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Multi-Predicate Induction Schemes
for Mutual Recursion∗

Richard J. Boulton

DIVISION of INFORMATICS
Institute for Representation and Reasoning

April 6, 2000

Abstract: Where mutually recursive data types are used in programming languages,
etc., mutually recursive functions are usually required. Mutually recursive functions
are also quite common for non-mutually recursive types. Reasoning about recursive
functions requires some form of mathematical induction but there have been diffi-
culties in adapting induction methods for simple recursion to the mutually recursive
case. This paper proposes the use of multi-predicate induction schemes in the con-
text of explicit induction and presents a proof method for their use within a proof
planning system. An implementation in Clam has successfully planned proofs for a
number of mutually recursive examples.

Keywords: Automated Reasoning, Theorem Proving, Mathematical Induction, Mu-
tual Recursion

1 Introduction

The abstract syntax of programming languages (and other formal languages) is typically
represented as recursive types, with one type for each syntactic category. For example, a
syntactic category of simple arithmetic expressions might be represented by the following
type (expressed in the syntax of the Standard ML programming language):

datatype exp = num of int | var of string | plus of exp * exp

| minus of exp * exp | times of exp * exp

∗Research supported by the Engineering and Physical Sciences Research Council of Great Britain under
grant GR/L14381. The author would like to thank Alan Bundy, Ian Green, Konrad Slind and Christoph
Walther for their feedback on this work.
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Thus an arithmetic expression is a numeric constant, a variable, or an arithmetic operator
applied to two expressions. The type exp is recursive and has two base constructors num

and var, and three step constructors plus, minus, and times.
Many languages have syntactic categories that are mutually dependent, e.g., ML has

declarations that involve expressions while expressions may themselves contain local dec-
larations. In such situations the types used to represent the abstract syntax are mutually
recursive. Another common form has the recursive type appearing as an argument to a
type constructor, e.g.:

datatype command = Block of (command)list | . . .

This type represents the abstract syntax of commands. One of the possible forms is a
block (a sequence) of commands represented by (command)list. Here the recursion of the
type is via the list type constructor. This form of recursion is often referred to as nested
recursion.

When the abstract syntax is represented by mutually recursive and/or nested recursive
types, functions defined over the abstract syntax are usually mutually recursive. Such
functions include compilers, type checkers, etc. Reasoning about recursive functions often
requires mathematical induction but special problems arise when the functions are mutually
recursive. In particular, the induction hypothesis may involve a different function to the
induction conclusion.

In the next section, some of the difficulties of using induction with mutually recursive
functions are discussed. This leads to the proposal that induction schemes with more
than one induction predicate should be used. Section 3 illustrates the use of such multi-
predicate induction schemes by a simple example and in Sect. 4 a proof method for their
use is presented. Section 5 describes how the method also applies to mutual recursion over
a single type and Sect. 6 outlines how it works on a more difficult example. A procedure
for generating multi-predicate schemes from function definitions is described in Sect. 7.
Related work is discussed in Sect. 8 and an implementation and results are presented in
Sect. 9, with conclusions and future prospects in Sect. 10.

2 Induction for Mutually Recursive Functions

Consider mutually recursive functions even and odd defined over natural numbers (suc is
the successor function):

even(0) = true
even(suc(n)) = odd(n)

odd(0) = false
odd(suc(n)) = even(n)

Now suppose we wish to prove the following property:

∀n. even(n) ⊃ ¬odd(n)
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An ordinary natural number induction on n yields a base case (where 0 is substituted for
n) that is easily proved. The step case is:

even(suc(m)) ⊃ ¬odd(suc(m))

with even(m) ⊃ ¬odd(m) as the induction hypothesis. Rewriting the induction conclusion
using the definitions produces odd(m) ⊃ ¬even(m) but this does not correspond to the
induction hypothesis.

