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Abstract

Approximate Bayesian Gaussian process (GP) classification techniques are powerful non-
parametric learning methods, similar in appearance and performance to Support Vector
machines. Based on simple probabilistic models, they render interpretable results and can
be embedded in Bayesian frameworks for model selection, feature selection, etc. In this
paper, by applying the PAC-Bayesian theorem of McAllester (1999), we prove distribution-
free generalization error bounds for a wide range of approximate Bayesian GP classifica-
tion techniques. We instantiate and test these bounds for two particular GPC techniques,
including a sparse method which circumvents the unfavourable scaling of standard GP al-
gorithms. As is shown in experiments on a real-world task, the bounds can be very tight
for moderate training sample sizes. To the best of our knowledge, these results provide
the tightest known distribution-free error bounds for approximate Bayesian GPC methods,
giving a strong learning-theoretical justification for the use of these techniques.

Note: A shorter version of this technical report has been submitted for publication.

Keywords: Gaussian Processes, Generalization Error Bounds, PAC-Bayesian Frame-
work, Bayesian Learning, Sparse Approximations, Gibbs Classifier, Kernel Machines

1. Introduction

The Bayesian framework for probabilistic inference is widely used all over the Statistics and
Machine Learning communities, due to its high flexibility, its ability to render interpretable
results and its conceptual simplicity. Within the framework, essential and difficult tasks like
model and feature selection have canonical solutions. Complex models for real-world situa-
tions can be combined from simple, well-understood components in a structured way. Last,
but not least, pitfalls hindering successful generalization from finite data, such as overfit-
ting, can be tackled in a clear and principled way, so that Bayesian or approximate Bayesian
solutions are typically among the top performers on difficult learning tasks. It is therefore
of high theoretical and practical importance to analyze and understand the generalization
capability of (approximate) Bayesian methods. Many analyses so far have concentrated on
the case where the true data distribution (stable aspects of which we try to learn) comes
from a known family, which is either exactly the model family that the Bayesian method is
using, or one which is close in some sense (e.g. Haussler and Opper (1997), Haussler et al.
(1994), Sollich (1998)). Such analyses are important because they show up the principal
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limitations of the model family and the induction method1, and because they often render
close approximations to the true generalization error we observe on independent test sam-
ples. However, they cannot give a guaranteed upper bound on the generalization error (or
other expectations of the true data distribution), because the validity of the whole analysis
depends on assumptions which may not hold for the data distribution. PAC2 analyses of
the generalization capability of a learning technique provide such guaranteed bounds, in
the sense that the probability of observing a violation of the bound is shown to be smaller
than some a-priori fixed δ > 0, where the probability is over random draws of the training
sample from the true data distribution. We can hope to find such non-trivial bounds for
finite training sample sizes, because we constrain the sampling process which generates the
training set3. Recently, a general result was obtained by McAllester (1999) which allows to
pursue distribution-free analyses of competitive Bayesian or approximate Bayesian methods:
the PAC-Bayesian theorem. In this paper, we show how to apply this result to approxi-
mate Bayesian Gaussian process classifiers (GPC), in order to obtain data-dependent PAC
bounds for these powerful nonparametric methods. The PAC-Bayesian theorem and our
results for GPC can be stated in simple and familiar terms and can be proved using elemen-
tary concepts only. Furthermore, experiments to be presented here indicate that our bounds
can be very tight on real-world classification tasks with moderate training sample sizes, to
an extent that they can provide practically meaningful generalization error guarantees and
may even be used for model selection in practice.

The structure of the paper is as follows. In the remainder of this section, we give a brief
introduction to Gaussian process models for classification settings, together with fixing our
notation. We also state McAllester’s PAC-Bayesian theorem, the backbone for our results,
for which a simplified proof is given in appendix A. In the following section 2, we introduce
the class of GP classification techniques we are interested here and show how to apply the
PAC-Bayesian theorem to any method from this class: this is our main result. In section
3, we instantiate our main result for two particular GPC methods, namely Laplace GPC
and sparse greedy GPC. The latter is of especially high practical significance due to its
linear scaling with the training set size (our experimental results in subsection 4.2 serve
as demonstration of its impressive performance). Experimental results on a handwritten
digits recognition task are presented in section 4, testing our main result for the special GPC
techniques discussed and comparing it to other state-of-the-art kernel classifier bounds. We
close with a discussion in section 5. The notation we use in this paper is summarized in
appendix D.

1. Arguably, data distributions sampled from the model family used for inference should be easier to learn
than any others.

2. PAC stands for probably approximately correct, the framework was introduced by Valiant (1984). In this
paper, we use the term PAC bound as synonym for “distribution-free large deviation bound”: a bound
on the probability that an i.i.d. training sample gives rise to a large deviation between empirical and
generalization error. The bound is distribution-free, i.e. holds for any data distribution.

3. Typically, we assume that the training sample is drawn i.i.d. (independently and identically distributed)
from the data distribution, but other less restrictive assumptions (e.g. Martingale sequences) are also
possible.
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1.1 The binary classification problem. PAC bounds

In the binary classification problem, we are given data S = {(xS
i , tSi ) | i = 1, . . . , n}, xi ∈

X , ti ∈ {−1,+1}, sampled independently and identically distributed (i.i.d.) from an un-
known data distribution over X × {−1,+1}. Our goal is to compute a classification func-
tion X → {−1,+1} from S which has small generalization error on future test points
x∗, where (x∗, t∗) is sampled from the data distribution, independent of S. Given an
algorithm for computing such functions from samples S, we would like to construct a
PAC upper bound on the generalization error for this method. In the sequel, we denote
XS = {xS

i | i = 1, . . . , n}, t = (tSi )i.
Data-independent (or uniform or a-priori) PAC bounds ignore aspects of the learning

algorithm other than the error of the selected discriminant on the training set, instead
constrain the discriminant function to come from a restricted class of finite complexity
in some sense. This restriction is done a-priori, without looking at the sample S. This
allows to bound the difference between empirical error (on S) and generalization error (this
difference is referred to as the gap in this paper) uniformly over all functions in the class,
simply because the variability of all functions is uniformly restricted. Vapnik-Chervonenkis
theory (see Vapnik (1998)) essentially answers the question under which circumstances the
gap converges uniformly to 0 at a rate expontial in the sample size n.

Uniform PAC bounds answer questions about theoretical learnability of problems, how-
ever they are often extremely loose or even trivial in many practically relevant cases. There
are two main reasons for this, apart from the distribution-free character of the PAC setting
itself. First, the gap bounds do not depend on the observed sample S at all. Whether the
particular sample S we encounter matches our prior assumptions or not, does not influence
the bound value. Second, the gap bound value does not depend on the algorithm used to
learn the predictor. It holds uniformly over all algorithms which select their classification
function from the restricted class4. As a consequence, we either choose a very restricted
class a-priori to arrive at a small gap bound for reasonable n, thus typically observing high
empirical errors on a nontrivial task, or we live with a gap bound value which is trivial for
all practically interesting sample sizes n. Both options are not tolerable from a practical
viewpoint.

Data-dependent (or a-posteriori) PAC bounds on the difference between empirical and
generalization error depend on the sample S. The idea is that prior knowledge about the
unknown data distribution is used to introduce a weighting in the bounding technique
which is biased towards our expectations. Namely, if it turns out that the data distribution
matches our expectations rather closely, as judged by an empirical divergence measure which
can be evaluated on the sample S, the gap bound value will be small (the lucky case5). If
we are grossly wrong, the bound can be large, usually trivial. At this point, the notion of
two different sets of assumptions we are working with, becomes most clear:

4. It even holds for a “maximally malicious” algorithm which, knowing the true data distribution, selects a
function from the class which maximizes the generalization error, subject to a constraint on the empirical
error on S.

5. The concept of “luckiness” has been introduced to Statistical Learning Theory by Shawe-Taylor et al.
(1998). We think that it is very much related to the concept of informative Occam prior distributions in
Bayesian inference; another good reason for applying PAC analysis to (approximate) Bayesian methods,
in which luckiness can be formulated straightforwardly by the devices of modeling and prior assessment.

3



• Bayesian assumptions: To the best of our (prior) knowledge, within certain feasibility
constraints, our model represents all characteristics we believe should hold for the
unknown data distribution.

• PAC assumptions: We obtain an i.i.d. training sample from the data distribution
which is completely unknown.

While we work (in this paper) with the Bayesian assumptions in order to construct a clas-
sification method and a data-dependent bound for it, we make sure that our bound holds
under the PAC assumptions. Apart from the data dependency, our bound also concentrates
only on the algorithm we are interested in. Even if this algorithm selects a classification
function from some class or uses a mixture of such functions, the bound is specific to the
way in which this is done. While a uniform bound merely suggests to select, from within
the restricted class, a classifier which minimizes the empirical error, in data-dependent
bounds we have a trade-off between empirical error and the quality of the match between
our prior assumptions and the classification function we construct. We know of no inter-
esting real-world learning problem which comes without any sort of prior knowledge, and
most of these problems are at least partly “non-malicious” in the sense that using this
prior knowledge improves performance instead of deteriorating it. From this perspective,
data-dependent bounds for specific algorithms are most promising for providing practically
meaningful generalization error guarantees.

1.2 The modeling approach. Gaussian process models

Recall from the previous subsection that in order to come up with a meaningful data-
dependent PAC bound, we have to formalize our prior knowlegde about the task in some
concrete way, so that we can construct data-dependent constraints on the class of classifi-
cation functions. The simplest way to do this is to model the relationship x → t.

A binary classification model can be seen as probabilistic formulation of the relations
between the variables x → y → t, where the input variable x ∈ X , the latent output
y ∈ R and the observable target t ∈ {−1,+1}. Learning and generalization works by
assuming that the latent relationship x → y is smooth and regular in some sense, however
these regularities are obscured by noise; our task is then to seperate the structure from the
noise6. Note that in this paper, we are interested only in discrimination models, i.e. we do
not attempt to model the data distribution over input points x. Distributions such as the
data likelihood will always be conditioned on the corresponding input datapoints, although
for simplicity this is not made explicit in the notation. Discrimination models typically are
more robust and outperform complete models for the whole joint data distribution on tasks
where the true input distribution cannot be identified well given the data. In general, a
(discrimination) model is decomposed into some kind of family for the latent function y(x)
and a classification noise model P (t|y). A common noise model is based on the Bernoulli
distribution, with P (t|y) = σ(ty), where σ(u) = (1 + exp(−u))−1 is the logistic function.
Here, the latent function y(x) models the logit log(P (t = +1|x)/P (t = −1|x)), which is

6. In this context, it is largely irrelevant whether there really exists a smooth, underlying latent function.
Being restricted to finite data, we cannot test such a hypothesis anyway. The perspective is positivistic:
the model is “true” if it predicts the future well.
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why P (t|y) is often referred to as logit noise. Note that if, for a test point x∗, we knew the
true logit ytrue(x∗), then the most probable target t∗ at x∗ is sgn ytrue(x∗). Thus, a natural
way to do classification within this model-based framework is to estimate the latent function
y(x) and then use the classifier sgn y(x). For more information about such discrimination
models, see McCullach and Nelder (1983) and Green and Silverman (1994).

The parametric modeling approach imposes a family of candidates {y(x|w)} for y(x),
where w is a parameter vector, determining the function y(x|w). Examples are linear
models (i.e. y(x|w) = vT x + w0, w = (vT w0)T ) or multilayer perceptrons. If we place
a prior distribution P (w) on the parameter vector, the model is completely specified and
encodes our prior assumptions about the unknown data distribution. The nonparametric
modeling approach differs from this, by placing a distribution directly on y(x), i.e. treating
y(x) as a random process. A random process distribution is usually defined implicitely, by
defining distributions over y(X) for every finite subset X ⊂ X (here, we use the Matlab
notation, i.e. if X = {x1, . . . ,xq}, then y(X) = (y(x1) . . . y(xq))T ). A Gaussian process
(GP) is a random process y(x) s.t. for each finite set X of points, the random vector
y(X) is Gaussian. Furthermore, for two sets X1,X2 which are overlapping, the marginal
distributions of y(X1) and y(X2) on X1∩X2 have to be the same. The process is essentially
determined by a mean function µ(x) = E[y(x)] and a covariance kernel K(x, x̃) = E[(y(x)−
µ(x))(y(x̃)− µ(x̃))]. In the special case µ(x) ≡ 0, we refer to y(x) as zero-mean Gaussian
process. Note that in this case, K(x, x̃) = E[y(x)y(x̃)]. By placing a zero-mean Gaussian
process prior on the latent function y(x), we can specify a nonparametric model in which the
choice of the kernel K encodes our prior assumptions about the unknown data distribution7.
For a comprehensive introduction to Gaussian process models in the Bayesian context, see
Williams (1997). We will show in subsection 2.1 how approximate Bayesian predictions for
GP classification models can be obtained.

