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Abstract. The IEEE-754 floating-point standard is considered one of
the most important standards, and is used in nearly all floating-point
applications. In this paper, we have formalized and verified a hardware
implementation of the Table-Driven algorithm for the floating-point ex-
ponential function. Throughout this paper, we have used a hierarchical
approach in formally modeling and verifying in HOL the floating-point
exponential function from the gate level implementation up to a behav-
ioral specification written by Harrison [7].

1 Introduction

Designs are getting larger and larger, more complex every day. Simulation, al-
though widely used, could never give the verification coverage needed. There
are two full coverage approaches, brute-force and special-purpose simulation [3],
which fail to give even a fair coverage ratio for a moderate design.

The verification of floating-point circuits has always been an important part
of processor verification. The importance of arithmetic circuit verification was
illustrated by the famous floating-point division bug in Intel’s Pentium proces-
sor[6]. Floating-point algorithms are usually very complicated. They are com-
posed of many modules where the smallest flaw in design or implementation can
cause a very hard to discover bug, as happened in the Intel’s case. Traditional
approaches to verifying floating-point circuits are based on simulation. However,
these approaches cannot exhaustively cover the input space of the circuits.

Formal verification can be generally divided into two main categories [14]:
reachability analysis, and deductive methods. Model checkers and equivalence
checkers are examples of the first approach. Many different theorem provers (as
HOL [18] ) have been used for deductive verification. To verify floating-point
arithmetic circuits, model checkers would encounter some difficulties as noted in
[4]. First, the specification languages are not powerful enough to express arith-
metic properties; for arithmetic circuits, the specifications must be expressed
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as Boolean functions, which is not suitable for complex circuits. Second, these
model checkers cannot represent arithmetic circuits efficiently in their models.

There exists some related work on the verification of the floating-point algo-
rithms and designs in the open literature. For instance, Miner [20] formalized the
IEEE-854 floating-point standard in PVS. He used this formalization to verify
abstract mathematical descriptions of the main real operations and their rela-
tion to the corresponding floating-point implementations. Carreno [2] defined
and then formalized the same IEEE-854 standard in HOL. Miner et al. [20]
parameterized the definition of the subtractive floating-point division algorithm
and proved it to satisfy a formal definition of the IEEE standard. Leeser et al. [16]
verified a radix-2 square root algorithm and hardware implementation. Russinoff
[21] and [22] used the ACL2 prover to verify the compliance of the floating-point
multiplication, division, and square root algorithms of the AMD-K7 Processor
to the IEEE standard.

Harrison [8] defined and formalized real numbers using HOL. Then he devel-
oped a generic floating-point library to define and verify the most fundamental
terms and lemmas of IEEE-754 standard [9]. This former library was used by him
to formalize and verify floating-point algorithms against behavioral specification
as the square root [10] and the exponential function [7].

Formal verification methods have sometimes been accused of a lack of ability
to get into a whole industrial product design cycle. In most of the work above,
it can be noticed that it is either deeply concerned with the verification of the
abstract mathematical description of an IEEE floating-point standard, or is only
concerned with the RTL verification against a higher behavioral specification.
Working on the same design path of most electronic products, we will discuss
in this paper the formalization and verification of the IEEE-754 table-driven
exponential function in all abstraction levels of the design flow. In contrast to
the above related work, we will start by verifying both RTL and gate level
implementation of the IEEE-754 exponential function against the behavioral
model specification developed before by [7] using HOL theorem prover. Then
we will link the latter specification with the higher level proof developed in [7]
composing a fully verified design starting from the gate level implementation
and ending with the high level abstracted mathematical description.

The organization of the paper is as follows. We will present briefly the HOL
theorem prover in Section 2. Section 3 describes the table driven exponential
function algorithm developed by Tang [23]. Section 4 introduces our methodol-
ogy, and shows how hierarchical and modular techniques were used to ease the
verification task. Section 5 then shows the formalized specification of the expo-
nential function and its HOL formalized model. Section 6 describes the VHDL
implementation of the algorithm then introduces its HOL formalization. Section
7 summarizes the experimental results of the whole verification task. Finally,
Conclusions and future work are presented in section 8.