The problem is that the induction has gone only one step through the mutually recursive
cycle. A nested induction on the reduced conclusion odd(m) ⊃ ¬even(m) does not help
because the new induction conclusion that it gives rise to, namely even(m′) ⊃ ¬odd(m′),
involves a different value to the original induction hypothesis (m′ instead of m). Using
a two-step induction scheme for the original induction does, however, work. The scheme
looks like this:

∀P. (P (0) ∧ P (suc(0)) ∧ (∀n. P (n) ⊃ P (suc(suc(n))))) ⊃ ∀n. P (n)

Another (related) approach is to unwind the mutually recursive functions so that the
recursive calls are direct:

even(0) = true
even(suc(0)) = false

even(suc(suc(n))) = even(n)

odd(0) = false
odd(suc(0)) = true

odd(suc(suc(n))) = odd(n)

However, for two functions f and g that are each defined in terms of both f and g, unwind-
ing like this is not possible, and in any case, unwinding tends to cause a quadratic increase
in the number of equations. There are also the well-known techniques for encoding mutu-
ally recursive functions into a single function but in some contexts these approaches might
be considered to be cheating because they involve making new definitions. It is preferable
to be able to prove properties of existing functions without making new definitions.

The nature of the problem becomes more apparent when considering mutually recursive
or nested recursive types, as illustrated by the following types and functions:

datatype alpha = z of int | a of beta and beta = b of alpha

f(z(n)) = n f(a(b)) = 1 + g(b) g(b(a)) = f(a)

What does an induction scheme look like for this problem? Here is an incorrect first
attempt:

∀P. ((∀n : int. P (z(n))) ∧ (∀b : beta. P (b) ⊃ P (a(b))) ∧
(∀a : alpha. P (a) ⊃ P (b(a)))) ⊃
∀x. P (x)

Some problems with this scheme should be immediately apparent. In a typed setting this
scheme is badly typed. The variable P (which will be referred to as an induction predicate)
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is being applied to two different types, alpha and beta, and it is not clear what type x
has in the conclusion.

One solution is to form the disjoint union type of all the mutually recursive types. The
induction predicate can then have this disjoint union type as its argument type. However,
to be done properly in a formal framework, the scheme has to include injections into the
union type:

∀P. ((∀n. P (inl(z(n)))) ∧ (∀b. P (inr(b)) ⊃ P (inl(a(b)))) ∧
(∀a. P (inl(a)) ⊃ P (inr(b(a))))) ⊃
∀(x : alpha + beta). P (x)

The presence of the injections makes use of this scheme messy. A much more natural
approach is to have more than one induction predicate, in this case one for each mutually
recursive type:

∀Q R. ((∀n. Q(z(n))) ∧ (∀b. R(b) ⊃ Q(a(b))) ∧ (∀a. Q(a) ⊃ R(b(a)))) ⊃
(∀a. Q(a)) ∧ (∀b. R(b))

In fact, Q and R can be seen as the composition of P with inl and inr respectively.
Multi-predicate induction schemes like this are not a new idea. For example, the mutu-
ally recursive type definition package of the HOL theorem prover automatically generates
structural induction schemes of this form [VG93, Appendix A].

The remainder of this paper considers how induction using multi-predicate schemes can
be automated.

3 A Simple Example

The example in this section differs from the examples presented in Sect. 2 in that it involves
a nested recursive type. It is a type of arbitrarily branching trees:

datatype tree = leaf of int | node of (tree)list

A structural induction scheme for the type is:

∀P Q. ((∀n. P (leaf(n))) ∧ (∀ts. Q(ts) ⊃ P (node(ts))) ∧
Q(nil) ∧ (∀t ts. P (t) ∧Q(ts) ⊃ Q(t::ts))) ⊃

(∀t. P (t)) ∧ (∀ts. Q(ts))

Here the second induction predicate is for the type constructor (list) under which the
recursive type is nested. The identifier nil denotes the empty list and the infix function
:: is the list constructor.

Now consider the following definitions for two functions that construct a list of the leaf
nodes of a tree:

flatten(nil) = nil
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flatten(l::ls) = app(l, f latten(ls))

flatten tree(leaf(n)) = n::nil

flatten tree(node(ts)) = flatten(map(flatten tree, ts))

fringes(nil) = nil

fringes(t::ts) = app(fringe(t), fringes(ts))

fringe(leaf(n)) = n::nil

fringe(node(ts)) = fringes(ts)

The function app appends two lists, and map applies a function to every element of a
list. They have the usual recursive definitions. The function map is second-order and
flatten tree uses it to avoid mutual recursion. The function fringe, on the other hand,
has a mutually recursive counterpart, fringes, for dealing with the list of subtrees.