Let us finally introduce some notations. For two finite sets X1, X2 of input points, let
K(X1,X2) be the kernel matrix, i.e. K(X1,X2) = (K(x(1)

i ,x
(2)
j ))i,j , where x

(k)
i runs over

the points in Xk. Define K(X) = K(X,X). The kernel matrix over the training inputs is
denoted KS = K(XS). In the sequel, we will always assume that KS is positive definite.

1.3 The PAC-Bayesian theorem

In this subsection, we state a version of the PAC-Bayesian theorem of McAllester (1999)
for reference.

Suppose we are given a hypothesis class {y(x|w)} parameterized by w. It is understood
that y(x|w) predicts t(x) = sgn y(x|w). An important type of classifier, called Gibbs
classifier, depends on the hypothesis class as well as on a distribution Q(w) over parameter
vectors. Namely, given a test point x∗, the Gibbs classifier predicts the corresponding target
by first sampling w ∼ Q(w), then returning t∗ = sgn y(x∗|w), plugging in the parameter
vector just sampled. Note that a Gibbs classifier has a probabilistic element, i.e. requires
coin tosses for prediction. Note also that if the targets of several test points are to be

7. This prior is reasonable if we know that the classes have equal prior probability, as we will assume in
this paper for simplicity. The general case can be treated by a straightforward parametric extension of
the model, for which our results remain valid.
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predicted, the parameter vectors sampled for this purpose are independent8. This is in
contrast to the more familiar Bayes classifier which (in the case of our classification model)
predicts t∗ = sgn Ew∼Q[y(x∗|w)]. Another type of rule, called Bayes voting classifier here,
predicts t∗ = sgn Ew∼Q[sgn y(x∗|w)], i.e. “votes” over classifiers sgn y(x∗|w) instead of
averaging discriminants y(x∗|w).9

McAllester’s PAC-Bayesian theorem deals with Gibbs classifiers for which the distribu-
tion Q(w) may depend on the training sample S, which is why Q(w) is sometimes referred
to as “posterior distribution”. In order to eliminate the probabilistic element in the Gibbs
classifier itself, the bound is on the gap between expected generalization error and expected
empirical error, where the expectation is over Q(w). The theorem can be configured by a
prior distribution P (w) over parameters, and the gap bound term depends most strongly
on the relative entropy

D[Q ‖P ] = Ew∼Q(w)

[
log

dQ(w)
dP (w)

]
(1)

between Q(w) and the prior P (w). The relative entropy as a measure of deviation between
two distributions is well-founded in Information Theory, Statistics and many other fields
(see Cover and Thomas (1991)). It arises naturally in Maximum Likelihood estimation and
variational Bayesian approximations and is certainly one of the most important concepts
in Machine Learning. Here, we assume that Q(w) and P (w) are absolutely continuous
w.r.t. some positive measure, and dQ(w)/dP (w) is the Radon-Nikodym derivative (e.g.
Ihara (1993), chapter 1.4) of Q(w) w.r.t. P (w). If Q(w) is not absolutely continuous
w.r.t. P (w), i.e. if there is a null set of Q(w) which is not a null set of P (w), we define
D[Q ‖P ] = ∞. Let us give some examples. If w lives in a finite set of size K, the dominating
measure is the counting measure, Q(w) and P (w) are finite distributions and

D[Q ‖P ] =
K∑

w=1

PrQ{w} log
PrQ{w}
PrP {w} .

If w ∈ R
m, the dominating measure is the Lebesgue measure dw, and

D[Q ‖P ] = Ew∼Q(w)

[
log

Q(w)
P (w)

]
.

Recall that for simplicity we use the same notation for a distribution and its density w.r.t.
dw, i.e. Q(w) = dQ/dw. For the formulation of theorem 1, we require (as a special case of
(1)) the relative entropy between two Bernoulli variables (skew coins) with probabilities of
heads q, p,

DBer[q ‖ p] = q log
q

p
+ (1 − q) log

1 − q

1 − p
. (2)

8. Readers familiar with Markov chain Monte Carlo methods will note the similarity with a MCMC approx-
imation (based on one sample of w only) of the corresponding Bayes classifier for Q(w). The difference
is that typically in MCMC, the sample representing the posterior Q(w) is retained and used for many
predictions, while in the Gibbs classifier, we use each posterior sample only once.

9. The term “Bayes classifier” appears with several very different semantics in the literature. For a model-
based setting like in subsection 1.2, it often denotes the rule which choses t∗ to maximize the (approx-
imate) posterior probability of t∗, given x∗ and the data. Our use of the term is consistent with this
definition for the special class of Q distributions we are interested in, but not in general.
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DBer is convex in (q, p), furthermore p 7→ DBer[q ‖ p] is strictly monotonically increasing for
p ≥ q, mapping [q, 1) to [0,∞). Thus, the following function

D−1
Ber(q, ε) = t s.t. DBer[q ‖ q + t] = ε, t ≥ 0 (3)

is well-defined for q ∈ [0, 1) and ε ≥ 0. Note also that, due to the convexity of DBer, we
can compute D−1

Ber(q, ε) easily using Newton’s algorithm. It is clear by definition that for
ε ≥ 0, t ∈ [0, 1 − q):

D−1
Ber(q, ε) ≥ t ⇐⇒ DBer[q ‖ q + t] ≥ ε. (4)

Suppose we are given an arbitrary prior distribution P (w) over parameter vectors, and
we choose a confidence parameter δ ∈ (0, 1). Then, the following result holds.

Theorem 1 (PAC-Bayesian theorem (McAllester (1999))) For any data distribution
over X × {−1,+1}, we have that the following bound holds, where the probability is over
random i.i.d. samples S = {(xS

i , tSi ) | i = 1, . . . , n} of size n drawn from the data distribu-
tion:

PrS

{
gen(Q) > emp(S,Q) + D−1

Ber(emp(S,Q), ε(δ, S, P,Q)) for some Q
}
≤ δ. (5)

Here, Q = Q(w) is an arbitrary “posterior” distribution over parameter vectors, which may
depend on the sample S and on the prior P . Furthermore,

emp(S,Q) = Ew∼Q(w)

[
1
n

n∑
i=1

I{sgn y(xS
i |w)6=tSi }

]
,

gen(Q) = Ew∼Q(w)

[
E(x∗,t∗)

[
I{sgn y(x∗|w)6=t∗}

]]
,

ε(δ, S, P,Q) =
D[Q ‖P ] + log n+1

δ

n
.

(6)

Here, emp(S,Q) is the expected empirical error, gen(Q) the expected generalization error
of the Gibbs classifier based on Q(w) (note that the probability in gen(Q) is over (x∗, t∗)
drawn from the data distribution, independently from the sample S). D−1

Ber(q, ε) is defined by
(3), and D[Q ‖P ] denotes the relative entropy between the distributions Q and P , as defined
in (1).

Note that McAllester’s theorem applies more generally to bounded loss functions and
makes use of Hoeffding’s inequality for bounded variables. However, for the special case
of zero-one loss, we can use tail bounds for binomial variables which can be considerably
tighter than Hoeffding’s bound if the expected empirical error of the Gibbs classifier is small.
This version of McAllester’s theorem is proved in Langford and Seeger (2001). The proof of
theorem 1 we present here in appendix A, is a considerable simplification of the arguments
in McAllester (1999) and McAllester (2001).
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1.3.1 Extension to the Bayes classifier

In most situations in practice, when comparing Gibbs and Bayes classifier for the same
posterior distribution Q(w) directly, it turns out that the Bayes variant can be computed
more efficiently and often performs better than the Gibbs variant. Therefore, it would be
of high interest to obtain a PAC-Bayesian theorem for Bayes classifiers as well. For fixed
(x∗, t∗), define the errors of Gibbs, Bayes and Bayes voting classifiers as

eGibbs(x∗, t∗) = Ew∼Q[I{sgn y(x∗|w)6=t∗}],

eBayes(x∗, t∗) = I{sgn Ew∼Q[y(x∗|w)] 6=t∗}, eVote(x∗, t∗) = I{sgn Ew∼Q[sgn y(x∗|w)] 6=t∗}.

Furthermore, for A ∈ {Gibbs,Bayes,Vote}, define eA = E(x∗,t∗)[eA(x∗, t∗)] where the ex-
pectation is over the data distribution. It is easy to relate eVote and eGibbs, by noting that
if eVote(x∗, t∗) = 1, then eGibbs(x∗, t∗) ≥ 1/2, thus eVote ≤ 2 eGibbs (this has been remarked
in Herbrich (2001), lemma 5.3). The Bayes and the Bayes voting classifier are different
rules in general, but in the special case that for each fixed (x∗, t∗), the distribution of
y(x∗|w), w ∼ Q is symmetric around its mean, one can easily show that they are identi-
cal10. Namely, fix x∗, write y∗ = y(x∗|w), 〈y∗〉 = Ew∼Q[y(x∗|w)] and let u = y∗ − 〈y∗〉.
The latter has a distribution which is symmetric with mean 0. Now, the product of the
predictions of t∗ by the Bayes and the Bayes voting variant is

sgn E [sgn (〈y∗〉y∗)] = sgn E
[
sgn

(
〈y∗〉2 + 〈y∗〉u

)]
,

which is 1 if 〈y∗〉 6= 0. Since for 〈y∗〉 = 0, both variants predict sgn 0, we see that they
always predict the same t∗.

Combining these observations, we see that under the symmetry condition we have that
eBayes ≤ 2 eGibbs, thus in this case theorem 1 applies to the Bayes classifier as well. However,
this is not really the result we are ideally looking for. Namely, for special distributional
families for P and Q, we would like to obtain an analogue of theorem 1 which results in
a bound for eBayes which is the same or better than what we know for eGibbs, or at least
eBayes ≤ (1 + ε)eGibbs, where ε � 1. Proving such a bound for Bayes classifiers based on
the GPC models we are interested in this paper is an open problem.

2. The PAC-Bayesian theorem for approximate Bayesian Gaussian
process classification

In this section, we derive our main result: the application of the PAC-Bayesian theorem 1
to a wide class of approximate Bayesian Gaussian process classification methods. We begin
in subsection 2.1 by introducing the Bayesian inference problem for binary GP classification
and the class of approximate solutions we are interested in in this work. Methods in this
class approximate the true intractable predictive posterior process by a Gaussian one. In
subsection 2.2, we show how to compute the relative entropy (1) between two such prior
and posterior Gaussian processes. Finally, we state and discuss our main result (theorem
2) in subsection 2.3.

10. Thanks to Manfred Opper for pointing this out.
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2.1 Approximate Bayesian Gaussian process classification

In this subsection, we introduce the Bayesian inference problem over GP classification mod-
els and the class of approximate methods which we are concerned with in this paper. This
class is very broad and encompasses almost all Bayesian GPC approximations we know of.

Given some data S with input points XS = {xS
i | i = 1, . . . , n} and targets t = (tSi )i,

let yS = y(XS) ∈ R
n. The Bayesian posterior distribution for yS is given by P (yS |S) ∝

P (S|yS)P (yS), where P (yS) = N(0,KS), KS = K(XS) by the GP prior, and

P (S|yS) =
n∏

i=1

P (tSi |yS
i ), yS = (yS

i )i

is the (conditional) likelihood. Unfortunately, due to the non-Gaussian noise distribution
P (t|y), it is in general intractable to work with the exact posterior P (yS |S) in order to
do predictions. The class of approximations we are interested in here, replaces P (yS|S)
by a Gaussian distribution Q(yS |S). Once we have done this replacement, no further
approximations are necessary, because the corresponding approximation of the predictive
or posterior process turns out to be Gaussian as well. Namely, for any finite (ordered) set
X ⊂ X , let y = y(X). Now, by y \ yS , we denote the (ordered) collection of variables
obtained by deleting all components in y which correspond to input points of X that occur
in XS . yS \ y is defined analoguosly. Now, define the distribution of y to be

Q(y|S) =
∫

P (y \ yS |yS)Q(yS |S) d(yS \ y). (7)

Here, we follow the usual convention that densities over an empty set of variables are taken
to be constant 1, and integrals over an empty set of variables are simply not done. This
definition is a consequence of our data model, if we plug in Q(yS |S) for P (yS |S). Namely,
first Q(y ,yS |S) = P (y \ yS |yS)Q(yS |S), from which we obtain (7) by marginalization
over yS \ y. Q(y|S) is Gaussian, and the consistency requirement can be checked straight-
forwardly, thus we have defined a Gaussian process approximating the true intractable
posterior process, which can be used for (approximate) prediction as follows.