Hierarchical Verification of the IEEE-754 Exponential Function 3

2 HOL

The HOL theorem prover is an interactive proof assistant for higher order logic,
developed by Gordon et al. [5] based on the ideas from the Edinburgh LCF
project [6]. It was explicitly designed for the formal verification of hardware,
though it has also been applied to other areas including software verification
and formalization of pure mathematics.

Following the LCF approach, HOL implements a small set of primitive infer-
ence rules, and all theorems must be derived using only these rules. This guards
against the assertion of false “theorems”. However, by ML programming it is
possible to automate the translation of higher-level proof techniques into the
low-level primitives. In this way, HOL users can call on an extensive selection of
automated tools or write special-purpose inference rules for a given application
domain. Among the higher-level inference rules provided with the system are so-
called tactics which allow the user to organize proofs in a mixture of a forward
and goal-directed fashion.

In the present work, several features of HOL are particularly significant. The
higher-order logic allows circuit modules to be expressed simply as predicates
over inputs and outputs, allowing a very natural and direct mapping from the
gate level and RTL descriptions into the logic. In addition, the extensive infras-
tructure of real analysis is essential to verify (or even state) the highest level of
specification [7]. Finally, the adherence to the LCF methodology gives us a high
confidence that the final result is indeed valid.

3 THE IEEE-754 Exponential Function

Using an approximate polynomial expansion, Tang [23] has developed an algo-
rithm for computing the floating-point exponential function using what he calls
a Table-Driven approach. In this approach, the input is first reduced to a cer-
tain working range , where L is an integer larger than or equal to 1, chosen [-log
2/2L+1, log 2/2L+1 ] where L is an integer larger than or equal to 1, chosen
beforehand, (for instance, L = 4 for single precision [23]). Then this input x is
considered to be composed of:

x =
(32 ∗m + j) ∗ (log2)

32
+ (r1 + r2)

where m and j are integers, and r1 and r2 are real numbers, | r1 + r2 |< (log
2/64) .

Starting from this equation, the exponential function can be constructed as
follows [1]:

x = (m ∗ log2) +
(j ∗ log2)

32
+ r

where r = r1 + r2. The exponential of x will hence be equal to

exp(x) = exp((m ∗ log2) +
(j ∗ log2

32
+ r)
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= exp(log2m) + log2
j
32 ) + r

= 2m + 2
j
32 + exp(r)

Here, exp (r) can be represented using Taylor expansion as follows:

p(r) = r + (a1 ∗ r) + (a2 ∗ r2) + (a3 ∗ r3) + ...

where p(r) = exp (r) -1, and a1, a2,... are the coefficients of Taylor expansion.
Returning to the exponential function:

exp(x) = 2m ∗ 2
j
32 ∗ (p(r) + 1)

The main objective of the algorithm is isolating m and j, and evaluating
the approximating polynomial. According to Tang [2], four steps are needed to
compute this exponential function:

Step 1 Filter any out-of-bounds inputs that occur. As mentioned before,
x should be a number between [−(log2/32), (log2/32)]. So, if x is NaN (not-
a-number, invalid IEEE-754 format), out of range, zero, positive or negative
infinity, the algorithm would either be able to compute it by an approximated
arithmetic operations (as in the case of positive or negative infinity), or not able
to solve it at all (as for NaN).

