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that, with the latest AI technology, large knowledge bases can be built quickly and efficiently. The domain chosen
was workarounds; that is, planning how a convoy of military vehicles can work around (i.e. circumvent or overcome)
obstacles in their path, such as blown bridges or minefields.

This paper describes the four approaches that were applied to solve this problem. These approaches differed in
their approach to knowledge acquisition, in their ontology, and in their reasoning. All four approaches are described
and compared against each other. The paper concludes by reporting the results of an evaluation that was carried out by
the HPKB program to determine the capability of each of these approaches.
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High Performance Knowledge Bases: Four approaches to Knowledge 
Acquisition, Representation and Reasoning for Workaround Planning 
 

Abstract 
  
As part of the DARPA-sponsored High Performance Knowledge Bases program, four 
organisations were set the challenge of solving a selection of knowledge-based planning 
problems in a particular domain, and then modifying their systems quickly to solve 
further problems in the same domain. The aim of the exercise was to test the claim that, 
with the latest AI technology, large knowledge bases can be built quickly and efficiently. 
The domain chosen was ‘workarounds’; that is, planning how a convoy of military 
vehicles can “work around” (i.e. circumvent or overcome) obstacles in their path, such as 
blown bridges or minefields. 
 
This paper describes the four approaches that were applied to solve this problem. These 
approaches differed in their approach to knowledge acquisition, in their ontology, and in 
their reasoning. All four approaches are described and compared against each other. The 
paper concludes by reporting the results of an evaluation that was carried out by the 
HPKB program to determine the capability of each of these approaches.  
 
Introduction 
 
The goal of the DARPA-sponsored High-Performance Knowledge Base (HPKB) program, which 
ran from 1997 to 1999, was to produce the technology needed to enable system developers to 
construct rapidly large knowledge-bases (with many thousands of axioms) that provide 
comprehensive coverage of topics of interest, are reusable by multiple applications with diverse 
problem-solving strategies, and are maintainable in rapidly changing environments. In the original 
proposal, it was envisioned that the process for constructing these large, comprehensive, reusable, 
and maintainable knowledge bases would involve three major steps:  
 
• Building Foundation Knowledge: creating the foundation knowledge (e.g., selecting the 

knowledge representation scheme, assembling theories of common knowledge, defining 
domain-specific terms and concepts) to enable the construction and population of large, 
comprehensive knowledge bases for particular domains of interest -- by selecting, composing, 
extending, specializing, and modifying components from a library of reusable ontologies, 
common domain theories, and generic problem-solving strategies.  

• Acquiring Domain Knowledge: constructing and populating a complete knowledge base -- by 
using the foundation knowledge to generate domain-specific knowledge acquisition, data 
mining, and information extraction tools -- to enable collaborating teams of domain (non-
computer) experts to easily extend the foundation theories, define additional domain theories 
and problem solving strategies, and acquire domain facts to populate a comprehensive 
knowledge base covering the domains of interest.  

• Efficient Problem Solving: enabling efficient problem solving -- either by providing efficient 
inference and reasoning procedures to operate on a complete knowledge base, or by providing 
tools and techniques to select and transform knowledge from a complete knowledge base into 
optimized problem-solving modules tailored to the unique requirements of an application. 
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The objective of HPKB was to develop, integrate, and test the technology needed to enable this 
process. The intention was to produce alternative knowledge-base development environments, 
which combined the necessary foundation-building, knowledge-acquisition, and problem-solving 
technologies into an integrated development environment, and to use those environments to build 
reusable knowledge-base components for multiple DARPA application projects. 
 
Challenge Problems 
 
In the first year of the HPKB project, progress towards these goals was encouraged by setting up 
three competitive scenarios in which several technology developers were tasked to tackle a 
knowledge-based problem. These were known as “challenge problems”. Each problem consisted of 
a collection of data and a set of sample problems with model answers; an evaluation was performed 
at the end of the period of development, in which the systems were tested on their ability firstly to 
handle new problems based on the same knowledge, and secondly to add new knowledge (in the 
same domain) rapidly, and to answer questions that drew on the new knowledge.  
 
The common availability of input data in agreed formats, and the co-ordination of multiple 
technology developers in tackling a single challenge problem, was handled by two companies 
(Teknowledge and SAIC) acting as integrators; the efforts of the technology developers were thus 
co-ordinated into two “teams”. The two teams took slightly different approaches, which are 
reflected in some of the systems developed; Teknowledge favoured a centralised architecture based 
on a large common-sense ontology (Cyc) while SAIC had a distributed architecture that relied on 
sharing specialised domain ontologies and knowledge bases, including a large upper-level ontology 
based on the merging of Cyc, SENSUS (Swartout et al, 1996) and other knowledge bases.  
 