Suppose that

Q(yS |S) = N(yS |KSα̂S ,ΣS) (8)

is the posterior approximation. We may assume that KS and ΣS are positive definite. Let
us compute Q(y |S) = N(y|µ0,Σ0) for the case X ∩ XS = ∅. We introduce a further short
notation: K∗,S = K(X,XS). Note that KT

∗,S = K(XS ,X). Furthermore, as above, we write
K = K(X). By computing the joint Gaussian P (y ,yS) and conditioning on yS , it is easy
to see that

P (y |yS) = N(y |K∗,SK−1
S yS ,K −K∗,SK−1

S KT
∗,S)

From this equation and (7) we see that y ∼ Q(y|S) has the same distribution as r +
K∗,SK−1

S yS , where r ∼ N(r|0,K −K∗,SK−1
S KT

∗,S) independent of yS ∼ Q(yS |S). Thus, by
standard theorems of Normal theory (e.g. Mardia et al. (1979), chapter 3), we arrive at

µ0 = K∗,Sα̂S , Σ0 = K −K∗,SMSKT
∗,S , where MS = K−1

S −K−1
S ΣSK−1

S . (9)
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For prediction on a single test point x∗, we end up with

Q(y∗|x∗, S) = N(y∗|µ(x∗), σ2(x∗)),

µ(x∗) = k(x∗)T α̂S, σ2(x∗) = K(x∗,x∗) − k(x∗)TMSk(x∗),
where k(x∗) = K(XS , {x∗}).

(10)

Both formulae (9) and (10) can typically be somewhat simplified for a concrete ΣS (as chosen
by one of the approximate GPC methods we discuss below). Note that a predictive distri-
bution for the target t∗, i.e. Q(t∗|x∗, S), can be obtained by averaging the noise distribution
P (t∗|y∗) over Q(y∗|x∗, S). This is a simple one-dimensional integral which can be approx-
imated using a numerical quadrature rule. Note that since P (t∗ = +1|y∗) = 1 − P (t∗ =
−1|y∗), the corresponding approximate Bayes classifier (i.e. the rule which choses t∗ to
maximize Q(t∗|x∗, S)) is given by sgn µ(x∗), due to the symmetry of Q(y∗|x∗, S) around its
mean. This rule depends on the predictive mean µ(x∗) only, while it will turn out below
that the evaluation of the corresponding approximate Gibbs classifier requires the evalua-
tion of σ2(x∗) as well. Thus, in the context of the GPC approximations we are interested
here, the Bayes classifier can usually be evaluated more efficiently than the Gibbs variant,
if extra information such as Q(t∗|x∗, S) is not required.

Approximation methods in the class we considered here differ in their choice of the
parameters of Q(yS |S). Optimally, these parameters are chosen s.t. the true predictive
process P (t∗|x∗, S) is closest to Q(t∗|x∗, S) in relative entropy. A more feasible choice is,
however, to match the predictive processes P (y∗|x∗, S) and Q(y∗|x∗, S) in this way, which is
equivalent to the maximum likelihood projection of P (y∗|x∗, S) onto the family of Gaussian
processes of the form (7). The in this sense optimal choice of parameters requires matching
of moments between P (yS|S) and Q(yS |S), and we can see from (10) that for this choice,
the (approximate) Bayes classifier depends on the posterior mean of P (yS |S) only. However,
this mean is difficult to find (it can be approximated using MCMC sampling techniques,
see Neal (1997)), and most approximations settle for other parameters of Q(yS |S).

In the context of this paper, we are interested in the posterior Gibbs rather than the
posterior Bayes classifier. The former predicts the target t∗ at a test point x∗ by sampling
y∗ ∼ Q(y∗|x∗, S) from the approximate predictive distribution, then outputting sgn y∗. The
expected error is given by

Pry∗∼Q(y∗|x∗,S){sgn y∗ 6= t∗} = Φ
(
−t∗µ(x∗)

σ(x∗)

)
, (11)

where Φ denotes the cumulative distribution function (c.d.f.) of N(0, 1).
Finally note that another frequently used way to introduce Gaussian process models is

to view them as linear models with Gaussian prior distributions in a feature space which is
typically infinite-dimensional. This view is very useful when designing new algorithms for
approximate inference, since many ideas proposed originally for linear models can be im-
ported rather straightforwardly. However, the feature space view requires a mathematically
rigurous treatment (due to the infinite dimension) involving some functional analysis over
so-called reproducing kernel Hilbert spaces, while working with Gaussian process models
in the way introduced here is completely elementary. In this paper, we do not require the
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feature space view. We refer to Williams (1997) for a discussion of the relationships be-
tween the two views, and to Wahba (1990), section 1 for the mathematical details required
to establish the feature space view.

2.2 The relative entropy between posterior and prior Gaussian process

In subsection 1.2, we introduced Gaussian processes as distributions over random functions
y(·) : X → R, and in subsection 2.1 we defined two Gaussian processes in particular: the
zero-mean prior process P with covariance kernel K and the corresponding Gaussian process
approximation Q to the true intractable posterior process, as given by (7) and (8). Our main
result is an application of the general PAC-Bayesian theorem 1 to approximate Bayesian
GPC, i.e. we would like to instantiate the prior P and posterior Q in this theorem by the
corresponding Gaussian processes. To this end, we need to compute the Radon-Nikodym
derivative dQ(y(·))/dP (y(·)) and the relative entropy term (1).

It is easy to see that

dQ(y(·))
dP (y(·)) =

Q(yS |S)
P (yS)

, (12)

where yS = y(XS), the outputs over the training input points. Here, P (yS) = N(yS|0,KS),
and Q(yS |S) is given by (8). All we need to show is that the process defined by

dQ̂(y(·)) =
Q(yS |S)
P (yS)

dP (y(·))

is a Gaussian process with the same parameters as Q. To see this, let X ⊂ X be finite and
define y = y(X). Recall the notations y \yS and yS \y from subsection 2.1. Then we have

Q̂(y) =
∫

Q(yS |S)
P (yS)

P (y,yS) d(yS \ y) =
∫

Q(yS |S)P (y \ yS |yS) d(yS \ y) = Q(y|S),

where the last equality uses (7). Therefore, the relative entropy D[Q ‖P ] is simply

D[Q ‖P ] = Ey(·)∼Q

[
log

Q(yS|S)
P (yS)

]
= D[Q(yS |S) ‖P (yS)].

Since both Q(yS |S) and P (yS) are Gaussians in R
n, this is easily computed (e.g. Kullback

(1959)):

D[Q ‖P ] =
1
2

log
∣∣Σ−1

S KS

∣∣+ 1
2

tr
(
Σ−1

S KS

)−1 +
1
2
α̂T

SKSα̂S − n

2
. (13)

This formula depends of course on the parameters α̂S and ΣS of the posterior approximation
Q(yS |S). In section 3, we show how to compute the relative entropy for a range of concrete
GPC approximations.
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2.3 Main result

In this subsection, we state and discuss our main result, namely an application of the
PAC-Bayesian theorem 1 to Gibbs variants of approximate Bayesian Gaussian process clas-
sification methods from the class introduced in subsection 2.1. Examples for how this result
looks like for several concrete methods are given in section 3.

Choose some δ ∈ (0, 1). Then, the following result holds for any zero-mean prior Gaus-
sian process P with covariance kernel11 K.

Theorem 2 (PAC-Bayesian theorem for GPC) For any data distribution over X ×
{−1,+1}, we have that the following bound holds, where the probability is over random
i.i.d. samples S = {(xS

i , tSi ) | i = 1, . . . , n} of size n drawn from the data distribution:

PrS {DBer [emp(S,Q) ‖ gen(Q)] > ε(δ, S, P,Q)} ≤ δ. (14)

Here, we have

emp(S,Q) =
1
n

n∑
i=1

Pryi∼Q(yi|xS
i ,S)

{
sgn yi 6= tSi

}
,

gen(Q) = E(x∗,t∗)

[
Pry∗∼Q(y∗|x∗,S) {sgn y∗ 6= t∗}

]
,

ε(δ, S, P,Q) =
D[Q ‖P ] + log n+1

δ

n
.

(15)

Thus, emp(S,Q) is the expected empirical error, gen(Q) the expected generalization er-
ror of the GP Gibbs classifier (note that the probability in gen(Q) is over (x∗, t∗) drawn
from the data distribution, independently from the sample S) whose predictive distribution
Q(y∗|x∗, S) is given by (10), and DBer denotes the Bernoulli relative entropy (2). Finally,
D[Q ‖P ] in ε(δ, S, P,Q) is given in (13). All of these terms depend on the parameters
α̂S , ΣS of the posterior approximation (8).

We have essentially already proved this theorem. In subsection 2.1, we have shown
how to compute the predictive distribution Q(y∗|x∗, S) (see (10)), thus emp(S,Q) can be
computed easily using (11). ε(δ, S, P,Q) is computed using (13). Finally, the upper bound
on gen(Q) implied by the theorem can easily be computed using a one-dimensional search,
following the remarks given after theorem 1. Below, when specializing to several concrete
methods (i.e. “fill in” α̂S and ΣS), we will give more detailed comments on how to compute
the terms the bound depends upon.

2.3.1 Extension to Bayes classifiers

Note that we can use the comments of subsection 1.3.1 in order to derive a bound on the
Bayes variant of GPC, by observing that for every fixed x∗, the distribution Q(y∗|x∗, S)
is symmetric around its mean. The bound on the generalization error of the Bayes variant
is twice the value we can bound gen(Q) with, thus not very tight in practice. Recall the
notation used in subsection 1.3.1, and recall from (11) that eGibbs(x∗, t∗) = Φ(m(x∗, t∗)),

11. If K has free kernel parameters, these have to be fixed a-priori.
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where m(x∗, t∗) = −t∗µ(x∗)/σ(x∗) is the margin violation (recall that µ(x∗) and σ2(x∗)
denote predictive mean and variance of Q(y∗|x∗, S)). Thus, for fixed γ and every S,

Pr(x∗,t∗){m(x∗, t∗) ≥ γ} = Pr(x∗,t∗) {eGibbs(x∗, t∗) ≥ Φ(γ)} ≤ gen(Q)
Φ(γ)

by Markov’s inequality, which gives a slightly more general link, since m(x∗, t∗) ≥ 0 iff
eBayes(x∗, t∗) = 1, and Φ(0) = 1/2. It may be possible to obtain more useful PAC-Bayesian
bounds on eBayes or probabilities of deviation of m(x∗, t∗) by focussing the PAC-Bayesian
analysis from the beginning not on the zero-one loss, but on m(x∗, t∗) itself. Whether such
an extension of the PAC-Bayesian technique to unbounded losses is possible or not, is an
open problem (to our knowledge).

3. Applications to concrete Gaussian process classification methods

In the previous section, we stated and proved our main result (theorem 2) which is valid for
a large class of approximate Bayesian GPC techniques. In this section, we will instantiate
this result with two particular GPC methods, both of high practical relevance. For these
methods, which will be introduced briefly, we provide computational details and some fur-
ther analysis. The experiments presented in section 4 are based on the GPC methods we
specialize on here.

3.1 Laplace Gaussian process classification

In this subsection, we concentrate on a particular simple, yet powerful approximate GPC
method suggested in Williams and Barber (1998). This technique is referred to as Laplace
Gaussian process classification, and we will begin by briefly introducing this framework. A
detailed introduction can be found in Williams and Barber (1998).

Recall from subsection 1.1 that we are given some i.i.d. data sample S of size n, drawn
from an unknown data distribution. Our noise model will be Bernoulli (logit), i.e. P (t|y) =
σ(ty), and for this non-Gaussian noise distribution, exact Bayesian analysis is intractable.
In a nutshell, the Laplace GPC approximation works by first determining the vector ŷS

maximizing the posterior P (yS |S), where yS = y(XS), XS = {xS
1 , . . . ,xS

n}. This is a
convex optimization problem, thus has a unique solution. Let KS = K(XS). In our context,
it is useful to operate on the dual vector αS = K−1

S yS. Then, the log posterior can be
written, up to additive constants, as a criterion

F (αS ,KS) =
n∑

i=1

log σ(tSi yS
i ) − 1

2
αT

SKSαS, yS = (yS
i )i = KSαS . (16)

Since F is concave, it has a unique maximizer α̂S which can be found using the Newton-
Raphson algorithm. Furthermore, ŷS = KSα̂S is the posterior mode. We now approximate
the posterior P (yS |S) by a Gaussian Q(yS |S), using the Laplace approximation (e.g. Kaas
and Raftery (1993)) around the mode ŷS . This results in

Q(yS |S) = N(yS |KSα̂S, (W + K−1
S )−1), (17)
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where W is a diagonal matrix with positive entries. In fact, at the mode ŷS , we have:

α̂S = (tSi σ(−tSi ŷS
i ))i, W = diag(σ(−tSi ŷS

i )σ(tSi ŷS
i ))i. (18)

Note that if ΣS = (W + K−1
S )−1, then (17) becomes consistent with (8). If we define the

positive definite matrix

A = In + W1/2KSW1/2, (19)

then some matrix algebra results in

MS = K−1
S −K−1

S ΣSK−1
S = W1/2A−1W1/2,

Σ−1
S KS = W1/2AW−1/2.