Step 2 Start the computation by first calculating N,

N = INTEGER(X ∗ INV L)

where INVL is a floating-point constant approximately equal to 32/log2 in our
case, and INTEGER is the default IEEE-754 round-to-nearest mode. This N is
composed of two parts,

N = N1 + N2

where N1 = 32 * m , and N2 = j
So, the variables m and j can be derived from the previous result as follows

[3]:
j = N2

m =
N1
32

With the value of N, r1 and r2 can be calculated as follows [23]:
If the absolute value of N ≥ 29 then

r1 = (x−N ∗ L1)

else
r1 = (x−N1 ∗ L1)−N2 ∗ L2

and
r2 = −N ∗ L2

L1 and L2 are constants, where L1 + L2 approximates log2/32 to a precision
higher than that of single precision (the working one) [1].
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Step 3 Compute the polynomial p(r), similar to the Taylor expansion, as follows
[23]:

r = r1 + r2

Q = r ∗ r ∗ (a1 + r ∗ a2)

p(r) = r1 + (r2 + Q)

where the coefficients ( a1 and a2 ) are obtained from a Remez algorithm calculated
by Tang [23].

Step 4 The values of 2j/32, j = 0, 1, ....32, are calculated beforehand and represented
by two working-precision numbers [23] (single precision in our case),Slead and Strail.
The sum approximates 2j/32 to roughly double the working precision [1]. Finally exp(x)
is calculated as follows:

S = Slead(j) + Strail(j)

exp(x) = 2m + (Slead(j) + (Strail(j) + S ∗ p(r)))

4 Verification Methodology

Usually there is a large abstraction gap between specification and implementation. This
gap cannot be bridged in one move. Hence, a series of design step (levels) is performed,
reducing the abstraction levels until realizable description are available. These levels,
as mentioned by Kropf [15], are Architecture, Register-Transfer, Gate, Transistor, and
Layout levels (Figure 1).

Errors can occur in any of these levels or in the transfer of one level to another.
Usually the implementation of a higher level is considered the specification of the lower
one as clear in the figure. Design faults may result from erroneous transformation of
the specification, given on a certain abstraction level, into an implementation on the
next lower level. Three main fault classes can be distinguished according to [15]. The
first class encompasses design faults. The second class resides in it local optimizations
that can be made in the same level. The third is inherited implementation faults.

Specification

Implementation

Architecture

Level

Implementation = Specification

Implementation = Specification

Implementation = Specification

RTL 

Gate

Transistor

Layout

Faults

Fig. 1. Modeling and Verification Stages
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The verification process for the table-driven exponential function was performed
on many levels, as shown in Figure 4 Harrison [7] formalized and verified that a be-
havioral specification, an abstract algorithmic description he developed for the design,
implies an abstract mathematical description of the IEEE-754 Table-Driven Floating-
Point Exponential Function [23]. Starting form this behavioral specification, written
in a “while-language”, Bui et al. [1] developed an RTL implementation of the design.
The goal of this work is the modeling and verification of the latter implementation
with respect to the behavioral specification designed by [7] using HOL. We were also
interested in the development of a formal proof that the gate implementation, machine
synthesized using Synopsys, implies the RTL implementation.

Machine
Synthesized

Hierarchical
ProofImplication

LogicalProvided

Developed
in this work

Hand Modeled 

Final Proof
VHDL

HOL

HOL

HOL

VHDL

VHDL

1st Verifi. Task

2nd Verifi. Task

3rd Verifi. Task

Gate Level Imp.

HOL

Modular Beh. Spec.

Modular RTL Imp.

Gate Level Imp.

Modular RTL Imp.

while-language

Flat Behavioral Spec.

Flat RTL Imp. [2]

Flat Behavioral Spec. [9]

Adopted in [2]

Fig. 2. Verification Stages of the Exponential Function

From the beginning of the verification project, it was noticed that the specification is
too flat for a lower level verification process. So, a new modular behavioral specification
was introduced, where its modules are shown in Figure 3 with corresponding source as
given in Figure 4. The same had to be performed with the RTL implementation where
a newer modular VHDL code was driven from the older flat one. The newer modular
implementation and specification were essentially considered to ease the verification
task. The overall verification process is now composed of four main tasks (Figure 2):

First, we prove the correctness of the modular behavioral specification against the
flat specification provided in [7].

Second, we prove that the modular RTL implementation implies the modular be-
havioral specification.

Third, we prove hierarchically that the synthesized gate level implementation im-
plies the modular RTL description.