The three Challenge Problem scenarios that were set up in the first year of the HPKB project were: 
 
• Crisis Management. This work linked up with another DARPA project (GENOA) which aimed 

to help intelligence analysts understand emerging international crises more rapidly. A scenario 
was developed in which hostilities between Saudi Arabia and Iran lead to the closure of the 
Strait of Hormuz (at the mouth of the Persian Gulf) to international shipping. Technology 
developers were then given the task of building systems to answer situation assessment 
questions, such as “Is Iran capable of firing upon tankers in the Strait of Hormuz?” and “What 
risks would Iran face in closing the Strait?” These are questions about motives, intents, risks, 
rewards and ramifications that may have multiple answers, and so significant common-sense 
reasoning is required to determine the most plausible answers to these questions. 

• Movement Analysis. Given an idealised dynamic radar image showing vehicles moving in an 
area of several thousand square miles, the challenge problem was to identify types of vehicles 
(e.g. slower-moving dots travelling in convoys may be military vehicles) and to identify 
strategic military locations (e.g. places visited regularly by military vehicles). 

• Workarounds. If a road or track is blocked by a large object, a crater, a minefield, or a blown 
bridge, there are a number of ways of “working around” that obstacle. The challenge problem 
was to calculate the swiftest way of working around an obstacle, given data about the nature of 
the obstacle, the terrain, and the availability and location of specialised assets such as portable 
bridges.  

 
Each of these challenge problems required different AI technology to solve it. The Crisis 
Management scenario required text understanding and a detailed ontology and knowledge base in 
order to support something close to common sense reasoning. Movement Analysis required spatial 
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reasoning and fusion of multiple inputs. Workarounds planning required knowledge-based 
planning. For more details of each of these challenge problems, see the comprehensive paper on 
the HPKB project in AI Magazine (Cohen et al, 1998). 
 
This paper focuses on the Workarounds challenge problem. Four technology developers provided 
solutions to this challenge problem: AIAI, Cycorp (with assistance from Teknowledge), George 
Mason University, and ISI (the Information Sciences Institute of the University of Southern 
California). This paper will describe the Workarounds planning challenge problem in more detail, 
describe each of the solutions in terms of their approaches to knowledge acquisition, ontology, and 
reasoning; and then present the results of the challenge problem evaluations as part of a critical 
evaluation of each approach. 
 
The Workaround Planning Challenge Problem 
 
The Workarounds challenge problem required deciding how to circumvent or overcome obstacles 
to military traffic. Through knowledge acquisition performed in the course of the first year by AIAI 
and others, it became clear that there were six different ways of circumventing or overcoming 
obstacles: 
 
• Bridging gaps; 
• Filling gaps; 
• Reducing obstacles until they are trafficable (or demolishing them completely); 
• Finding alternate routes; 
• Providing alternate transport (e.g. replacing a bridge over a river with a ferry); 
• Clearing minefields. 
 
Each of these classes of solution had several instances; for example, bridging a gap can be done 
with an AVLB (a light bridge carried on an armoured vehicle), a medium girder bridge, a Bailey 
bridge, or a ribbon bridge. Each solution instance has its own constraints; for example, AVLBs 
require both banks to be fairly level, and have a maximum usable length of about 20 metres, while 
ribbon bridges can only be used on water. 
 
The planning requirements of the problem become clear when it is realised that each solution 
instance may require multiple steps (e.g. first transport the AVLB to the gap site, then set it up); the 
various constraints on solutions may require further steps (e.g. one bank must be bulldozed to make 
it sufficiently level before an AVLB can be set up, which requires getting a bulldozer to the site); 
and a full workarounds solution may make use of more than one solution instance (for example, the 
approach to a blown bridge may be mined, requiring both mine clearance and bridging; or a river 
in a valley may be crossed by bulldozing the banks on both sides to create two alternate routes to 
the river’s edge, and then bridging the river with a ribbon bridge). Workarounds plans usually 
require less than 20 plan steps, so full-scale AI planning systems are not essential, but some 
planning capability is needed to solve this problem satisfactorily. 
 
The technology developers were provided with information on the transportation link, the obstacle 
to be worked around, and key features of the local terrain; the units (tanks or trucks) that would be 
likely to use that transport route; and a detailed description of resources (such as Army engineering 
units) in the area that could be used to repair the damage. They were also provided with the written 
and diagrammatic results of knowledge acquisition sessions conducted over the course of the year. 
The expected outputs were a reconstitution schedule (an estimate of the capacity of the damaged 
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link over time, which requires a workaround plan), a time line of engineering actions needed to 
repair the link (if no alternate transport or alternate route is available, this will be the same as the 
workaround plan), and a set of assets required to effect the repair. From the point of view of the 
technology developers, this required considering alternate plans for repairing the link, calculating 
which plans were the most time-effective, and presenting the full details of these plans as outputs. 
 