(20)

This allows us to compute the predictive distribution (10) and the relative entropy term
(13) in a stable way. Suppose we are given the Cholesky decomposition (e.g. Horn and
Johnson (1985), chapter 7) A = LLT , where L is lower-triangular with positive diagonal.
Then, the predictive variance is computed as

σ2(x∗) = K(x∗,x∗) − rT r, Lr = W1/2k(x∗), (21)

which is O(n2) due to the backsubstitution for r. The Cholesky decomposition is by far
the most stable (and also most efficient) exact method to do these computations, and
we discourage the reader from using other techniques, especially such that involve matrix
inversions. The evaluation of the expected empirical error emp(S,Q) in theorem 2 requires
the evaluation of the predictive variances at the training points, thus is O(n3).

Using (20), the relative entropy term (13) simplifies to

D[Q ‖P ] =
1
2

log |A| + 1
2

trA−1 +
1
2
α̂T

SKSα̂S − n

2
. (22)

Note that log |A| = 2 log |diagL|. The term trA−1 can be computed from L in roughly the
same time as L is obtained from A. Thus, the computation of (22) is O(n3) as well.

The Gibbs classifier seems inattractive for predictions on large test sets, because each
evaluation requires O(n2). In contrast to this, the Bayes classifier variant depends on the
mean µ(x∗) = k(x∗)T α̂S only, which is O(n) per test point. However, we show in appendix
C how one can use sparse approximation techniques together with rejection sampling in
order to avoid the exact computation of the variance term for most of the predictions,
ending up with O(n) (average case) per prediction.

3.1.1 Some analysis of the relative entropy term

In this subsection, we present some analysis of the relative entropy term D[Q ‖P ] (see (22))
in the bound of theorem 2, as applied to Laplace GPC. In normal situations (i.e. δ not
extremely small), the expression ε(δ, S, P,Q) in (14) is dominated by this term.

The matrix A (of (19)) is positive definite, and all its eigenvalues are ≥ 1. Further-
more, by taking any unit vector u and using the min-max characterization of the eigen-
value spectrum (e.g. Horn and Johnson (1985), section 4.2) of Hermitian matrices, we have
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uTAu = 1+(W1/2u)TKS(W1/2u) ≤ 1+λmaxu
TWu < 1+λmax/4, where λmax is the largest

eigenvalue of KS (note the positive coefficients of W are all < 1/4). Thus, all eigenvalues
of A lie in (1, 1 + λmax/4). By analyzing (1/2) log |A| + (1/2) trA−1 for general12 A ≥ In,
we see that this term must lie between n/2 and (n/2)(log(1 + λmax/4) + (1 + λmax/4)−1),
although these bounds are not necessarily tight. As for the other part in (22), we can use
(18) to show that (1/2)α̂T

SKSα̂S = (1/2)ŷT
S α̂S = (1/2)

∑
i tSi ŷS

i σ(−tSi ŷS
i ), which is simply

(1/2)
∑

i f(tSi ŷS
i ), f(x) = xσ(−x), and tSi ŷS

i is the so-called margin at example (xS
i , tSi ).

f(x) is plotted in figure 1. It is maximal
at x∗ ≈ 1.28, converges to 0 exponentially
quickly for x → ∞ and behaves like x 7→ x
for x → −∞. Thus, at least w.r.t. the
third term in (22), classification mistakes (i.e.
tSi ŷS

i < 0) render a negative contribution to
the gap bound value. This is what we ex-
pect for a Bayesian architecture. Namely, the
method chose a simple solution, at the ex-
pense of making this mistake, yet with the
goal to prevent disastrous overfitting. In our
bound, we are penalized by a higher empirical
error, but we should be awarded by a smaller
gap bound term.
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Figure 1: Function f(x)

3.2 Sparse greedy Gaussian process classification

A principal drawback of many approximate GPC techniques in practice is their scaling
of O(n3) with the sample size n during training. For example, the Laplace GPC tech-
nique, discussed in subsection 3.1, although one of the fastest (non-sparse) known GPC
techniques, scales as O(n3) in a straightforward implementation13. Furthermore, these
techniques typically require the evaluation of the complete kernel matrix KS . Recently, a
number of sparse approximation techniques for Bayesian GPC have been proposed (e.g. Tip-
ping (2001), Williams and Seeger (2000), Smola and Bartlett (2000), Tresp (2000), Csató
and Opper (2001)), and a large practical interest is focussed on these methods. The com-
mon theme of these techniques is to restrict the number of coefficients to be used in the
final discriminant expansion to a controllable number k � n (an exception is the method
of Williams and Seeger (2000) which results in a dense expansion). By means of this, they
typically achieve a training complexity of at most O(nk2). This involves the selection of a
“representative” subset of size k of the training inputs. Since an optimal selection (in any
meaningful sense) is intractable, the methods resort to randomized and/or greedy strategies,
often of heuristic nature.

Here, we focus on a class of sparse GPC techniques proposed in Csató and Opper (2001)
and Lawrence and Herbrich (2001). Due to space limitations, a detailed description of these

12. A ≥ In means that A− In is positive semidefinite.
13. This is true for Laplace Gibbs GPC and for the evaluation of the terms determining the bound value in

theorem 2. Laplace Bayes GPC typically scales as O(n2) (average case), if implemented in a proper way.
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methods cannot be given here, for details see Seeger (2002). The notation we use here is
taken from Minka (2001), in which the schemes of Csató and Opper (2001), Lawrence and
Herbrich (2001) and Opper and Winther (2000) are identified as special cases of the general
expectation propagation procedure. In what follows, we introduce aspects of the methods
we require in this section, but the exposition is not self-contained. We then show how the
terms determining the bound value of theorem 2 can be evaluated in time O(nk2).

Minka (2001) develops the algorithm using a feature space associated with the kernel
K, but it is easy to see that the method falls in the class described in subsection 2.1 and
propagates Gaussian approximations Q(yS |S) to the intractable true posterior P (yS|S)
(see Csató and Opper (2001)). Q(yS|S) is parameterized by a diagonal matrix Λ−1 with
nonnegative elements and a vector m:

Q(yS |S) = N
(
yS |KS(In + Λ−1KS)−1T Λ−1m, (K−1

S + Λ−1)−1
)
, (23)

where T = diag(tSi )i contains the targets. This becomes consistent with (8) if we set α̂S =
(In+Λ−1KS)−1T Λ−1m and ΣS = (K−1

S +Λ−1)−1. In sparse variants of this approximation,
we allow for elements of diag Λ−1 to be zero14. In fact, for such methods we keep an active
set I ⊂ {1, . . . , n}, with k = |I| � n, and make sure that if diag Λ−1 = (v−1

i )i, then v−1
i = 0

whenever i 6∈ I. The active set is grown up to a desired size (or until a stopping criterion is
met) by including new datapoints (xS

i , tSi ). In order to include a new point i, the algorithm
only requires the i-th row of the kernel matrix KS , i.e. K({xS

i },XS). After I has reached
the desired size, the method can be stopped, but some variants try to continue to refine the
approximation while keeping the size of I constant. In sparse greedy variants of this scheme,
the next datapoint to be included is selected greedily using a heuristic scoring criterion. In
this work, we employ the heuristic proposed in Lawrence and Herbrich (2001), which can
be evaluated very efficiently. We will refer to this criterion as Lawrence/Herbrich score.
The first few patterns to be included are chosen at random. Later, we select a pattern by
scoring all remaining ones using the Lawrence/Herbrich criterion and pick the winner. The
algorithm stops once k patterns have been included.

Due to the fact that at most k of the elements in diag Λ−1 are non-zero, it turns out
that the quantities depending on the final posterior approximation Q(yS |S) which we are
interested in, namely the parameters of the predictive distribution (10) and the relative
entropy term (13) can be computed efficiently and using only the part [KS ]I,· of the kernel
matrix. First note that

MS =
(
In + Λ−1KS

)−1 Λ−1, Σ−1
S KS = In + Λ−1KS . (24)

Denote Λ−1
k = [Λ−1]I,I and define

B = Ik + Λ−1/2
k [KS ]I,IΛ

−1/2
k ∈ R

k×k, β = Λ−1/2
k B−1Λ−1/2

k [T m]I ∈ R
k. (25)

If EI ∈ R
k,n denotes the “selection” matrix for I, i.e. EIg = [g]I , then some elementary

matrix algebra using the Sherman-Morrison-Woodbury formula (e.g. Flannery et al. (1992),

14. The unfortunate notation Λ−1 for a singular matrix is kept for reasons of consistency with Minka (2001).
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chapter 2.7) renders

(
In + Λ−1KS

)−1 = In − ET
I Λ−1/2

k B−1Λ−1/2
k [KS ]I,IEI ,

MS =
(
Λ−1/2

k EI

)T
B−1Λ−1/2

k EI .
(26)

Since α̂S = MST m, we have

α̂S = ET
I β.

The predictive variance is best computed using the Cholesky decomposition B = LkLT
k .

Plugging (26) into (10), we have

µ(x∗) = βT kI(x∗),

σ2(x∗) = K(x∗,x∗) − rT r, Lkr = Λ−1/2
k kI(x∗),

(27)

where kI(x∗) = (K(x∗,xS
i ))i∈I ∈ R

k. Thus, each Gibbs prediction can be computed in
O(k2), and the expected empirical error of the Gibbs classifier is obtained at a cost of
O(nk2). Note that the corresponding Bayes classifier can be evaluated in O(k), due to the
sparse expansion for µ(x∗). For the computation of the relative entropy term (13), we use
(26) and the well-known matrix formulae |I + UV| = |I + VU| and trUV = trVU .15 Then,
log |Σ−1

S KS | = log |B| and tr(Σ−1
S KS)−1 = n − k + trB−1, therefore

D[Q(w|S) ‖P (w)] =
1
2

log |B| + 1
2

trB−1 +
1
2
βT [KS ]I,I β − k

2
. (28)

This is computed in O(k3), given the Cholesky decomposition of B. All in all, the upper
bound on gen(Q) given by theorem 2 for sparse greedy GPC can be computed in O(nk2).

It is interesting to point out the close similarity between the two relative entropy for-
mulae (22) and (28). This is due to the similar form of ΣS (covariance matrix of Q(yS |S))
both methods are employing, namely ΣS = (K−1

S +D)−1, where D is a diagonal matrix. In
the Laplace GPC case, with D = W, the components of diagD are positive, and there is no
force which drives many of these components towards zero. In the sparse greedy GPC case,
with D = Λ−1, n− k of the components of diagD are zero, allowing us to use more efficient
computations. Note that the method we have discussed in this subsection becomes identical
with the “cavity” approach suggested by Opper and Winther (2000) if we let k = n, i.e. al-
low all components of Λ−1 to become non-zero (see Minka (2001)). Another idea to control
sparsity in Λ−1, different from the online approach taken in Csató and Opper (2001), would
be to place ARD priors16 on the components of Λ−1, forcing them to be small under the
prior. This is the approach adopted by the Relevance Vector machine of Tipping (2001),
although there the sparsity of a set of parameters different from Λ−1 is controlled via ARD.

15. The determinant relation follows from a well-known formula using Schur products (e.g. Horn and Johnson
(1985), section 0.8.5).

16. Automatic Relevance Determination (ARD) is a Bayesian way to prune parameters in a model (see Neal
(1996)). For some parameter w, this works by placing a prior P (w|α) = N(w|0, α−1) on w, where α > 0
is a hyperparameter. α is given a very broad hyperprior, thus can become large if this is supported by
the data, leading to w being effectively fixed at 0 a-posteriori.
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We would also like to remark that our bound for sparse greedy GP methods is (in
general) no compression bound. Theorems of the latter class require that the finally selected
discriminant is exactly recovered if we restrict ourselves, in an independent training run,
on the datapoints in the final expansion as training set (see subsection 4.3). Although our
bound applies to compression scheme versions of sparse greedy GPC, it is not restricted
to such. The experiments presented in subsections 4.2 and 4.3 suggest that theorem 2 for
sparse greedy GPC renders a much tighter generalization error bound than a standard PAC
compression bound in situations where both bounds apply.

4. Experiments

Here, we present experiments testing our main result (theorem 2) for the Laplace GP Gibbs
classifier in subsection 4.1 and the sparse greedy GP Gibbs classifier in subsection 4.2, using
a setup to be described shortly. The results indicate that the bounds are very tight even
for training samples of moderate sizes. In subsection 4.3, we compare our bound to a state-
of-the-art PAC compression bound on the sparse greedy GP Bayes classifier, and to the
same compression bound on the soft-margin Support Vector classifier in subsection 4.3.1.
Finally, in subsection 4.4 we try to evaluate the model selection qualities of our result for
sparse greedy GP classification.

A real-world binary classification task was created on the basis of the well-known MNIST
handwritten digits database17 as follows. MNIST comes with a training set of 60000 and
a test set of 10000 handwritten digits, represented as 28-by-28-pixel bitmaps, the pixel
intensities are quantized to 8 bit values. First, the input dimensionality was reduced by
cutting away a 2-pixel margin, then averaging intensities over 3-by-3-pixel blocks, resulting
in 8-by-8-pixel bitmaps. The task of discriminating handwritten twos against threes is
among the harder binary ones18. By selecting these digits only, a training pool of 12089
cases and a test set of l = 1000 cases were created.