Finally, The whole proof should be linked in one global proof covering the whole
design cycle of the floating-point exponential function. Starting from the gate level
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implementation, we should be ending by the abstract mathematical description of the
function. These verification paths are shown in Figure 2, where the shaded boxes are
the material provided by [7], [23] and [1], while the white ones represent those developed
in this work.

5 Formal Specification of IEEE-754 Exponential Function

In this section we focus on the detailed model specification we formalized for the
Table-Driven exponential function. As discussed in the previous section, the scope of
this report is verifying that the RTL hardware implementation of the Exponential
Function conforms with the behavioral description written in [7] as shown in Figure 4,
which we used as our main specification.

As discussed above, we were faced by the flatness problem of the specification,
which was not directly useful for a hardware synthesis and/or verification. We have
divided this specification into six intermediate blocks (modules) where the conjunction
of these blocks (Figures 3 and 4 ) represents the full specification of the code described
below. It should be noted, that the mathematical operators (such as “*”,“+”, and “/”)
in the while code are bit vector operations and not mathematical real numbers opera-
tors. Trying to achieve maximum modularity for the design, we have tried to minimize
the interfaces between different modules. This helps us to divide the verification tasks
into well-defined smaller ones. Each of these blocks was also divided into smaller spec-
ifications giving us smaller sub-specifications clearly related to the goals needed to be
proved.

The six modules composing the system (Figure 3) are completely responsible for
checking the input X value and computing the result of the exponential function. These
blocks are :

1) m and j computing block (M J SPEC) : responsible for half of Step 2 (cf. Section
3) by computing the value of m and j. Its input is the number X and its outputs are
J, M, N, and N1.

2) r1 and r2 block (R1 R2 SPEC): responsible for the second half of Step 2, it
computes the values of r1 and r2. Its inputs are X, N1, N2 (equal to J) and its outputs
are the two floating point numbers R1 and R2.

3) p(r) block (P R SPEC): computes the value of p(r), it takes R1 and R2 and
outputs P R.

4) Slead and Strail block (Ge J SPEC): a floating-point multiplexer module, where
the value of J decides which values for Strail and Stail should be chosen. Its input is
just the number J and its outputs are Stail and Strail.

5) Exponent calculation block (Exp Cal SPEC): the main computational block
where finally the exponential function is computed. It takes Slead, Strail, M and PR

as its inputs and output is the EXPX .

6) Checking block (Compare SPEC): the compare and decision module. According
to the value of input X, this module decides whether to choose the computed value of
the exponent or another output as NAN (Not A Number). It takes X and the computed
exponent as its inputs and the final answer is the output (OUT EXP X).

The highest-level system specification in HOL is as follows:
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X (Float)

P(R)_SPEC

Exp_Cal_SPEC

P(R) (Flt)

Get_J_SPEC

R1_R2_SPEC

M_J_SPEC
J (Int)

R1 (Flt)

R2 (Flt)

M (Int)

Co
m

pa
re

_S
PE

C

EXP(X)  (FLOAT)

EXP_X_SPEC

N   (Int)

N1    (Int)

Slead (Flt)

Strail (Flt)

Fig. 3. The Modular Organization of Exponential Function Specification

`def IEEE EXP SPEC Xs Xe Xm EXP s EXP e EXP m =
∃ Ns Ne Nm Ms Me Mm Js Je Jm N1s N1e N1m R1s R1e R1m...
(M J SPEC Xs Xe Xm Ns Ne Nm Ms Me Mm Js Je Jm..)∧
(R1 R2 MOD SPEC Xs Xe Xm Ns Ne Nm ..)∧
(Get J SPEC Js Je Jm Strail s Strail e Strail m ..)∧
(P R SPEC R1 s R1 e R1 m R2 sR2 eR2 mPR sPR ePR m)∧
(EXP CAL MOD SPEC Stail s Stail e Stail m ..)∧
(Compare SPEC EXP 1 s EXP 1 e EXP 1 m Xs Xe Xm EXP s EXP e EXPm)

There is a high level of regularity in these six modules where floating-point opera-
tions, like addition, multiplication, are the main sub-modules in all of them. This will
help us in the reuse of the developed models and theories in building the higher levels
of the specification. Each of the six modules was modeled as a conjunction of lower
level components. As an Example, we will describe the m-and-j module specification
(M J SPEC).