AIAI’s approach: Hierarchical Task Network planning within 
CYC 
 
AIAI approached the workarounds planning problem as a part of the Teknowledge integration 
team, and with a background in developing the O-Plan AI planner (Tate et al, 1996), and in 
extracting the reasoning “primitives” from O-Plan in order to allow declarative planning within a 
standard knowledge-based systems ‘shell’ (Kingston et al, 1996). These reasoning primitives 
consist of permitted activities in the domain, represented as task formalisms (TFs); each TF states 
the preconditions of an activity, the effects of that activity, and (if applicable) the sub-activities of 
that activity. In the Search and Rescue system (Kingston et al 1996; Cottam et al, 1995), the TFs 
were represented as CLIPS objects, and CLIPS rules were used to determine which objects could 
be inserted into the plan given the current plan state, as well as identifying activities that could be 
done in order to achieve a plan state needed by another key activity. 
 
In many planning tasks, the various activities are all sub-activities of a single top level activity that 
needs to be achieved; in this case, the system is said to be performing hierarchical task network 
(HTN) planning. Many well-known planning systems have used HTN planning, including Nonlin, 
SIPE, and O-Plan. For workarounds planning, the overall goal is to get to the other side of the 
obstacle, so this can be set up as the top level activity; the six solution classes described above then 
become the six possible sub-activities of that top level activity, and the various solution instances, 
and steps that comprise those solution instances, form sub-activities at various lower levels of 
decomposition. 
 
AIAI offered to build a “proof of concept” workarounds planner in Cyc, using HTN planning. The 
aim was to represent TFs in Cyc, and then to use Cyc’s default reasoning module (which uses 
backward chaining on axioms that represent implications to determine whether a query can be 
proved) to construct a full plan. By working entirely within Cyc’s capabilities for common-sense 
reasoning, AIAI hoped to make the system robust to real-world changes and modifications; an 
example of such a change would be that the problem of crossing a river or a lake is greatly reduced 
if the air temperature is significantly below 0 degrees Celsius. In the event, few such issues arose in 
the challenge problems.  
 
AIAI’s work was also intended to define a usable, general purpose ontology of planning within 
Cyc, and to show how reasoning could be performed on constants conforming to that ontology. 
One of the key original aims of Cyc was to develop a system that is capable of common-sense 
reasoning; its developers quickly discovered that ontological accuracy is an essential prerequisite 
of accurate common-sense reasoning. Cycorp has therefore developed an ontological approach 
which is divided into three levels: the upper level (where generic predicates such as 
GeographicalRegion and TransportationDevice are defined), the lower level (where domain-
specific or problem-specific predicates are defined), and an intermediate level. In addition, 
constants in Cyc are differentiated on dimensions such as “stuff-like” versus “object-like”  (based 
on whether identity is retained when the thing is divided up; so water is stuff-like, whereas a human 
being is object-like), and “always true” versus “sometimes true” (or, more generally, what the 
persistence distribution of a constant is). The effects of these dimensions are mitigated or 



 6

magnified by context; readers interested in these ramifications are referred to (Lenat98). 
 
 From the viewpoint of the workarounds challenge problem, it became clear that in order to 
represent TFs and plans in Cyc, a sub-ontology of planning terms needed to be introduced into 
Cyc. This ontology is shown in Figure 1. 
 

 
 

Figure 1: Plan ontology in Cyc (from (Aitken & Kingston, 1999)) 
 
These ontology definitions were used to create constants in Cyc that represented the TFs, the plan, 
the conditions of TFs, and the plan resources. For example, the following implication axiom (or 
‘rule’) was created to test if a gap could be spanned by an AVLB: 
 
(implies (isa ?AVLB AVLB) 
  (potentialAction spanWithAVLB 
     (conj (CSVCondition Site ?Site gapLength  
                     (testCSV lessThan (Meter 17.37))) 
     (conj (CSVCondition Site ?Site riverBankMaxSlope  
                     (testCSV lessThan (Degree-UnitOfAngularMeasure 13.5))) 
      (CSVCondition AVLB ?AVLB locationOf (testCSV equals ?Site)))) 
  (CSVCondition Site ?Site bridgedBy (testCSV equals ?AVLB)) ?I ?J)). 
 
This rule states that if there is a site less than 17.37 metres wide, with banks sloped at no more than 
13.5 degrees, and the AVLB is present at the site (according to the current plan state, represented 
by ?I), then a new node can be added to the current plan; at this node, the plan state (represented by 
?J) considers the site to be successfully bridged by an AVLB. 
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As already indicated, the reasoning performed by AIAI’s system was based on backward chaining 
through a set of these rules in order to generate a plan; in effect, Cyc is being ‘tricked’ into 
generating a plan when it thinks it is proving a goal. The version of Cyc which was used for this 
challenge problem (version 1.1) was able to generate plans using this method, but was not able to 
calculate the total time required for a plan; this calculation was done manually. More recent 
versions of Cyc have introduced this capability.  
 
Knowledge acquisition for AIAI’s planner was done by inspecting the published documents and 
data, and transforming this information into suitable rules and constants in Cyc. No supporting 
knowledge acquisition tool was used. 
 