The goal is to prove that the two definitions are equivalent, i.e.:

∀t. f latten tree(t) = fringe(t)

The first step is to match the goal with one of the conjuncts of the conclusion of the
induction scheme. Type constraints mean it has to be the first conjunct. Thus, the
induction predicate Q remains uninstantiated and P is bound to λt. flatten tree(t) =
fringe(t). Beta-reduction yields the following goal:

(∀t. f latten tree(t) = fringe(t)) ∧ (∀ts. Q(ts))

A proof procedure for induction would now normally attempt to prove all the hypotheses
of the instantiated induction scheme. However, since Q has not yet been instantiated only
the hypotheses whose consequent involves P should be attempted.

Base Case P (leaf(n)). Using the definitions of the functions the first case reduces as
follows:

flatten tree(leaf(n)) = fringe(leaf(n))

n::nil = n::nil

Step Case Q(ts) ⊃ P (node(ts)). This case also proceeds by reduction but the
two sides of the equation do not become equal (The `? symbol is used to separate the
hypotheses and conclusion of the conjecture. The question mark indicates that we do not
yet know that the conjecture is a theorem.):

Q(ts) `? flatten tree(node(ts)) = fringe(node(ts))

Q(ts) `? flatten(map(flatten tree, ts)) = fringes(ts)
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At this point one would normally expect to be able to make use of the induction hypothesis.
In fact, we do just that, by (second-order) matching the hypothesis to the whole of the
residual goal. So, Q is instantiated to:

λts. f latten(map(flatten tree, ts)) = fringes(ts)

Now that Q has been instantiated the remaining induction cases can be attempted.

Base Case Q(nil).

flatten(map(flatten tree, nil)) = fringes(nil)

flatten(nil) = nil

nil = nil

Step Case P (t) ∧Q(ts) ⊃ Q(t::ts). The goal in this case is:

(flatten tree(t) = fringe(t)) ∧
(flatten(map(flatten tree, ts)) = fringes(ts))

`? flatten(map(flatten tree, t::ts)) = fringes(t::ts)

The conclusion can be rewritten as follows:

flatten(map(flatten tree, t::ts)) = fringes(t::ts)

flatten(flatten tree(t)::map(flatten tree, ts))

= app(fringe(t), fringes(ts))

app(flatten tree(t), f latten(map(flatten tree, ts)))

= app(fringe(t), fringes(ts))

Then using the implication (x1 = x2) ∧ (y1 = y2) ⊃ app(x1, y1) = app(x2, y2), the goal can
be converted to a form in which the induction hypotheses are immediately applicable:

flatten tree(t) = fringe(t) ∧ flatten(map(flatten tree, ts)) = fringes(ts)

4 A Proof Method for Using Multi-Predicate Schemes

The example proof in Sect. 3 motivates a proof method induction_mutual for multi-
predicate induction schemes. The method takes a scheme S, a goal term t, and a matching
induction predicate Pk as arguments.

Definition 1 The scheme S has the general form:

P1,1(~v1,1) ∧ . . . ∧ P1,n1(~v1,n1) ∧ C1 ⊃ P1,0(~f1[~v1,1, . . . , ~v1,n1])
...

Pm,1(~vm,1) ∧ . . . ∧ Pm,nm(~vm,nm) ∧ Cm ⊃ Pm,0(~fm[~vm,1, . . . , ~vm,nm])

(∀~v1. P1(~v1)) ∧ . . . ∧ (∀~vr. Pr(~vr))
with the following properties (where [x] denotes the set {1, . . . , x}):
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1. m > 0, ∀i ∈ [m]. ni ≥ 0, r > 0.

2. The P ’s are induction predicates.

3. The ~v’s are vectors of one or more variables.

4. The C’s are additional conditions.

5. ∀i ∈ [m]. ~fi[~vi,1, . . . , ~vi,ni] denotes a vector of terms involving variables in ~vi,1, . . . , ~vi,ni.