The M J SPEC is responsible for computing the m and j values mentioned in
the description section. It is composed of the conjunction of five sub-specifications as
shown in Figure 5. These sub-specifications are the floating-point multiplication module
(FP MUL SPEC), floating-point to integer approximation module (FP INT SPEC),
Modulo 32 module (Mod 32 SPEC), floating-point subtraction module (FP Sub SPEC),
and division by 32 module (Div 32 SPEC). Here m and j are integer valued numbers,
even though they were represented in the IEEE-754 floating-point format, as it is easier
to use them afterwards in this format. In short, this module would have one input (x),
composed of three parts (sign, exponent and mantissa) and four outputs (J, M, N, and
N1), each composed of the same three parts. This was modeled in HOL as follows:

`def M J SPEC Xs Xe Xm Ns Ne Nm N1s N1e N1m Ms Me Mm Js Je Jm =
∃ const s const e const m s1 s s1 e s1 m.
(const s = F) ∧ valu const e 7 = 132) ∧ (valu const m 22 = 3713595) ∧
(FP MUL SPEC Xs Xe Xm const s const e const m s1 s s1 e s1 m) ∧
(FP to INT SPEC s1 s s1 e s1 m Ns Ne Nm) ∧ (Mod 32 SPEC Ns Ne Nm Js Je Jm) ∧
(FP Sub SPEC Ns ... N1s N1e N1m) ∧ (DIV 32 SPEC N1s N1e N1m Ms Me Mm)
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Int_32 = Int(32)

Int_2e9 = Int (2 EXP 9)

Int_2e9 = Int (2 EXP 9)

Plus_one = float (0, 127, 0)

THRESHOLD_1 = float (0, 134, 6066890)

THRESHOLD_2 = float (0, 102, 0)

Inv_L = float (0, 121, 3240448)

L1 = float (0, 121, 3240448)

L2 = float (0, 102, 4177550)

A1 = float (0, 126, 68)

A2 = float (0, 124, 2796268)

var x:float, E:float, R1:float, R2:float,

R:float, P:float, Q:float,S:float, E1:float,

N:Int, N1:Int, N2:Int, M:Int, J:Int;

if Isnan (X) then E:= X

else if X == Plus_infinity then E:= Plus_infinity

else if X == Minus_infinity then E:= Plus_Zero

else if (abs(x) > THRESHOLD_1 then Checking block

if X > Plus_Zero then E:= Plus_ infinity

else E:= Plus_Zero else if abs(X) < THRESHOLD_2 then E:= Plus_one+X

else ( N:= INTRND (X * Inv_L);

N2:= N \% Int_32; m and j computing block

N1:= N - N2; M:= N1 / Int_32; J:= N2;

if abs (N) Int_2e9 then

R1:= (X-Tofloat(N1) * L1) - Tofloat (N2) * L1 r1 and r2 block

else R1:= X - Tofloat(N) * L1;

R2:= Tofloat(N) * L2;

R:= R1 + R2;

Q:= R * R (A1 + R * A2);

p(r) block P:= R1 + (R2 + Q);

S:= S_Lead(J) + S_Trial(J); Slead and Stail block

E1:= S_Lead(J) + (S_Trial(J) + S * P); Exponent calculation block

Fig. 4. Full Specifications of The Exponential Function in While-Language

Each of these main modules is then hierarchically top-down specified to reach the
full specification of this system. As an example, for the next levels specifications, we con-
sider the floating-point multiplier sub-module. This sub-module has three data paths:
the sign, the exponent and the mantissa. For the sign and the exponent, the specifica-
tion could be done directly on this level, but for the mantissa we have to build another
level of hierarchical modules and start lower level specifications. This can be formalized
as follows using HOL:

`def FP MUL SPEC A s A e A m B s B e B m

MULout s MULout e MULout m overFlow =
∃check.
(Mantissa SPEC A m B m MULout m check) ∧
(Exp SPEC A e B e MULout e check overFlow) ∧
(Sign SPEC A s B s MULout s)
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X (Float)

Mod_32_SPEC

Sub_SPEC
Div_32_SPEC

FP_MUL_SPEC FP_to_INT_SPEC

N2 (Int)

32/ log 2

N (Int)
N1 (Int)

J (Int)

M (Int)

Fig. 5. Specification of the m, j module (M J Spec)

where Sign, Exponent and Mantissa modules were specified as follows:
`def Sign SPEC i1 i2 out = (out = ((i1 = i2) => F|T))
`def EXP SPEC e1 e2 e3 e4 overFlow =
((valu e4 7 = ((((((valu e1 7− 127) + (valu e2 7− 127))− valu e3 7))
+ 127 < 2 EXP SUC 7)∧
(((((valu e1 7− 127) + (valu e2 7− 127))− valu e3 7))
+127)|((((((valu e1 7− 127)+
(valu e2 7− 127))− valu e3 7)) + 127)− 2 EXP SUC 7)))∧
(overFlow = ((((((valu e1 7− 127)+
(valu e2 7− 127))− valu e3 7)) + 127 < 2 EXP SUC 7))))

`def Mantissa SPEC A B MULout const =
∃ A 1 B 1 MULout pre MULout pre 1 C P check.
(Concatenate SPEC 23 A A 1 T)∧
(Concatenate SPEC 23 B B 1 T)∧
(MUL SPEC 24 A 1B 1 C P MULout pre)∧
(Check SPEC MULout pre const check)∧
(Shifter SPEC MULout pre MULout pre 1 check)∧
(Truncate SPEC MULout pre 1 MULout 25)

6 Implementation of IEEE-754 Exponential Function

In this section, we describe briefly the implemented VHDL code developed by Bui et
al. [1]of the IEEE-754 Exponential Function and its modular model in HOL. We were
faced with the same problem in the specification, which was the flatness of the design.
The code was so flat as to make it nearly impossible to be modeled, let alone verified.
So we had to make some design changes, which keep the same code properties but
make the design easier to model and verify. We have aimed mainly in our changes to
attack the following criteria:

1) Logic Complexity: Hierarchical designs reduce the logic complexity in the cir-
cuit. Also, in some modules the code could be changed to perform the same function,
although it is less complex.

2) Verification time and effort: it is very hard to model and verify a very large flat
design. Redesigning the VHDL code has saved a lot of time and effort needed in the
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verification process. Also, this helped in emphasizing that the modules needed to be
verified.

These goals were reached by deriving a newer VHDL implementation based on mod-
ules from the code written in [1]. The new high-level RTL implementation is composed
of modules corresponding to the high level specification. We have shown in Figure 6
the synthesis of this code as resulting from the Synopsys design analyzer tool. This
figure only shows the exponential computation module.

Fig. 6. Top-level VHDL implementation built in Synopsys design analyzer

It was not that difficult to model this code into HOL notation. The HOL high level
model of our implementation was as follows, which was nearly a one-to-one mapping
to VHDL:

`def IEEE EXP IMP Xs Xe Xm EXP s EXP e EXP m =
∃ Ns Ne Nm Ms Me Mm Js Je Jm N1s N1e N1m...
(M J IMP Xs Xe Xm Ns Ne Nm Ms Me Mm Js Je Jm N1s N1e N1m) ∧
(R1 R2 MOD IMP Xs Xe Xm Ns Ne Nm N1s N1e N1m ..) ∧
(Get J IMP Js Je Jm Strail s Strail e Strail m ..) ∧
(P R IMP R1 s R1 e R1 m R2 s R2 eR2 m PR s PR e PR m) ∧
(EXP CAL MOD IMP Slead s Slead e Slead m ..) ∧
(Compare IMP EXP 1 s EXP 1 e EXP 1 m Xs Xe Xm EXP s EXP e EXP m)

To show how the hierarchical implementation of these modules were modeled in
HOL, we will stick to the same example we gave before in the specification: we will
discuss the VHDL code of the M J module and its HOL model all the way down to
the gate level implementation.