TFS/Cycorp’s approach: Re-using pre-defined ontology in a Lisp-
based planner  
 
Cycorp were also part of the Teknowledge integration team; indeed, they worked sufficiently 
closely with Teknowledge that the integration work was done by Teknowledge with significant 
input from Cycorp, while the challenge problems were tackled by Cycorp with significant resource 
from Teknowledge. The technology developers were therefore referred to as the TFS team. 
 
Like AIAI, TFS used no tool that acquired knowledge directly from experts. They did, however, 
create a translator that automatically generated information about a workaround problem, both 
from the specific inputs supplied by the developers of the challenge problem, and from other 
sources. This process of creating axioms based on other sources is (informally) known as 
“knowledge slurping”.  A selection of the axioms generated by this translator is shown in Figure 2. 
 

(widthOfObject River6 (Meter 16)) 
(lengthOfObject Bridge1 (Meter 33)) 
(spans-Bridgelike Bridge1 Crevice3) 

(in-ContOpen River6 Crevice3) 
(bordersOn Bridge1 Approach1) 
(bordersOn Bridge1 Approach2) 

(gapWithinPath Bridge1 Damage1) 
(isa Damage1 GapInPathArtifact) 

(lengthOfObject Damage1 (Meter 22)) 
(isa Approach1 GeographicalRegion) 
(isa Approach2 GeographicalRegion) 

(objectTypeFoundInLocation  Rubble Approach1) 
(objectTypeFoundInLocation  Rubble Approach2) 

 
Figure 2: Some of the axioms “slurped” by Cyc 

 
This “knowledge slurping” approach proved to be an effective way of acquiring knowledge; 
several thousand axioms were acquired in the course of a few weeks.  
 
A planner was implemented using SubL, a Lisp-like language that underlies Cyc, which made use 
of these axioms and of other axioms describing key terrain, the location of tanks, trucks and 
engineering units, and so on. The planner was divided into two modules: a “hypothesize” module 
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and a “test & repair” module. The first module hypothesizes a desired state, looks for the 
preconditions of that state, then it checks if these preconditions are satisfied; if not, then for each 
unsatisfied precondition, it recursively hypothesizes actions to fulfil that precondition. This 
approach relies on some simplifying assumptions about interactions among preconditions. The 
second module uses the “ask” function in CYC to check whether the preconditions for a desired 
state are implied by the given facts; if not, it explores sets of preconditions to make the 
preconditions true. This exploration covers both rules that can act, and rules that can change the 
known set of facts. Once all the sub-sub-sub-goals are proved, the workaround plan is considered 
to be feasible. In short, the planner used backward chaining to “prove” actions, which were then 
used to build plans, in a similar fashion to AIAI’s HTN planner. 
 
As far as ontology is concerned, TFS discovered that every single one of the axioms that were 
added to Cyc in order to solve the workaround challenge problem inherited – and used – some 
relevant axioms from Cyc’s (pre-existing) upper ontology. It can therefore be claimed that Cyc’s 
existing ontology contributed significantly to the reasoning required for the workarounds challenge 
problem. However, a fair amount of time was spent defining an intermediate ontology to represent 
concepts relevant to battle and a “battlespace”, such as spans-Bridgelike; even more time was spent 
creating ontological terms that were specific to the challenge problem, such as “the weight of an 
unladen M88 tracked vehicle”. These definitions had to be created before the relevant knowledge 
could be “slurped”. The effort spent on ontology development had an adverse effect on the 
development of the planner, so the TFS planner that was used to tackle the challenge problems was 
not able to handle every aspect of the domain.  
 
ISI’s approach: EXPECT and knowledge acquisition scripts 
 
ISI, who were part of SAIC’s integration team, took a different approach to the workarounds 
challenge problem. The focus of their work was on using ISI’s EXPECT tool as a framework for 
ontology representation, as a knowledge base for knowledge acquisition support, and as a 
reasoning tool. 
 
In EXPECT (Gil & Melz 1996; Swartout & Gil, 1996), both factual knowledge and problem-
solving knowledge about a task are represented explicitly.  This means that the system can access 
and reason about the representations of factual and problem-solving knowledge and about their 
interactions. Factual knowledge represents concepts, instances, relations, and the constraints 
among them. Knowledge is represented in Loom (MacGregor, 1999), a knowledge representation 
system of the KL-ONE family based on description logic. Every concept or class can have a 
definition that intensionally describes the set of objects that belong to that class; relations can also 
have definitions. Loom uses these definitions to produce a subsumption hierarchy that organises all 
the concepts according to a class/subclass relationship. 
 
Problem solving knowledge is represented in a procedural language that is tightly integrated with 
the Loom representations. Sub-goals that arise during problem solving are solved by methods. 
Each method description specifies: 
 
1. The goal that the method can achieve 
2. The type of result that the method returns 
3. The method body, containing the procedure that must be followed to achieve the method’s 

goal.  
 
