction mechanism, and with the proof development facil-
ities, in general. As mentioned in Section 5, the main dif-
ficulty encountered in developing a program by extraction
is when access is needed to a proof term. Even quite small
programs can correspond to huge proofs. Nuprl [5] gets
round this by allowing explicit access to the extract terms.
Allowing explicit reference to the extraction process within
the logic would be a way of handling axioms which, al-
though unprovable, do hold for the corresponding extract
terms.

Another problem is that the extraction mechanism of
Coq (v6.3.1) can not cope with proofs which contain re-
dexes containing terms which are ‘too’ higher-order (and in-
valid in the programming language), even though the reduct
can be extracted. Short of this bug being fixed, the proofs
were modified manually to make them amenable to extrac-
tion.

The fact that type expressions are sometimes not re-
duced, can leave them so large as to be incomprehensi-
ble. This tends to happen with recursive and parameterised
types. A further inconvenience is that there can not be any
dependencies between subgoals. It is not possible, for ex-
ample, to split an existential goal, ∃x : τ . P into subgoals
x : τ and P and work on P , thus implicitly instantiating x.

Finally, the generated program is large, unmodular, and
rather difficult to understand. Further use could be made
of automatic simplifications to create nicer code. We need
some means of better reflecting architectural structure in

the final program. In addition, it is unfortunate that Coq’s
natural language rendering mechanism can only be applied
to proofs of propositions, and not computational construc-
tions, so most of the constructions here can not make use of
it.

Acknowledgements This work has benefited from discus-
sions with colleagues at Rennes and Edinburgh. The author
also wishes to thank the anonymous referees for their com-
ments.

References

[1] B. Barras, S. Boutin, C. Cornes, J.-C. Filliatre, E. Giménez,
H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Parent,
C. Paulin-Mohring, A. Saibi, and B. Werner. The Coq Proof
Assistant Reference Manual: Version 6.1. Technical Report
RT-0203, Inria, Aug. 1997.

[2] J. Caldwell. Moving proofs-as-programs into practice. In
Proceedings, 12th IEEE International Conference on Au-
tomated Software Engineering, IEEE Computer Society,
pages 10–17, 1997.

[3] E. Denney. Correctness of Java Card Tokenisation. Techni-
cal Report 1286, Projet Lande, IRISA, 1999. Also appears
as INRIA research report 3831.

[4] E. Denney and T. Jensen. Correctness of Java Card Method
Lookup via Logical Relations. In G. Smolka, editor, Pro-
ceedings of the 2000 European Symposium on Programming
(ESOP’00), volume 1782 of Lecture Notes in Computer Sci-
ence, pages 104–118. Springer Verlag, Mar. 2000.

[5] P. Jackson. The Nuprl proof development system, version
4.2 reference manual and user’s guide. Computer Science
Department, Cornell University, July 1995.

[6] T. Lindholm and F. Yelling. The Java Virtual Machine Spec-
ification. Addison-Wesley, 1997.

[7] B. Nordström, K. Petersson, and J. M. Smith. Programming
in Martin-Löf’s Type Theory, volume 7 of Monographs on
Computer Science. Oxford University Press, 1990.

[8] C. Paulin-Mohring. Inductive definitions in the system Coq;
rules and properties. In M. Bezem and J. Groote, edi-
tors, Proceedings of the International Conference on Typed
Lambda Calculi and Applications, volume 664, pages 328–
345. Springer-Verlag, 1993.

[9] C. Paulin-Mohring and B. Werner. Synthesis of ML pro-
grams in the system Coq. Journal of Symbolic Computation,
15(5–6):607–640, 1993.

[10] G. Segouat. Preuve en Coq d’une mise en oeuvre de Java
Card. Master’s thesis, Projet Lande, IRISA, 1999.

[11] Sun Microsystems. Java Card 2.0 Language Subset and Vir-
tual Machine Specification, Oct. 1997. Final Revision.

[12] Sun Microsystems. Java Card 2.1 Virtual Machine Specifi-
cation, Mar. 1999. Final Revision 1.0.

[13] L. Théry. A Certified Version of Buchberger’s Algorithm. In
C. Kirchner and H. Kirchner, editors, Automated Deduction
– CADE-15, volume 1421 of LNAI, 1998.