As discussed before, the module is composed of primitive floating-point functions,
such as floating-point addition (called Adder1 in the VHDL code below) which were
implemented in the lower levels. The M J module was implemented in VHDL. This
code was then synthesized using the Synopsys tool. This was directly modeled in HOL
as shown:
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`def M J IMP Xs Xe Xm Ns Ne Nm N1s N1e N1m Ms Me Mm Js Je Jm =
∃ const s const e const m s1 s s1 e s1 m.
(const s = F) ∧
(valu const e 7 = 132) ∧
(valu const m 22 = 3713595) ∧
(FP MUL IMP Xs Xe Xm const s const e const m s1 s s1 e s1 m) ∧
(FP to INT IMP s1 s s1 e s1 m Ns Ne Nm) ∧
(Mod 32 IMP Ns Ne Nm Js Je Jm) ∧
(FP Sub IMP Ns Ne Nm Js Je Jm N1s N1e N1m) ∧
(DIV 32 IMP N1s N1e N1m Ms Me Mm)

Similarly, we would proceed to more and more sub-modules in order to reach the
gate level implementation. We use intermediate sub-modules to cover the gap between
the RTL and the gate level. This ends with simple gate building blocks of all the
modules. These gates are considered the elementary building blocks for the whole
architecture. Examples of these primitives are AND, OR, NOT, XOR, etc.

7 Formal Verification of the Exponential Function

The final theorem to be reached should be:

Theorem:

Let X be the input and EXP the exponential output, then:

∀ X EXP.
if −log2

32
≤ X ≤ log2

32
.

(EXP GATE IMP X EXP =⇒ EXP BEH SPEC X EXP )

This goal can be written differently in HOL, where X s, X e and X m are the three
parts of the input floating-point number and EXP s, EXP e and EXP m denote the
floating-point output. The assumption on X is made by the boundary module within
both the specification and the implementation. So the goal would be the following:

∀ X s X e X m EXP s EXP e EXP m.
IEEE EXP GATE IMP X s X e X m EXP s EXP e EXP m
=⇒ IEEE EXP SPEC X s X e X m EXP s EXP e EXP m

This goal cannot be reached directly, due to the very high abstraction gap between
the gate and behavioral levels as described above. So, the proof scheme was changed
to hierarchically prove that the gate level implies the more abstract RTL. Then this
RTL was related, by a formal proof, to a modular behavioral specification. The latter
was proved to imply the high level flat behavioral specification. This can be formalized
as follows in HOL:

∀ X s X e X m EXP s EXP e EXP m.
IEEE EXP GATE IMP X s X e X m EXP s EXP e EXP m
=⇒ IEEE EXP SPEC X s X e X m EXP s EXP e EXP m
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This goal cannot be reached directly, due to the very high abstraction gap between
the gate and behavioral levels as described above. So, the proof scheme was changed
to hierarchically prove that the gate level implies the more abstract RTL. Then this
RTL was related, by a formal proof, to a modular behavioral specification. The latter
was proved to imply the high level flat behavioral specification. This can be formalized
as follows in HOL:

`thm ∀ X EXP. IEEE EXP GATE IMP X EXP

=⇒ IEEE EXP RTL IMP X EXP (1)

`thm ∀ X EXP. IEEE EXP RTL IMP X EXP

=⇒ IEEE EXP MOD BHV SPEC X EXP (2)

`thm ∀ X EXP. IEEE EXP MOD BHV SPEC X EXP

=⇒ IEEE EXP BHV SPEC X EXP (3)

Finally using equations (1), (2) and (3) we can reach the final goal stated again in
equation (4):