Given these capabilities, and the availability of suitable ontologies in Loom, ISI were able to use 
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EXPECT to perform much of the reasoning needed for workarounds planning; some of the more 
complex aspects of the problem, such as action selection, required extension of EXPECT’s 
capabilities with a Powerloom-based partial matcher. The ontologies used included the shared 
HPKB ontology, problem solving method ontologies, domain ontologies and situation information. 
While EXPECT needed extension to deal with some of the planning tasks, it was able to reason 
with the large ontologies needed without a significant effect on its performance; further efficiency 
gains were obtained by compiling the problem solvers. 
 
Perhaps the biggest benefits of using EXPECT for the workarounds challenge problem arose from 
its ability to critique knowledge, and its use as a knowledge acquisition tool. By analysing the 
information needed by problem solving methods, EXPECT was able to detect over-generalisations 
in ontologies (e.g. use of the term “geographical region” where “city” was more appropriate), 
assumptions in ontologies that were unjustified in this domain (e.g. that objects can only be in one 
place), and missing information (e.g. unspecified bridge lengths). These capabilities enabled ISI to 
develop a consistent knowledge base more quickly than would otherwise have been the case.  
 
EXPECT also made use of an approach known as knowledge acquisition scripts (Gil & Tallis, 
1997) to assist with modification of problem solving knowledge. KA scripts are designed to help 
users modify the knowledge base in a structured manner; for example, if a problem solving method 
existed for calculating round trip time for ships, a KA script could assist the knowledge engineer in 
generalising that procedure to make it applicable for all vehicles. An example of a script (taken 
from (Gil & Tallis 1997)) can be seen in Figure 3. 

Applicable when
(a) A change has caused argument A of a goal G to become more

general, resulting in goal G-new
(b) Goal G was achieved by method M before A changed
(c) G-new can be decomposed into disjunctive subgoals G-1 G-2
(d) G1 is the same as G

Modification sequence
CHOICE 1: Create new method M-new based on existing method

(1) System proposes M as the existing method to be used as a
basis. User chooses M or another method.

(2) System proposes a draft version of M-new that modifies A
to match G2. User can make any additional substitution
needed in the body of M-new.

(3) User edits body of M-new if modifications other than
substitution are needed

CHOICE 2: Create new method M-new from scratch

Description of what this KA-Script does:
Create a method that achieves goal G2 based on method M.

Reasons why it is relevant to the current situation:
Method M was used before to achieve goal G, which was generalised
to become the unmatched goal G-new. M may be used to create a new
method that achieves the other subgoal in this decomposition.

 
Figure 3: A KA script to resolve error type: “Goal G-new cannot be matched” 

 
To summarise, EXPECT appears to be fully capable of reasoning about declarative information 
and ontologies for planning, as well as performing some knowledge-based planning tasks. The 
biggest contribution of EXPECT to the workarounds challenge problem was probably its aid for 
rapid development of knowledge bases, both through critiquing of ontologies and domain 



 10

knowledge, and through the use of KA scripts to assist modification of problem solving 
knowledge. 
 
GMU’s approach: Collaborative Apprenticeship Multi-strategy 
Learning 
 
The Learning Agents Lab at George Mason University provided the fourth solution to the 
workaround planning challenge problem. Their approach is based on the Disciple Toolkit (Tecuci 
98; Tecuci et al. 99). The foundation of the Disciple Toolkit is an integration of apprenticeship and 
multi-strategy learning methods within the Plausible Version Space paradigm. This paradigm 
allows an expert to teach the agent in much the same way in which the expert would teach a human 
apprentice - by giving the agent specific examples of tasks and solutions, providing explanations of 
these solutions, and supervising the agent as it performs new tasks. During such interactions, the 
expert shares his expertise with the agent, which is continuously extending and improving its 
knowledge and performance abilities. These kinds of agent capabilities are achieved by a 
synergistic integration of several learning and knowledge acquisition methods: systematic 
elicitation of knowledge, empirical inductive learning from examples, learning from explanations, 
and learning by analogy and experimentation. 
 
The interactions that take place within the Disciple Toolkit are illustrated in Figure 4. This diagram 
shows that the expert interacts with the system in four ways: eliciting knowledge, helping the 
system learn rules (from examples), refining and generalising the rules, and handling exceptions. 
From the examples and the rules, Disciple generates solutions; knowledge base refinement consists 
of critiquing these solutions, while exception handling deals with the inconsistencies in the 
knowledge base. The rationale for this approach is that it is easier for experts to update an ontology 
than to create an ontology; easier to supply examples than to supply rules; easier to understand a 
sentence in a formal language than to create such a sentence; and easier to give hints than to give 
explanations. The tight integration of various recognised techniques within Disciple creates a 
whole system that is arguably more useful and usable than the sum of its parts, and the ease of use 
of Disciple is expected to lead to rapid acquisition of knowledge from an expert. 
 