For our experiments, we employed the frequently used Radial Basis Functions (RBF)
covariance kernel

K(x(1),x(2)) = C exp
(
− w

2d

∥∥∥x(1) − x(2)
∥∥∥2
)

. (29)

Here, d is the dimensionality of the inputs (d = 64 in our case), w and C are positive
parameters. C determines the variance of the underlying random process (see subsection
1.2), while w−1/2 determines its average length scale.

The experimental setup is as follows. An experiment consists of L = 10 independent
iterations. During an iteration, three datasets are sampled independently and without
replacement from the training pool: a model selection (MS) training set of size nMS, a MS
validation set of size lMS and a task training sample S of size n. Note that the latter set is
sampled independently from the model selection sets, ensuring that the prior P in theorem
2 is independent of the task training sample. This issue is discussed in more detail in section
5. Then, model selection is performed over a list of candidates for (w,C), where a classifier

17. Available online at http://www.research.att.com/∼yann/exdb/mnist/index.html.
18. We will consider other binary subtasks of MNIST as well as other binary tasks in future work.
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is trained on the MS training set and evaluated on the MS validation set19. The winner is
then trained on the task training set and evaluated on the test set. Alongside, the upper
bound value given by theorem 2 is evaluated20, where the confidence parameter δ was fixed
to 0.01. We also quote total running time, as observed on a DEC Alpha workstation21 with
almost four gigabytes of RAM.

4.1 Experiments with Laplace GPC

Our implementation uses the Newton-Raphson algorithm in order to maximize the log
posterior criterion (16). The Newton steps are computed using a Conjugate Gradients
solver for symmetric positive definite linear systems. The prediction vector α̂S is found in
O(n2) (average case). The Cholesky decomposition of the system matrix (19), the evaluation
of expected empirical error of the Gibbs classifier and of the relative entropy term (22) all
require O(n3). The specifications and results for the experiments reported in this paper
are listed in table 1. For all these experiments, we chose model selection validation set size
lMS = 1000 (recall that the test set is fixed with size l = 1000). Experiments #1 to #5 have
growing sample sizes n = 500, 1000, 2000, 5000, 9000, the corresponding MS training set
sizes are nMS = 1000 for experiments #2 to #5, and nMS = 500 for experiment #1. Note
that nMS < n in experiments #3 to #5 is chosen for computational feasibility, due to the
considerable size of the candidate list for (C,w). In table 2, we list additional information
about the experiments.

Note that the resource requirements for our experiments are well within today’s desktop
machines computational capabilities. For example, experiment #4 was completed in total
time of about 12 to 13 hours, the memory requirements are around 250M. Now, for this
setting, both the expected empirical error and the estimate (on the test set) of the expected
generalization error lie around 2%, while the PAC bound on the expected generalization
error, given by theorem 2, is 7.6% — an impressive, highly nontrivial result on samples of
size n = 5000. Our largest experiment #5 was done mainly for comparison with experiment
#2 for sparse greedy GPC (see subsection 4.2). The total computation time was 6 hours for
each iteration, and the memory requirements per process are around 690M. We note a slight
improvement in test errors as well as in the upper bound values (which now lie around 7%).
It is interesting to note that the sparse greedy GPC algorithm does significantly better on
this task, at a fraction of the computational expense.

The “gen-bayes” column in table 2 contains the test error that a Bayes classifier with the
same approximate posterior as the Gibbs classifier attains. Note that it is not necessarily the
best we could obtain for a Bayes classifier, because the model selection is done specifically
for the Gibbs, not the Bayes classifier. In the Laplace GPC case we note that although Bayes
and Gibbs variants perform comparably well (although the Bayes classifier attains slightly

19. The model selection score is the expected empirical error of the Gibbs classifier on the MS validation
set.

20. This involves a one-dimensional search. Namely, we have to find p s.t. DBer[emp(S, Q) ‖ p] = ε and
p ≥ emp(S, Q). This p is, with confidence 1 − δ, an upper bound on gen(Q). Since the criterion is
monotonically increasing for p ≥ emp(S, Q), there is only one solution, which can be found very easily,
due to the convexity of the criterion.

21. Typically, jobs were run in parallel on this multiprocessor machine. Note that the figures quote total
running time over the whole experiment, including model selection, testing and evaluation of the bound
values.
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# n nMS emp gen upper
1 500 500 0.036 0.0469 0.182

(± 5.049e-4) (± 1.944e-4) (± 7.284e-4)
2 1000 1000 0.0273 0.036 0.131

(± 2.048e-4) (± 9.293e-5) (± 3.73e-4)
3 2000 1000 0.0243 0.028 0.1091

(± 1.66e-4) (± 8.202e-5) (± 5.06e-4)
4 5000 1000 0.0187 0.0195 0.076

(± 6.283e-5) (± 4.59e-5) (± 7.964e-5)
5 9000 1000 0.0178 0.0172 0.0706

(± 3.708e-5) (± 3.776e-5) (± 1.113e-4)

Table 1: Experimental results for Laplace GPC. n: task training set size; nMS: model
selection training set size. emp: expected empirical error; gen: expected general-
ization error (estimated as average over test set). upper: upper bound on expected
generalization error after theorem 2. Figures are mean and width of 95% t-test
confidence interval.

# gen-bayes C pars w pars approx-time
1 0.0339 50(6),30(2),20,25 0.5(5),2(3),0.75(2) 14 min

(± 2.938e-4)
2 0.0274 10(9),20 3(5),2(2),5 67 min

(± 2.004e-4)
3 0.0236 5(5),3(3),10(2) 10(6),7.5(2),5(2) 91 min

(± 1.844e-4)
4 0.0171 5(6),7.5(2),15,20 7.5(3),10(3),12(2),5,3 762 min

(± 6.602e-5)
5 0.0158 2(4),3(2),5(2),7.5(2) 12(4),10(3),5(2),7.5 3618 min

(± 5.261e-5)

Table 2: Additional information for Laplace GPC experiments. gen-bayes: test error of
corr. Bayes classifier. C pars, w pars: Values of C, w chosen by MS (frequency
in parantheses). approx-time: approximate total running time. Figures are mean
and width of 95% t-test confidence interval.

better results and, as mentioned in subsection 2.1, can be evaluated more efficiently). We
include these results for comparison only: although our main result implies a bound on the
generalization error of the Bayes classifier (see subsection 2.3.1), the link is too weak to
render a sufficiently tight result.

4.2 Experiments with sparse greedy GPC

The algorithmic details of our implementation can be found in Seeger (2002). Training
proceeds in two phases. In the first phase, a number krand of patterns from the training
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sample are selected at random and included into the approximation (as described in section
3.2). In the second phase, we include further patterns until the active set has grown to size
k. However, now the next pattern to be included is determined by scoring all remaining
ones using the Lawrence/Herbrich criterion (see section 3.2) and choosing the one with the
best value. Empirically, we found the greedy selection to be very effective, thus typically
krand � k. Note that we require krand ≥ 1, because the Lawrence/Herbrich criterion is
constant over all patterns if the active set is empty and the kernel diagonal is constant. We
use different values for k and krand during model selection, denoted by kMS, krand,MS. For
all experiments reported here, we chose MS training size nMS = 1000, MS validation size
lMS = 1000, kMS = 150, krand = 3 and krand,MS = 2. Note that in experiments which have
the same (n, nMS, lMS) constellation as Laplace GPC experiments, we use the same data
subsets, in order to facilitate direct comparisons. The results are listed in table 3. In table
4, we list additional information about the experiments.

# n k emp gen upper
1 5000 500 0.0154 0.0207 0.067

(± 8.3276e-5) (± 6.0725e-5) (± 1.0524e-4)
2 9000 900 0.0101 0.0116 0.0502

(± 2.0739e-5) (± 1.6532e-5) (± 1.8485e-5)

Table 3: Experimental results for sparse GPC. n: task training set size; k: final active set
size. emp: expected empirical error; gen: expected generalization error (estimated
as average over test set). upper: upper bound on expected generalization error
after theorem 2. Figures are mean and width of 95% t-test confidence interval.

# gen-bayes C pars w pars approx-time
1 0.0084 120(9),100(1) 3(5),2(3),5(2) 16 min

(± 5.4873e-5)
2 0.0042 150(5),125(2),120(2),100 3(7),2(2),5 82 min

(± 2.6498e-5)

Table 4: Additional information for sparse GPC experiments. gen-bayes: test error of corr.
Bayes classifier. C pars, w pars: Values of C, w chosen by MS (frequency in
parantheses). approx-time: approximate total running time. Figures are mean
and width of 95% t-test confidence interval.

Let us compare these results to the ones obtained for Laplace GPC. The sparse GPC
Gibbs classifier trained with 5000 examples attains an expected test error of 2.1%, and the
upper bound evaluates to 6.7%. While the former is the same as for the Laplace GPC
variant, the latter is significantly lower. The ratio between upper bound and expected test
error is 3.19, the ratio between gap bound and expected test error is 2.46 — demonstrating
an impressive tightness for a state-of-the-art classifier trained on just 5000 examples. Also
important for the practitioner, experiment #1 for the sparse GPC was completed in total
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time of about 16 minutes on the machine mentioned in subsection 4.1 — almost fifty times
faster than the Laplace GPC experiment #4. Note that the limited size of the task database
does not allow samples sizes much larger than n = 9000 (experiments on much larger
datasets are subject to future work). It is interesting to observe that for this sample size,
the results here are significantly better than for the full Laplace GPC on the same task22

(experiment #5 in subsection 4.1). Finally note that we did not try to optimize the final
active set size k, but simply fixed k = n/10 a-priori.

The “gen-bayes” column in table 4 serves the same purpose as the “gen-bayes” column
in table 2. In case of sparse greedy GPC, the results show that the Bayes classifier performs
somewhat significantly better than the Gibbs variant, although the latter still attains very
competitive results. A possible explanation for this difference, given that it cannot be
observed for Laplace GPC, is obtained by inspecting the (C,w) kernel parameters values
that are preferred by sparse greedy GPC. The parameter C is much larger for sparse GPC,
i.e. the latent process has a larger a-priori variance. This is sensible, because sparse GPC
has to rely on much fewer terms in the final expansion than Laplace GPC, thus has to
make sure that the kernels corresponding to active patterns span a larger range, and also
the coefficients in the expansion (the coefficients of β) lie in a broader interval. However,
this typically leads to an increase in the predictive variances, which in turn might introduce
more sampling errors in the Gibbs predictions.

4.3 Comparison with PAC compression bound

In this subsection, we present further experiments in order to compare our result for sparse
GPC with a state-of-the-art PAC compression bound. Note that in this subsection, we
employ Bayes GP classifiers instead of Gibbs GP classifiers: it would not be fair to compare
our Gibbs-specific bound to an “artificially Gibbs-ified” version of a result which is typically
used with Bayes classifiers. A compression bound applies to learning algorithms which have
a particular characteristic. Namely, suppose we are given a learning algorithm A which
maps data samples S of size n to hypotheses A(S), which are then used to classify future
input points. A is called a compression scheme if there exists another algorithm R, mapping
samples of size smaller than n to hypotheses, s.t. for every sample S we can find a k < n
and a subsample of S of size k s.t. R trained on this subsample outputs the same hypothesis
as A trained on S. Popular examples of compression schemes are the perceptron learning
algorithm of Rosenblatt (1958) and the Support Vector machine (see subsection 4.3.1).

It turns out that the sparse greedy GPC variant we are using in the experiments reported
in subsection 4.2, is a compression scheme where k is fixed a-priori. Herbrich (2001) gives
a PAC bound for compression schemes (theorem 5.18 — drawing from earlier work in
Littlestone and Warmuth (1986)) which can be considered state-of-the-art. In order to
ensure a fair comparison, we use a refined version of this bound which is stated and proved
in appendix B. There, it is also shown why and to what extent our sparse greedy GPC

22. Note that we are comparing two entirely different ways of approximating the true posterior by a Gaussian:
a Laplace approximation around the mode (which is different from the posterior mean — the “holy grail”
of Bayesian logistic regression, see subsection 2.1) and an approximation based on repeated moment
matching. A more meaningful direct comparison would involve the TAP method of Opper and Winther
(2000) (a special case of expectation propagation, see Minka (2001)) which is, however, significantly more
costly to compute than the Laplace approximation. Such a comparison is subject to future work.
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variant is a compression scheme. The PAC upper bound on the generalization error depends
only on the training error on the remaining n − k patterns of S outside the active set
(called emp\k(S)), furthermore on k and krand. We repeated the experimental setup used
in subsection 4.2 and employed the same dataset splits. The results can be found in table
5.

# n k emp gen upper
1 5000 500 0.0025 0.0058 0.3048

(± 2.7437e-5) (± 5.9113e-05) (± 0)
2 9000 900 0.0024 0.003 0.3041

(± 1.2815e-5) (± 2.2722e-5) (± 0)

Table 5: Experimental results for PAC compression bound with sparse GP Bayes classifier.
n: task training set size; k: final active set size. emp: empirical error (on full
training set); gen: error on test set. upper: upper bound on generalization error
given by PAC compression bound. Figures are mean and width of 95% t-test
confidence interval.