`thm ∀ X EXP. IEEE EXP GATE IMP X EXP

=⇒ IEEE EXP BHV SPEC X EXP (4)

Due to the high modularity of the two intermediate blocks, the goals (1), (2), and
(3) could be extended to sub-level modules’ specification and implementation, and
then the verification continues with these sub-level modules. These proofs were then
composed to yield the original goal. As an illustrative example let’s consider the M J
module at the RTL level, whose specification and implementation have been shown
above. In the following theorem the goal was set as:

∀ X N N1 M J. M J IMP X N N1 M J =⇒ M J SPEC X N N1 M

This was proven in HOL using the following tactic:

e(REPEAT GEN_TAC THEN

REWRITE_TAC[M_J_Imp,M_J_SPEC] THEN

REPEAT STRIP_TAC THEN

EXISTS_TAC (--‘const_s:bool‘--) THEN

.

.

ARW_TAC[DIV_32_correct, Mod_32_correct ,

FP_to_INT_correct, FP_MUL_correct,

FP_Sub_correct, FP_Add_correct ])

Theorems like DIV 32 correct, Mod 32 correct, etc. are lemmas that were already
proved in previous verification steps. Usually in lower modules different strategies were
developed. For instance, induction (INDUCT TAC) was mostly used in proving recur-
sive functions. Automatic tactics as PROVE TAC and ARW TAC were also when the
goal was straightforward. These tactics take more machine time but they shorten the
proof and decrease the manpower needed.
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A summary of the verification times for the whole system is given in Table 1. All the
experiments have been carried out on a Sun Ultra SPARC 2 workstation with 296 MHz
processor and 768 MB of memory. In the table, we have showed the verification time of
two main building blocks, the floating point adder and multiplier. These modules took
a very high verification time, but due to the high reusability of pre-proven theorems and
lemmas, other building blocks and even the main module required much less verification
time.

Also, it can be seen that the verification time for four of the six main modules are
much smaller, as all these modules’ building blocks were pre-proved, making the final
task shorter. The sum of the times of the systems showed here will be less that the
total verification time as there were some lemmas verified to achieve the final proof
goal. The whole code was composed of nearly 4600 lines.

Table 1. Verification times of different system modules in seconds

Module Name Verification Time (Sec.)

Floating Point Addition 60.500
Floating Point Multiplication 30.540
M J Module 2.120
R1 R1 Module 5.620
P R Module 3.420
EXP Cal Module 1.970
IEEE EXP Module 5.290

Total Verification Time 214.200

8 Conclusions and future work

Most verification and testing tools will fail short to verify a circuit with a deep data-
path. The IEEE-754 Table Driven Exponential function with its 32 bit input and 32
bit output implementation would be considered an impossible task for exhaustive sim-
ulation. For full coverage with simulation we would have 232 cases, which means that
even a 2 or 3 percent coverage would take very long simulation time. Model Checking
techniques will not go a lot further as the deep data path means a huge state space
causing a state space explosion problem, making it impossible to verify such a circuit.
The main module and most of its sub-modules’ properties cannot be covered easily
with, e.g., CTL properties.

In this paper, we have demonstrated the use of HOL to model the behavioral and
RTL specifications for the IEEE-754 Table Driven Exponential function in a modular
form, as well as the modeling of the gate level implementation of the same function.
Finally, using hierarchical verification, we have been able to develop a formal proof
indicating the correctness of the implementation using the HOL tool.

One of the very important advantages of the hierarchical verification lies in the
fact that the change of a module or more will not mean the re-proof of the whole
system. It only means the re-proof that the new module meets the same specification
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that the older version did. This may mean a lot for tight time-to-market in a fast
moving technology like electronics. As an example, our proof can always be used with
the changing technology as long as we prove that the lower modules, gates for instance,
are still satisfying the same properties.

As future work, we are working in linking the results of this work to the results of
Harrison. This will build a full proof of this design, starting from the gate level im-
plementation and ends with the abstract mathematical description proposed by Tang,
Giving a clear image of the formal verification integration in the design cycle.
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