For the workaround planning challenge problem, the editing and browsing modules were used to 
build an ontology describing bridges, river segments, army units and their equipment; the learning 
module was used to learn rules for destroyed bridges from concrete examples of workarounds and 
their explanations; and the refinement module was used to generalise or specialise the learned 
rules, based on the evaluation of workaround scenarios generated by the user. A hierarchical 
nonlinear planner based on task reduction was also developed and integrated into Disciple to solve 
workaround problems; an example of a learned task reduction rule can be seen in Figure 5. GMU 
were fortunate to have an ex-military man on their staff, who acted as the primary user of Disciple 
(i.e. as a domain expert) during acquisition of workarounds data. 
 
It can be seen that the knowledge acquisition, ontology, and reasoning are much more tightly 
integrated in Disciple than in the other workaround planners. Disciple’s primary aim is to be good 
at knowledge acquisition, although it is capable of ontology representation and reasoning as well. 
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Figure 4: Knowledge acquisition and learning processes in Disciple. 

 

Challenge Problem Evaluation 
 
The challenge problem evaluation was carried out June 1998. The format was as follows: 
 
1. A set of questions was issued, that drew on the knowledge made available to everyone in the 

course of the year. Technology developers were given a short time to generate answers to 
these questions and mail them to the challenge problem developers (Test Phase: the test) 

2. Technology developers were given a week or so to improve their systems in the light of their 
performance on the first set of test questions. They were then allowed to re-submit answers to 
the first set of test questions. (Test Phase: the re-test) 

3. Further knowledge was issued that had not previously been available (specifically, knowledge 
about craters in roads, with definitions of craters and associated attributes). This tested the 
ability of the systems to enter new knowledge quickly. Five problems that made use of this 
knowledge were issued simultaneously, and technology developers answered as many as they 
could (Modification phase: the test) 

4. After another week, a second set of test questions was issued that concerned working around 
craters, to test the systems’ ability to reason on that new knowledge. Technology developers 
supplied answers to the five problems already given plus answers to five new problems 
(Modification phase: the re- test).  

The answers to the questions were scored for scope (how many solutions, out of all those identified 
by the senior expert, were found) and score (how accurate the solutions were). Accuracy was 
scored on five dimensions: correctness of the overall time estimate; viability of the enumerated 
workaround options; correctness of solution steps provided for each viable option; correctness of 
temporal constraints among these steps; and appropriateness of engineering resources employed. 
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IF the task to accomplish is 
 USE-FIXED-BRIDGE-OVER-BRIDGE-GAP-WITH-MINOR-PREPARATION 
  FOR-BRIDGE ?O1 
  FOR-GAP-LENGTH ?N1 
  BY-UNIT  ?O2 
  WITH-BR-EQ ?O3 
 condition 
  ?O1 IS BRIDGE 
  ?O2 IS MILITARY-UNIT 
   HAS-UPPER-ECHELON-EQUIPMENT  ?O4 
   HAS-UPPER-ECHELON-EQUIPMENT  ?O5 
  ?O3 IS MILITARY-MOBILE-BRIDGE-EQ 
  ?O4 IS BREACHING-EQ-SET 
   COMPONENT-TYPE  ?O3 
   EQUIPMENT-OF ?O6 
  ?O5 IS RUBBLE-CLEARING-EQ-SET 
   EQUIPMENT-OF ?O6 
  ?O6 IS MILITARY-UNIT 
   LOCATED-AT ?O7 
  ?O7 IS SITE 
  ?N1 IS-IN (0  1000) 
 except when 
  ?O2 HAS-EQUIPMENT  ?O8 
  ?O8 IS BREACHING-EQ-SET 
   COMPONENT-TYPE  ?O3 
 except when 
  ?O2 HAS-EQUIPMENT  ?O9 
  ?O9 IS RUBBLE-CLEARING-EQ-SET 
 
THEN accomplish the subtasks 
 
?T1 OBTAIN-BRIDGE-AND-PREPARATION-EQUIPMENT-FROM-SAME-UNIT- 
 THROUGH-UPPER-ECHELON  
  FOR-BR-EQ-SET ?O4 
  FOR-PREP-EQ-SET ?O5 
  FROM-UNIT ?O6 
  BY-UNIT  ?O2 
  AT-LOCATION ?O1 
 
?T2 INSTALL-FIXED-BRIDGE-OVER-BRIDGE-GAP-WITH-MINOR-PREPEPARATION- 
 AND-COLOCATED-BRIDGE-AND-PREPARATION-EQUIPMENT 
  FOR-BRIDGE ?O1 
  FOR-GAP-LENGTH ?N1 
  WITH-BR-EQ-SET ?O4 
  WITH-RC-EQ-SET ?O5 
  AT-LOCATION-EQ ?O7 
  FOR-UNIT ?O2 
 

Figure 5: A rule learned by the Disciple Toolkit for workaround planning 
 
 
Results 
 
The results are shown in Figures 6 and 7 (CREDIT ERIC JONES). To help in understanding the 
diagrams, AIAI’s results will be explained in more detail.  
 