For both experiments, emp\k(S) = 0 was achieved23 in all runs, the compression bound is
tightest in this case. Nevertheless, in experiment #1, the upper bound on the generalization
error is 30.5%, a factor of 50 above our estimate on the test set. The ratio is even worse for
experiment #2.

4.3.1 Comparison with compression bound for Support Vector classifiers

We can also compare our main result for sparse GP Gibbs classifiers with state-of-the-art
bounds for the popular Support Vector machine (SVM). This kernel machine is nonprob-
abilistic, due to its ε-insensitive loss which cannot be seen as the negative log of a proper
noise distribution (see e.g. Seeger (1999)). A trained SVM discriminant function is a ker-
nel expansion much like the discriminant function of a GP Bayes classifier (the predictive
mean). The special form of the loss function encourages sparse expansions on tasks which
are not very noisy. The training patterns corresponding to non-zero dual expansion coeffi-
cients are referred to as Support Vectors. However, sparseness is not a directly controllable
parameter, furthermore it is not an explicit algorithmic goal of the SVM algorithm to end
up with a maximally sparse expansion24. The aim is rather to maximize the “soft” minimal
empirical margin which is, losely speaking, the minimal empirical margin (i.e. the distance
of the discriminating hyperplane to the closest datapoints, as measured in the feature space
norm) after removing some outlier training points (we are penalized for the margin vio-
lations of these outliers). This particular statistic of the empirical margin distribution is
inspired by some PAC generalization error bounds (e.g. Shawe-Taylor et al. (1998), Herbrich
and Graepel (2000)), but in our opinion, this link is rather weak for “non-near-asymptotic”

23. This is most probably due to the aggressive selection criterion of Lawrence and Herbrich which we use
in our experiments (see section 3.2).

24. Not even in the sense of the sparse greedy GPC method we use in this paper, which greedily seeks to
shrink the posterior entropy (or variance) maximally in each step.
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situations. In practice, modern algorithms for SV classification such as Sequential Minimal
Optimization (SMO) proposed in Platt (1998) can often tackle problems with rather large
sample sizes n in much less than O(n3) (average case), by concentrating optimization ef-
forts on a small active set25. For more details on SVM, see Vapnik (1998), Burges (1998),
Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002), Herbrich (2001). Due
to the setup of SVM training as a constrained optimization problem, it is possible to show
that the algorithm is a k-compression scheme, where k is the number of Support Vectors.
Thus, if we observe a small ratio k/n, the PAC compression bound will render a nontrivial
guarantee on the generalization error. It is important to observe that in case of SV classifi-
cation, we always have emp\k(S) = 0, i.e. the trained discriminant does not make any errors
on the points which are not Support Vectors, and that this zero-error case is maximally
favourable for the PAC compression bound. Experimental results for SV classifiers and the
PAC compression bound can be found in table 6. Again, we employed the same dataset
splits as used in subsection 4.2.

# n emp gen upper
1 5000 0.0016 0.0048 0.2511

(± 3.8348e-5) (± 4.8776e-5) (± 1.9589e-4)
2 9000 0.0021 0.0036 0.213

(± 2.3114e-5) (± 3.5493e-5) (± 2.4405e-4)

Table 6: Experimental results for PAC compression bound with SV classifiers. n: task
training set size. emp: empirical error (on full training set); gen: error on test set.
upper: upper bound on generalization error given by PAC compression bound.
Figures are mean and width of 95% t-test confidence interval.

In both experiments, a higher degree of sparsity is attained than the one chosen in the
experiments above for sparse GPC (as mentioned above, we did not try to optimize this
degree in the sparse GPC case), leading to somewhat better values for the PAC compression
bound. However, the values of 25% (experiment #1) and 21% (experiment #2) are still by
factors > 50 above the estimates computed on the test set. The compression bound applies
to SVM, but is certainly not specifically tailored for this algorithm, since it does not even
depend on the empirical margin distribution. The margin bound of Shawe-Taylor et al.
(1998), commonly used to justify data-dependent structural risk minimization for SVM,
becomes nontrivial (i.e. smaller than 1) only for n > 34816 (see Herbrich (2001), remark
4.33). The algorithmic stability bound of Bousquet and Elisseeff (2001) do not work well
for Support Vector classification either. In fact, the gap bound value converges to zero
at rate 1/n (for n → ∞) only if the variance parameter26 C goes to zero as 1/n, which

25. SMO typically requires the evaluation of only a small part of the kernel matrix KS . However, much in
contrast to the sparse greedy GPC method we employed for our experiments here, if k is the number
of Support Vectors, k can not be determined or sensibly bounded a-priori. Furthermore, SMO (and all
other SVM algorithms we know of) typically requires the evaluation of significantly more than k rows of
the kernel matrix runs during its early iterations.

26. In the SVM literature, it is common practice to seperate C from the covariance kernel and write it in front
of the sum over the slack variables. The parameter λ in Bousquet and Elisseeff (2001) is λ = 2/(Cn),

24



would correspond to severe oversmoothing. Herbrich and Graepel (2000) use some older
PAC-Bayesian theorems of McAllester (1998) in order to prove a bound which depends
on the minimal normalized empirical margin (SVC maximizes this margin if the input
points are normalized in the feature space). This theorem applies to hard-margin SVC only
and becomes nontrivial once the minimal normalized (hard) margin27 is > 0.91. Hard-
margin SVMs tend to overfit on noisy real-world data, with small normalized margins at
least on some points, and in practice the soft-margin variant is typically preferred. In a
separate experiment using the same setup and dataset splits as in #1 of this subsection (i.e.
training sample size n = 5000), but training hard margin SVMs without bias parameter, we
obtained generalization error estimates on the test set gen = 0.0056 (±3.904e−5), minimum
normalized margins minmarg = 0.0242 (±2.813e−5) and generalization upper bound values
upper = 16.28 (±4.7e − 3) using Herbrich and Graepel (2000). All in all, we were not able
to find any proposed SVC-specific bound which would be tighter on this task than the PAC
compression bound used above28.

4.4 Using the bounds for model selection

Can our results be used for model selection? In our opinion, this issue has to be approached
with care. It seems rather obvious that a generalization error bound should not be used
for model selection on a real-world task if it is very far above reasonable estimates of the
generalization error on this task. When proving a PAC bound, the only link between the
final upper bound value and the generalization error itself that needs to be shown, is that the
former dominates the latter on all but a δ-fraction of samples. Even if such a far-off bound
follows the curve of a good generalization error estimate on some task, there is usually no
guarantee that it will do so on another one. If we minimize the upper bound value anyway
for model selection, we step out of the security potentially given by the weakness of the
PAC assumptions, thus could just as well use any other model selection technique such as
Bayesian evidence maximization or cross-validation.

Even though our main result offers highly non-trivial generalization error guarantees for
the real-world task described in this section, they still lie by a factor > 3 above the estimate
on the test set. In our opinion, PAC generalization error bounds in practice on samples
of moderate size should rather be seen as secondary “safety nets” alongside a (typically)
more accurate model selection criterion, such as the Bayesian evidence or a cross-validation
score. To this end, the bound of course has to be tight enough to render a useful value for
the sample size at hand.

In spite of these comments, we follow the usual conventions and present results of an
experiment trying to assess the model selection qualities of our results. As in subsection
4.2, we use sparse greedy GPC within the setup described at the beginning of this section.

which has to be bounded away from 0 for SVC to achieve uniform stability, and for their gap bound
value to converge to zero at rate 1/n.

27. If we view SVC as linear method in a feature space induced by the covariance kernel, the minimal
normalized margin is the arc cosine of the maximal angle between the normal vector of the seperating
plane and any of the input points mapped into feature space. A minimal normalized margin close to 1
means that all mapped input points lie within a double cone of narrow angle around the line given by
the normal vector. For noisy data, such a situation is arguably quite unlikely to happen.

28. For more noisy and difficult tasks, the sparsity degree of SVC may become worse, in which case the
compression bound would degrade sharply.
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The experiment consists of L = 6 iterations. We fixed the variance parameter C to 120
(this is sensible, given the results in table 4) and chose a range of values for w (from 2.4
to 13, in steps of 0.2). In each iteration, we draw a training sample S of size n = 5000.
For each configuration (C,w), w from the range, we train the method on S (using k = 500
and krand = 3), test it on the test set and also evaluate the upper bound on the expected
generalization error given by theorem 2. It does not make sense to average the results over
the L trials, so we present them all in figure 2. In order to facilitate shape comparisons,
we translate the upper bound values towards the expected test errors, by subtracting a
constant. In each graph, the scale printed on the left hand side is for the expected test
error, the scale on the right hand side for the upper bound value.
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Figure 2: Comparing upper bound values with expected test errors. Solid line: expected
test error (scale on left side). Dashed line: upper bound value (translated, scale
on the right). Respective minimum points marked by an asterisk.

Note that the constant by which the upper bound curve is translated, as well as the
curve value scales are different for each of the plots. In figure 3, we plot expected test
errors on the horizontal axis against upper bound values on the vertical axis. Note that in
this type of plot, a mostly monotonically increasing relationship is what we would ideally
expect. The dotted curves are lines x+b with slope 1, where b is fitted to the corresponding
solid curves using linear regression. The ordering of the six subplots is consistent with the
ordering in figure 2.

We see that in this particular experiment, the shape of the upper bound curve follows the
shape of the expected test error rather closely, so that model selection based on minimizing
the upper bound value might have worked in this case. However, as mentioned above, we
present these results rather for the sake of completeness than trying to conclude anything
more from them (note that the constants we have to subtract from the upper bound curves in
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Figure 3: Comparing upper bound values with expected test errors. Solid line: expected
test error (horizontal axis) against upper bound value (vertical axis). Dotted line:
regression line with slope 1.

order to bring them close to the expected generalization error estimate for visual inspection,
are an order of magnitude larger than the range of variation of the curves shown in the
plots).

5. Discussion

In this work, we have shown how to apply David McAllester’s PAC-Bayesian theorem in
order to obtain PAC generalization error bounds for approximate Bayesian Gaussian process
classification methods. Our main result applies to a wide class of methods, namely such
that approximate the predictive process by a nondegenerate Gaussian one. As a minor
contribution, we give a somewhat simplified proof of the general PAC-Bayesian theorem.

We have derived instantiations of this result to Laplace GPC and to a class of sparse
greedy GPC, and tested those on a real-world task, showing that these bounds can be
very tight in practically relevant situations and give more useful results than other state-
of-the-art PAC bounds for kernel classifiers we considered there. One possible source of
lack in tightness for many of the current data and algorithm-dependent kernel classifier
bounds we know of, is that the dependence on the algorithm is actually rather weak, given
only through a large margin, a certain degree of sparsity or other limited statistics, but
completely independent of much of the information the algorithm has actually learned from
the training sample29. They cannot be “configured” using prior knowledge or assumptions

29. Actually, in most cases other, very different algorithms will attain the same (or a better) value in this
statistic (or a related one) on the same sample. An example is the PAC compression bound used in
subsection 4.3, which actually holds uniformly for all methods which compress a n-sample to size k. The
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about the relationship between the method and the task, and therefore they cannot go very
far in realizing the potential power behind the concepts of data and algorithm-dependance
(see subsection 1.1). These problems are directly adressed in the main result of this work
(as they are in general in the PAC-Bayesian theorem). Prior knowledge can be encoded in a
very general way via the choice of the covariance function, and the deviation of the sample
from our assumptions is measured in a satisfactory and familiar way, by the relative entropy
between approximate posterior and prior. Although, by definition every PAC bound can
only depend on some statistics of the sample S, the particular ones we end up with in
our main result are more flexible, configurable and depend more strongly on the particular
algorithm than any of the ones employed in other kernel classifier bounds we know of. To
conclude, although it is interesting to find general a-priori or a-posteriori characteristics30

which guarantee good generalization performance in near-asymptotic situations over a large,
even infinite set of methods, all we are really interested in in practice is to give such a
guarantee for the one method we apply to a task, and it is not risky to conjecture that PAC
bounds will have to be tailored very specifically to a given method in order to ultimately
render practically useful results31.

We think that another important contribution of this work is to give an example of an
effect which may be surprising at first sight: the fact that approximate Bayesian techniques
deliberately use simplifications to overcome the intractability of exact Bayesian analysis on
a model, such as decomposition or Gaussian assumptions, can often be used to simplify
a PAC-Bayesian analysis of the technique as well. In this paper, we showed that a large
class of approximations to Bayesian GPC use a Gaussian process, obtained in a simple
way from the prior GP, in order to replace the true intractable posterior process, and it is
exactly this fact that allows us to compute the corresponding relative entropy between the
processes tractably as well. For a sparse GPC approximation, the computational complexity
of evaluating the bound drops accordingly. Finally, relations between Gibbs and Bayes
classifier (see subsection 2.3.1) can be inferred from symmetry properties of the approximate
predictive distribution, while they probably do not hold for the true predictive distribution
which may be skew. In short, PAC or also average-case analyses of Bayesian inference on
a model might be simplified (and tightened) in many situations if instead of analyzing the
exact intractable Bayesian posterior, we focus on tractable approximations which would
actually be used in practice to do inference. Of course, analyses of the latter type are also
of much higher interest to practitioners.

5.1 Future work

Sparse approximations of Bayesian GPC (e.g. Tipping (2001), Williams and Seeger (2000),
Smola and Bartlett (2000), Luo and Wahba (1997), Tresp (2000), Csató and Opper (2001),

dominating factor in the bound comes from the fact that, in a crude union-bound argument, we have
to sum over all of these combinatorial many possibilities (see appendix B). Another example is given
in Herbrich et al. (2000), in which one can infer the degree of sparsity for a kernel perceptron from the
hard margin a Support Vector machine attains on the same sample.

30. With a-posteriori characteristic, we mean a characteristic which depends on the sample S, such as a
large margin or a high degree of sparsity attained by a method trained on S.

31. As we can see from the PAC-Bayesian theorem, it is nevertheless possible to retain generality in the
theorem.
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Lawrence and Herbrich (2001)) are currently of large practical interest, and it is important
to determine whether our result can be applied to them. In this paper we have shown that
they apply to sparse algorithms such as proposed by Csató and Opper (2001), Lawrence
and Herbrich (2001), and to a sparse version of the method of Jaakkola and Haussler (1998).
In contrast to this, the Nyström method of Williams and Seeger (2000) does not employ
a Gaussian process posterior approximation. A combination of the subset-of-regressors
method (Wahba (1990), Smola and Bartlett (2000)) with Laplace GPC uses a GP approx-
imation to the posterior, however of a degenerate kind, leading to a trivial bound only32.

In future work, we will test our result for sparse greedy GPC on more difficult tasks.
To this end, the simple method we used here will have to be refined in order to increase
robustness against outliers and to allow improvement of the approximation even once the
desired active set size is attained. By using a motivation of the Support Vector machine as
limiting case of probabilistic GP classification techniques (see Opper and Winther (2000)),
our theorem 2 may imply a bound on this popular architecture as well. Furthermore, we
think that the general PAC-Bayesian theorem can be rather straightforwardly applied to a
host of approximate Bayesian schemes for parametric models (see also Langford and Caru-
ana (2001)). Many of these schemes show excellent performance on real-world problems,
but are not motivated by learning-theoretical analyses.

Several open problems remain. First, it would be very important to extend our results
to approximate GP Bayes classifiers in a less crude way as has been done in subsection
2.3.1. Typically, approximate Bayes classifiers are simpler, more efficient to evaluate, de-
terministic, usually perform better and are by far more frequently used in practice than
the corresponding Gibbs versions. In fact, our experiments in section 4 indicate that while
the guarantees given by our main results for Gibbs kernel classifiers are tighter than guar-
antees for Bayes (or “Bayes-like”) kernel classifiers given by state-of-the-art PAC bounds,
the performance ranks we observe in practice are reversed (somewhat in test error, but
especially in time requirements): this dilemma needs to be resolved, or at least understood
better. As McAllester (2001) points out: Intuitively, model averaging [the Bayes variant]
should perform even better than stochastic model selection [the Gibbs variant]. But prov-
ing a PAC guarantee for model averaging superior to the PAC guarantees given here for
stochastic model selection remains an open problem.33

Another problem is whether the PAC-Bayesian theorem can be applied to regression
estimation models, using an unbounded, convex loss (instead of the bounded, non-convex
zero-one loss used in classification). This is possible only if certain restrictions are im-
posed on the data distribution34. The convexity of the loss implies that the risk of the
Bayes classifier is less than the expected risk of the Gibbs variant. However, under sen-
sible restrictions on the data distribution it seems challenging to extend the proof of the

32. The posterior process is actually concentrated on a null set of the prior process, and therefore D[Q ‖P ] =
∞ (see subsection 1.3).

33. The term “stochastic model selection” in McAllester (2001) refers to the probabilistic choice made by
the Gibbs classifier on every test point. It has nothing to do with the term “model selection” used
in our paper, which in the Statistics literature refers to the choice of one model among a set of such,
depending on criteria which are independent of the final test dataset. The term “model averaging” refers
to Bayes-type classifiers.

34. For example, if P (t∗|x∗) under the data distribution has huge or even infinite variance for a set of x∗ of
significant probability, non-trivial PAC guarantees cannot be given.

29



PAC-Bayesian theorem to unbounded losses, even in the special case of Gaussian process
regression.

Finally, it would be interesting to find a way to incorporate certain widely used model
selection techniques over infinite parameter spaces into the PAC-Bayesian framework. For
example, for some of the approximations of Bayesian GPC proposed in the literature (e.g.
Laplace GPC), it is possible to compute and optimize approximations to the Bayesian
evidence, a very powerful model selection criterion. In such cases, we can simultaneously
choose good values for a large number of kernel parameters, each from within a possibly
infinite set, using the training data only. In general, we will have to employ some sort of
model selection method in order to choose free kernel parameters or other parameters of
our prior. In practice, selection among a finite set of models can be incorporated by using a
union bound argument, at the expense of a factor in the gap bound term which essentially
replaces δ by δ/M , where M is the number of models. Such model selection techniques are,
however, very limited in flexibility and scope.

A quick way around this problem is to ensure that model selection is done independently
from the training sample S, that is we sample a separate training set to be used for model
selection only. This has been done in the experiments for this paper (see section 4). Now,
from the Bayesian viewpoint, such a model selection strategy is somewhat questionable. Free
parameters of the prior should be selected (if selected at all!) according to their posterior
distribution, i.e. conditioned on the training data we have, and not on some independent
“model selection training sample” we do not intend to use for prediction later on. Holding
out part of the available training data is also wasteful.

Another idea is to simply extend the parameter w in the PAC-Bayesian theorem by the
parameters of the prior and, by defining a prior distribution and computing an approximate
posterior distribution over these parameters, to lift the problem one level higher in the
hierarchy. However, the drawbacks of this approach for GPC techniques are severe. First
of all, the relative entropy term in the bound cannot be computed analytically anymore,
thus we would have to find a good analytic upper bound. Much worse, the resulting Gibbs
discriminant would be very costly to evaluate, because for each evaluation we have to sample
a new set of prior (e.g. kernel) parameters and deal with a new covariance function for which
(at least part of) a new kernel matrix has to be evaluated and a new conditioned posterior
approximation has to be computed. Thus, the issue of using the PAC-Bayesian theorem
together with such model selection strategies over infinite hyperparameter spaces remains
without a practically satisfying solution (to our knowledge).
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Appendix A. Proof of the PAC-Bayesian theorem

In this section, we present a proof of the PAC-Bayesian theorem 1 which is adapted to the
use of classification zero-one loss employed in this work. A proof for general bounded loss
functions can be found in McAllester (2001), making use of Hoeffding’s inequality at the
core, thus resulting in a less tight bound for the special case of zero-one loss. The proof we
give here is somewhat simpler than the one given in McAllester (2001).

Recall the notation introduced in section 1. We require that there is a common dominat-
ing positive measure for the distributions P and Q over parameters. Define p(w, (x, t)) =
I{sgn y(x|w)6=t}, furthermore let

p(w) = E(x∗,t∗)[p(w, (x∗, t∗))], p̂(w) = n−1
∑

i

p(w, (xS
i , tSi )),

where the expectation is over the unknown data distribution, and the sample is S =
{(xS

i , tSi ) | i = 1, . . . , n}. Let ∆(w) = DBer[p̂(w) ‖ p(w)], where the Bernoulli relative en-
tropy is defined in (2).

Fix w, and write p̂ = p̂(w), p = p(w). Then, n p̂ is binomial (n, p) distributed, thus a
direct computation shows

ES

[
enDBer[p̂ ‖ p]

]
=

n∑
m=0

(
n

m

)(m

n

)m (
1 − m

n

)n−m
=

n∑
m=0

(
n

m

)
e−nH[m/n],

where H[p] = −p log p − (1 − p) log(1 − p) is the entropy of a p-Bernoulli variable. But(n
m

)
≤ enH[m/n] (e.g. Cover and Thomas (1991), chapter 12.1), therefore

ES

[
enDBer[p̂ ‖ p]

]
≤ n + 1.

Now, taking the average over w ∼ P and using Markov’s inequality, we obtain

PrS

{
Ew∼P

[
en ∆(w)

]
≥ n + 1

δ

}
< δ. (30)

Now, fix an arbitrary sample S for which indeed

Ew∼P

[
en ∆(w)

]
≤ K, K =

n + 1
δ

. (31)

If we can show that

Ew∼Q[n ∆(w)] ≤ D[Q ‖P ] + log Ew∼P

[
en ∆(w)

]
, (32)

then we have that

Ew∼Q[∆(w)] ≤ D[Q ‖P ] + log K

n
. (33)

In order to show (32), define the Gibbs measure

dPG(w) =
en ∆(w)

Ew∼P

[
en ∆(w)

] dP (w),
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which is a probability measure relative to P (w) (the definition is proper because exp(n ∆(w))
is measurable w.r.t. P (w)). It is a well-known fact that the relative entropy between two
distributions is always non-negative (for a proof, see e.g. Ihara (1993), theorem 1.4.1). Thus,

0 ≤ D[Q ‖PG] =
∫

log

(
Ew∼P

[
en ∆(w)

]
en ∆(w)

dQ(w)
dP (w)

)
dQ(w)

= D[Q ‖P ] + log Ew∼P

[
en ∆(w)

]
− Ew∼Q[n ∆(w)].

Note that what we have shown can also be inferred from a characterization of the relative
entropy as rate function:

D[Q ‖P ] = sup
u(w)

Ew∼Q [log u(w)] ,

where the supremum is over all u(w) which are P -integrable, nonnegative P -almost ev-
erywhere and for which Ew∼P [u(w)] = 1 (see e.g. Ihara (1993), theorem 1.4.4). We can
conclude the proof by noting the convexity of DBer and using Jensen’s inequality. Namely,
if (33) holds for S, then

DBer [Ew∼Q[p̂(w)] ‖Ew∼Q[p(w)]] ≤ Ew∼Q [DBer[p̂(w) ‖ p(w)]] ≤
D[Q ‖P ] + log n+1

δ

n
. (34)

Altogether, since emp(S,Q) = Ew∼Q[p̂(w)], gen(Q) = Ew∼Q[p(w)], we can combine (30)
and the fact that for fixed S (31) implies (34), and finally invoke (4) in order to conclude
that (5) must hold.

Appendix B. Proof of the PAC compression bound

In this subsection, we prove a refinement of the PAC compression bound stated in Herbrich
(2001), theorem 5.18, which is based on the results in Littlestone and Warmuth (1986).

In a general learning scenario, we choose a hypothesis space H of binary classification
functions and a learning algorithm A mapping i.i.d. training samples S to hypotheses A(S) ∈
H. The hypothesis output by the learning algorithm is used to classify future input points.
Define generalization and empirical error as

gen(h) = Pr(x∗,t∗){h(x∗) 6= t∗}, emp(h, S) =
1
n

n∑
i=1

I{h(xS
i )6=tSi }.

Here, h ∈ H, and (x∗, t∗) are sampled according to the data distribution, independently of
S.

A compression scheme of size k < n is a special learning algorithm A for which we can
find a mapping I from samples S to ordered k-subsets of {1, . . . , n} and another algorithm
R mapping samples S̃ of size k to hypotheses R(S̃), s.t. for every n-sample S we have that
A(S) = R(SI(S)), where SI(S) = {(xS

i , tSi ) | i ∈ I(S)}. This means that we can extract
from each sample S a subsample SI(S) s.t. the algorithm essentially has to be trained
only on SI(S) in order to produce the same result as on the full sample S. Thus, the
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data can be compressed before presenting it to the learner, and it seems intuitive that
this characteristic can be exploited to prove generalization error bounds for such schemes.
A further characteristic that can be somewhat exploited is permutation-invariance of the
scheme w.r.t. the data sample. If A is a k-compression scheme (with associated mappings
I and R) and 0 ≤ l ≤ k, we call A l-permutation invariant if for any sample S, feeding
R with a sample obtained from SI(S) by permuting the last35 l points, leads to the same
result as feeding R with SI(S). Special cases are l = 0 (we are not allowed to permute
any points) and l = k (we are allowed to permute all points). Herbrich (2001), in section
5.2.1, provides further motivation and gives examples of compression schemes (as we will
do further below).

Fix δ ∈ (0, 1), and choose k ∈ {1, . . . , n}, l ∈ {0, . . . , k} a-priori (this can be relaxed —
see below).