It would be helpful to specify the amount of time available to each technology developer; while 
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precise figures are not available, most of the technology developers were unable to work on the 
finalised version of the challenge problem until a couple of months before the testing phase (or in 
AIAI’s case, a couple of weeks!) due to various administrative and co-ordination difficulties. 
While this time period was shorter than expected, it does provide a good estimate of how much 
knowledge can be captured and reasoned with in a short time period, which was one of the original 
aims of the HPKB program. 
 
Test Phase: Scope AIAI’s system could only answer questions related to bridging of gaps, due to 
the short development time. The system was only able to provide answers to two of the ten 
challenge problem questions. Its scope was therefore 20%. 
 
Test Phase: Score AIAI’s system initially lost accuracy marks for three reasons: in two cases, a 
possible solution option had been missed (again, this was a scope problem – the omitted solutions 
concerned types of bridges that AIAI’s system didn’t cover), and in one case, a calculation of the 
total time for a workaround was inaccurate. These problems were fixed, so that by the time of the 
re-test, the score had reached 100%. 
 
 

 
 

Figure 6: Test phase: test and re-test scope and scores 
 

 
Overall, it can be seen that ISI and GMU significantly out-performed AIAI and Cycorp/ 
Teknowledge (TFS), with ISI having a very wide scope and GMU obtaining very high scores. 
Since an increase in scope is actually likely to lead to a decrease in scores (because the more 
questions that are answered, the more chance there is to make mistakes), the ISI and GMU systems 
should be considered “joint winners” of the evaluation. This trade-off is particularly clear in the 
modification phase, which should provide a truer reflection of the capability of each system, since 
each technology developer had exactly the same amount of time to make modifications to the 
system; as Figure 6 shows, as the scope of GMU’s system went up, its accuracy slightly decreased. 
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Figure 7: Modification phase: test and re-test scope and scores 
 
 

The modification phase was also intended to demonstrate the capability of systems for rapid 
knowledge acquisition. AIAI continued to be handicapped by the narrowness of their previously 
acquired knowledge, but the other technology developers all achieved significant increases in 
scope during the modification week. This suggests that the goal of developing systems that can be 
used to build very large knowledge bases rapidly has been achieved, or (at least) can be achieved 
in this domain of knowledge. 
 
Strengths of each approach 
 
What were the strengths of each approach? 
 
• AIAI: the strength of this system lay in its well-justified ontology of planning, which provided 

the ability to achieve 100% accurate answers to challenge problem questions – i.e. to generate 
accurate and fully detailed plans. The fact that such an ontology could not only be built in Cyc, 
but could also be reasoned about, holds out hope that the reasoning capabilities of Cyc could 
be significantly extended by further definition of rich ontologies, and of corresponding 
problem solving methods; see (Sklavakis & Aitken, 1999) for an example of implementation 
of a problem solving method in Cyc. 

 
• TFS/Cycorp: The greatest strength of this system was the ontology framework supplied by 

Cyc; this provided a noticeable speed-up in acquisition of domain knowledge through 
knowledge re-use. This effect is shown by the fact that only 35 new concepts had to be 
developed during the testing fortnight, compared against over 4000 pre-existing assertions that 
were accessed in one way or another, plus over 1000 assertions regarding vehicles and 
weapons that were re-used from the ontology developed for the Crisis Management challenge 
problem. This challenge problem therefore justified Cycorp’s claim that a wide-ranging 
common-sense knowledge base, with a well-determined ontology, supports re-use of 
knowledge. 
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• ISI: The twin strengths of ISI’s system were EXPECT, which can reason about ontologies and 
their contents as well as performing knowledge based reasoning, and the knowledge 
acquisition extensions that allowed rapid and accurate modification of the knowledge base 
(KA-Scripts). This project demonstrated that EXPECT can reason well with a large and 
rapidly growing ontology. It also demonstrated that EXPECT, with some assistance from 
Powerloom, was able to reason about the whole domain of knowledge, from the simplest 
deductions to the most complex calculations. Indeed, some of the calculations regarding 
Bailey bridges were so complicated that one member of ISI suggested to me (as a 
representative of the only UK organisation on the HPKB program) that only the British could 
have invented something like that! 

 
• GMU: The rapid development of GMU’s system highlighted its integrated knowledge 

acquisition tool as being its greatest strength. Over the fortnight of testing, GMU added 150 
concepts, 100 tasks and 100 problem-solving rules to their knowledge base, representing a 
20% increase in concepts, a 100% increase in tasks and a 100% increase in rules. This rate of 
knowledge acquisition suggests that GMU’s system may indeed be able to achieve one of the 
Holy Grails of knowledge acquisition: rapid, accurate and direct knowledge entry by an expert 
without intervention from a knowledge engineer. GMU’s system was also capable of reasoning 
about most aspects of the workarounds problem – indeed, it generated a few (correct) 
solutions that had not been considered by the expert. 

 
Summary 
 
To summarise the lessons to be learned from this paper:  
 
• Rapid development and implementation of very large knowledge bases for planning problems 

of medium complexity (i.e. plans with about 20 plan steps and 3-4 options for each step) is 
feasible with current AI technology.  