Theorem 3 (PAC compression bound) Suppose the algorithm A is, for samples S of
size n, a k-compression scheme (with associated mappings I and R) which is l-permutation
invariant. Then, for any data distribution we have that the following bound holds, where
the probability is over i.i.d. samples S = {(xS

i , tSi ) | i = 1, . . . , n} of size n drawn from the
data distribution:

PrS

{
gen(A(S)) ≥ emp(A(S), S \ SI(S))

+ε
(
(n − k) emp(A(S), S \ SI(S)), k, δ̃

) } ≤ δ, (35)

where δ̃ = δ/(n − k + 1), and ε(q, k, δ̃) is defined as the unique solution of

DBer[q/(n − k) ‖ q/(n − k) + ε] =
1

n − k

(
log
((

n

k

)
(k − l)!

)
+ log δ̃−1

)
, ε > 0. (36)

Here, DBer is the Bernoulli relative entropy defined in (2). Using definition (3), we can also
write ε(q, k, δ̃) = D−1

Ber(q/(n − k), ρ), where ρ is the right hand side the equation (36).

We have already seen in the context of definition (3) that (36) is a proper definition
which can be computed easily. Note also that the error on the remaining patterns S \SI(S),
namely emp(A(S), S \ SI(S)), is denoted by emp\k(S) in subsection 4.3 and also below in
this section.

As for the proof, fix q ∈ {0, . . . , n − k}. Our first goal is to upper bound

PrS

{
emp(A(S), S \ SI(S)) =

q

n − k
, gen(A(S)) ≥ q

n − k
+ ε

}
, (37)

where ε > 0. Recall that A(S) = R(SI(S)). We first apply a simple union bound argument,
summing over all possible values of I(S), in order to obtain the following upper bound on
(37):

∑
I

PrS

{
emp(R(SI), S \ SI) =

q

n − k
, gen(R(SI)) ≥

q

n − k
+ ε

}
. (38)

35. The focus on the last l points is w.l.o.g., since we can always modify I by a permutation.
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We will determine later the range and number of admissable I. For now, fix I. We can
upper bound the summand in (38) corresponding to I by

ESI

[
PrS\SI

{
p̂ ≤ q

n − k
, p ≥ q

n − k
+ ε

∣∣∣∣ SI

}]
, (39)

where we denote p = gen(R(SI)) and p̂ = emp(R(SI), S \ SI). Since R(SI) depends just
on SI , but not on S \ SI , we have that, conditioned on SI , (n − k) p̂ is (n − k, p)-binomial
distributed. Therefore, we can use Chernoff’s bound (see Chernoff (1952)) on binomial tail
probabilities:

PrS\SI

{
p̂ ≤ q

n − k
, p ≥ q

n − k
+ ε

∣∣∣∣ SI

}
≤ e−(n−k)DBer[q/(n−k)‖ q/(n−k)+ε]. (40)

Since the r.h.s. in (40) does not depend on SI , it is also an upper bound of (39). It is also
independent of I, thus we can bound (38) by simply counting the number of admissable I,
leading to potentially different R(SI). Since A is l-permutation invariant, we can permute
the last l points in SI without changing R(SI). Thus, there are

(n
k

)
(k − l)! distinguishable

values for I. Altogether we have from (38)

PrS

{
emp(A(S), S \ SI(S)) =

q

n − k
, gen(A(S)) ≥ q

n − k
+ ε

}

≤
(

n

k

)
(k − l)! e−(n−k)DBer[q/(n−k) ‖ q/(n−k)+ε].

(41)

Equating the r.h.s. in (41) to δ̃ > 0 and solving for ε leads to the (unique) solution ε =
ε(q, k, δ̃) of (36). Therefore, we have for fixed q

PrS

{
emp(A(S), S \ SI(S)) =

q

n − k
, gen(A(S)) ≥ q

n − k
+ ε(q, k, δ̃)

}
≤ δ̃,

where δ̃ = δ/(n − k + 1). Noting that there are n − k + 1 different values q may have, we
see that

PrS

{
gen(A(S)) ≥ emp(A(S), S \ SI(S))

+ε
(
(n − k) emp(A(S), S \ SI(S)), k, δ̃

) }

≤
n−k∑
q=0

PrS

{
emp(A(S), S \ SI(S)) = q

n−k ,

gen(A(S)) ≥ q
n−k + ε(q, k, δ̃)

}
≤ δ.

This concludes the proof of theorem 3.
Note that we have proved theorem 3 under the assumption that k is fixed a-priori. This

can be relaxed, allowing for a dependence of k on the sample S, by using a further union
bound argument. We end up with a theorem of exactly the same form of theorem 3, however
δ̃ has to replaced by δ̃ = 2δ/((n + 1)n). Here, we assume that l is a function of k, which is
reasonable, however can be relaxed as well if desired.

Note that the main contribution to the gap bound value comes from the binomial coeffi-
cient (for not too small k), i.e. is introduced by the crude union bound argument (summing
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over all I). This is necessary since we do not make any assumptions about the mapping
I(S). For a particular algorithm, it may be possible to come up with a more informed
weighting than the uniform one (over the possible sets I), which might tighten the bound
significantly.

Also, note that in the special case that we attain emp(A(S), S \SI(S)) = 0, we can solve
for ε analytically, since DBer[0 ‖ ε] = − log(1 − ε), so that for q = 0, we have

ε(0, k, δ̃) = 1 −
[(

n

k

)
(k − l)! δ̃−1

]−1/(n−k)

.

We finally note that in many compression schemes, the index mapping I is partly ran-
domized, i.e. is a function of the sample S and of random coin tosses. Since the latter are
independent of S, this poses no problem for theorem 3, which holds for all possible outcomes
of the coin tosses (although, of course, the bound value depends on these outcomes).

B.1 Examples of compression schemes

Herbrich (2001) gives a range of examples of compression schemes in section 5.2.1. It
is shown there that the perceptron learning algorithm of Rosenblatt is a 0-permutation
invariant k-compression scheme, where k is the number of patterns the algorithm selects for
an update of the weight vector. Note that, due to the perceptron convergence theorem, it
is possible to upper bound k in terms of the margin of the data. Furthermore, the popular
Support Vector machine can be seen as k-permutation invariant k-compression scheme,
where k is the number of Support Vectors. Thus, our application of the compression bound
in subsection 4.3.1 is justified. Since the final SVM discriminant can make mistakes only
on Support Vectors, we always have emp\k(S) = emp(A(S), S \ SI(S)) = 0. Note that k

cannot be fixed a-priori, thus we have to use δ̃ = 2δ/((n + 1)n) in theorem 3.
Furthermore, the particular sparse greedy GPC method we employ in our experiments in

subsections 4.2 and 4.3, proposed in Lawrence and Herbrich (2001), is a compression scheme
as well. This can be seen by noting that only patterns which are selected for inclusion into
the active set, are used to update model parameters. In our experiments, we fixed k a-
priori, therefore theorem 3 applies in its original form, if we set l = k − krand. Note that in
variants of the scheme, k is chosen depending on the sample S, for example by monitoring
the empirical error emp\k(S) on the remaining patterns and using the shape of this curve
to define a stopping criterion. In this case, we have to use the modified δ̃.

Appendix C. Efficient evaluation of the Laplace GP Gibbs classifier

Recall from subsection 3.1 that the Laplace GP Gibbs classifier predicts t∗ for a test point
x∗ by sampling y∗ ∼ Q(y∗|x∗, S) defined by (10) and (21), then outputting t∗ = sgn y∗.
This requires the computation of the variance of the posterior for y∗, which costs O(n2)
per test point. This may be prohibitive for large test sets. In this section, we show how a
rejection sampling technique can be used to end up with more efficient predictions.

Fix x∗ and let b = W1/2k(x∗) and A be defined according to (19). From (21) we see
that

σ2
∗ = σ2(x∗) = K(x∗,x∗) − bTA−1b.
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It is possible to obtain upper and lower bounds on the critical term bTA−1b without having
to compute a factorization of A. In a nutshell, this works by maximizing the quadratic
function

q(u) = bT u − 1
2
uTAu (42)

approximately, the method has been used in another context by Gibbs (1997). If we do a
sparse greedy maximization of q, allowing only a controlled number k of components of u
to become nonzero, we can compute upper and lower bounds on σ2∗ in O(nk2) (see Smola
and Bartlett (2000)), without having to know more than k rows of A. Now suppose we
are given σ2

L ≤ σ2∗ ≤ σ2
U . Then, we can create envelope functions L(y∗) and U(y∗) on

the p.d.f. f(y∗) = N(y∗|0, σ2∗), simply by setting L(y∗) = (2πσ2∗)−1/2 exp(−y2∗/(2σ2
L)) and

U(y∗) = (2πσ2∗)−1/2 exp(−y2∗/(2σ2
U )). Note that U(y∗) ∝ g(y∗) = N(y∗|0, σ2

U ), and that we
can compute the ratio

r(y∗) =
L(y∗)
U(y∗)

= exp
(
−y2∗

2

(
1
σ2

L

− 1
σ2

U

))
(43)

without knowledge of σ2∗. We can use these facts to sample y∗ ∼ f(y∗), using a sandwiched
rejection method (e.g. Ripley (1987)), as follows:

• Independently sample y∗ ∼ g(y∗) and u uniformly from [0, 1].

• If u ≤ r(y∗), return y∗. The ratio r(y∗) is given by (43).

• Otherwise, compute the variance σ2∗ exactly. Now, if u ≤ f(y∗)/U(y∗), return y∗.
Otherwise, sample y∗ ∼ f(y∗) and return it.

Note that the method produces a sample of f(y∗) without having to compute the variance
σ2∗ , whenever the algorithm returns in the second step. Let E denote this event, and denote
V (U) =

∫
U(y∗) dy∗, V (L) =

∫
L(y∗) dy∗. Now,

Pr{E} = Pr

{
u ≤ L(y∗)

U(y∗)

}
= E

[
L(y∗)
U(y∗)

]
=
∫

L(y∗)
V (U)g(y∗)

g(y∗) dy∗ =
V (L)
V (U)

=
σL

σU
,

where we have used that U(y∗) = V (U)g(y∗). If the bounds are tight, this probability is
close to 1. For example, if we have σ2

L ≥ (1 − ε)σ2∗ , σ2
U ≤ (1 + ε)σ2∗ , then

V (L)/V (U) ≥
√

(1 − ε)/(1 + ε) = 1 − ε/(1 + ε) + O(ε2).

Appendix D. Summary of notation

We use the notation a = (ai)i = (a1 . . . an)T for vectors, and A = (ai,j)i,j for matrices
respectively. We may also write A = (a1 . . . an) for a matrix whose columns are the ai.
The superscript T denotes transposition. We use [ · ] as an operator to select a submatrix
from a matrix. Namely, for a matrix A ∈ R

m,n and ordered index36 sets I ⊂ {1, . . . ,m}, J ⊂
36. In general, we always assume that index sets and sets of data points are ordered, although we use intuitive

notations known from unordered sets.
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{1, . . . , n}, [A]I,J is obtained by selecting the corresponding entries (i, j), i ∈ I, j ∈ J of A
and forming a |I|× |J | submatrix out of them. For I = {k, k +1, . . . , l} we write I = k . . . l,
instead of I = {1, . . . ,m} we write I = ·, and instead of I = {i} we write I = i. For
example, [A]·,j denotes the j-th column of A, [A]i,j denotes element (i, j), and [A]·,· = A.
diag a is the matrix with diagonal a and 0 elsewhere. diagA is the vector containing the
diagonal of A. trA denotes the trace of A, i.e. the sum of the diagonal elements. diag and tr
operators have lower priority than multiplication. For example, diagAT b is the matrix with
diagonal AT b and 0 elsewhere, not the inner product between diagA and b. |A| denotes
the determinant of A. With ‖a‖, we usually denote the Euclidean norm of the vector a, i.e.
‖a‖2 = aT a. With δi,j, we denote the discrete Dirac delta function, i.e. δi,j = 1 for i = j,
and δi,j = 0 for i 6= j. For example, (δi,j)i,j is the identity matrix, which we denote by
I in general. δj denotes the unit vector which has 1 in component j, zeros elsewhere, i.e.
δj = (δj,i)i = [I]·,j. 1 denotes the vector of all ones, i.e. 1 = (1)j . If necessary, we indicate
the dimensionality by a subscript, i.e. Il ∈ R

l,l, 1l ∈ R
l.

If a distribution has a density, we generally use the same symbolic notation for the
distribution and its density function. We use the convention of denoting a random variable
and a possible value thereof with the same symbol. In general, we use E[x] to denote the
expectation of x, and Pr{A} to denote the probability of an event A. By IA, we denote the
indicator function of an event A, i.e. IA = 1 if A is true, IA = 0 otherwise. N(x|µ,Σ) denotes
the Gaussian distribution/density with mean µ and covariance matrix Σ. We sometimes
write N(µ,Σ) if x is clear from the context. log denotes the logarithm to Euler’s base e.
The notation f(x) ∝ g(x) means that f(x) = cg(x) for c constant w.r.t. x. By sgn x, we
denote the sign of x, i.e. sgn x = +1 for x > 0, sgn x = −1 for x < 0.
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