• A knowledge acquisition tool is of great benefit in rapid knowledge base development, 
whether it is used by the expert to input knowledge or whether it transforms knowledge from 
other online sources. 

• A well-organised and well-justified ontology contributes to both knowledge re-use and a high 
rate of acquisition of domain knowledge. 

• Ontologies of problem solving, and problem solving methods, can provide a big improvement 
in accuracy of decision making.  
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(widthOfObject River6 (Meter 16)) 
(lengthOfObject Bridge1 (Meter 33)) 
(spans-Bridgelike Bridge1 Crevice3) 

(in-ContOpen River6 Crevice3) 
(bordersOn Bridge1 Approach1) 
(bordersOn Bridge1 Approach2) 

(gapWithinPath Bridge1 Damage1) 
(isa Damage1 GapInPathArtifact) 

(lengthOfObject Damage1 (Meter 22)) 
(isa Approach1 GeographicalRegion) 
(isa Approach2 GeographicalRegion) 

(objectTypeFoundInLocation  Rubble Approach1) 
(objectTypeFoundInLocation  Rubble Approach2) 
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Applicable when
(e) A change has caused argument A of a goal G to become more

general, resulting in goal G-new
(f) Goal G was achieved by method M before A changed
(g) G-new can be decomposed into disjunctive subgoals G-1 G-2
(h) G1 is the same as G

Modification sequence
CHOICE 1: Create new method M-new based on existing method

(4) System proposes M as the existing method to be used as a
basis. User chooses M or another method.

(5) System proposes a draft version of M-new that modifies A
to match G2. User can make any additional substitution
needed in the body of M-new.

(6) User edits body of M-new if modifications other than
substitution are needed

CHOICE 2: Create new method M-new from scratch

Description of what this KA-Script does:
Create a method that achieves goal G2 based on method M.

Reasons why it is relevant to the current situation:
Method M was used before to achieve goal G, which was generalised
to become the unmatched goal G-new. M may be used to create a new
method that achieves the other subgoal in this decomposition.
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IF the task to accomplish is 
 USE-FIXED-BRIDGE-OVER-BRIDGE-GAP-WITH-MINOR-PREPARATION 
  FOR-BRIDGE ?O1 
  FOR-GAP-LENGTH ?N1 
  BY-UNIT  ?O2 
  WITH-BR-EQ ?O3 
 condition 
  ?O1 IS BRIDGE 
  ?O2 IS MILITARY-UNIT 
   HAS-UPPER-ECHELON-EQUIPMENT  ?O4 
   HAS-UPPER-ECHELON-EQUIPMENT  ?O5 
  ?O3 IS MILITARY-MOBILE-BRIDGE-EQ 
  ?O4 IS BREACHING-EQ-SET 
   COMPONENT-TYPE  ?O3 
   EQUIPMENT-OF ?O6 
  ?O5 IS RUBBLE-CLEARING-EQ-SET 
   EQUIPMENT-OF ?O6 
  ?O6 IS MILITARY-UNIT 
   LOCATED-AT ?O7 
  ?O7 IS SITE 
  ?N1 IS-IN (0  1000) 
 except when 
  ?O2 HAS-EQUIPMENT  ?O8 
  ?O8 IS BREACHING-EQ-SET 
   COMPONENT-TYPE  ?O3 
 except when 
  ?O2 HAS-EQUIPMENT  ?O9 
  ?O9 IS RUBBLE-CLEARING-EQ-SET 
 
THEN accomplish the subtasks 
 
?T1 OBTAIN-BRIDGE-AND-PREPARATION-EQUIPMENT-FROM-SAME-UNIT- 
 THROUGH-UPPER-ECHELON  
  FOR-BR-EQ-SET ?O4 
  FOR-PREP-EQ-SET ?O5 

  FROM-UNIT ?O6 

  BY-UNIT  ?O2 

  AT-LOCATION ?O1 

 

?T2 INSTALL-FIXED-BRIDGE-OVER-BRIDGE-GAP-WITH-MINOR-PREPEPARATION- 

 AND-COLOCATED-BRIDGE-AND-PREPARATION-EQUIPMENT 

  FOR-BRIDGE ?O1 

  FOR-GAP-LENGTH ?N1 

  WITH-BR-EQ-SET ?O4 

  WITH-RC-EQ-SET ?O5 

  AT-LOCATION-EQ ?O7 

  FOR-UNIT ?O2
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Figure 1: Plan ontology in Cyc (from (Aitken & Kingston, 1999)) 

Figure 2: Some of the axioms “slurped” by Cyc  

Figure 3: A KA script to resolve error type: “Goal G-new cannot be 

matched” 

Figure 4: Knowledge acquisition and learning processes in Disciple. 

Figure 5: A rule learned by the Disciple Toolkit for workaround planning 

Figure 6: Test phase: test and re-test scope and scores  

Figure 7: Modification phase: test and re-test scope and scores 
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