6. ∀i ∈ [r]. ∃j ∈ [m]. Pi = Pj,0.

7. ∀i ∈ [m]. ∀j ∈ [ni]. ∃k ∈ [m]. Pi,j = Pk,0.

8. The free variables appearing in {~vi,1, . . . , ~vi,ni, Ci, ~fi[~vi,1, . . . , ~vi,ni]} are assumed to be
universally quantified in hypothesis i.

The consequent of hypothesis i of the scheme is Pi,0(~fi[~vi,1, . . . , ~vi,ni]) and the ante-
cedants are {Pi,1(~vi,1), . . . , Pi,ni(~vi,ni), Ci}. If h denotes hypothesis i then let pred(h) denote
Pi,0.

It is not necessary for all the Pi,j predicates (1 ≤ i ≤ m, 0 ≤ j ≤ ni) to appear in the
conclusion of the scheme (i.e., be equal to one of the Pk (1 ≤ k ≤ r)).

Property 6 of Definition 1 says that each of the induction predicates in the conclusion
must appear as the consequent of at least one of the hypotheses. Property 7 says that each
of the predicates in the antecedants of the hypotheses must be the consequent of one of
the hypotheses.

Definition 2 A predicate is native in the antecedants of a hypothesis if it is equal to the
predicate that appears in the consequent. Otherwise it is foreign.

For the proof method it is useful to distinguish cases of the induction that involve
foreign predicates in the antecedants. This motivates the following definition.

Definition 3 A hypothesis

Pi,1(~vi,1) ∧ . . . ∧ Pi,ni(~vi,ni) ∧ Ci ⊃ Pi,0(~fi[~vi,1, . . . , ~vi,ni])

of a scheme is said to be a base case if ni = 0. Otherwise it is a step case if there is a
j ∈ [ni] such that Pi,j = Pi,0, and a cycle case if there is a j ∈ [ni] such that Pi,j 6= Pi,0.
So, a hypothesis may be both a step case and a cycle case.

Let us now assume that Pk has been selected as the induction predicate for the goal
term t and that variables {x1, . . . , xlk} in t have been matched up to ~vk. Without loss of
generality, t can be assumed to have the form ∀x1 . . . xlk y1 . . . yu. F [x1, . . . , xlk , y1, . . . , yu]
(universal quantifiers can be commuted). Heuristics for selecting induction variables are
described elsewhere in the literature, e.g. [BM79].
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The induction_mutual procedure is shown in Fig. 1. It is non-deterministic and may
fail at various points. The intention is that it should backtrack at points of failure and try
alternative execution paths (see below). The submethod use_hypotheses assumes that
the goal has been rewritten to a conjunction of formulas and tries to match hypotheses to
the conjuncts. It goes beyond the procedures typically found in inductive provers in that
it can instantiate predicate variables in the hypotheses during the matching process.

Some remarks about the procedure:

• The ~x’s and ~y ’s are vectors of variables.

• The function frees computes the free variables of a term.

• φ is a substitution and (pφ)β denotes the result of applying φ to p and beta-reducing
(including redexes from previous calls of use_hypotheses).

• match(p,t) is true if and only if p can be made syntactically equal to t by instantiating
the universal quantifiers in p.

• The submethods base_case and step_case are as they might be in a method for
induction using a single-predicate scheme. Specifically, base_case rewrites using the
definitions of the functions in the goal and performs standard logical simplification-
s, while step_case manipulates the induction conclusion using the definitions and
lemmas to get it into a form in which (some of) the hypotheses can be used. It then
uses the hypotheses and simplifies. Both submethods are allowed to leave a residual
goal. For simple examples it would suffice for these submethods to do exhaustive
rewriting with the function definitions but for more complex examples it is beneficial
to use heuristic procedures such as those in Clam [BvHHS90].

• The syntactic form ‘(base_case then use_hypotheses)(h)’ means “first apply the
base_case submethod to h and then apply the use_hypotheses submethod to any
residual goals”.

The choice points in the procedure are:

1. the selection of an instantiated predicate;

2. within the base_case and step_case submethods;

3. the selection and ordering of the antecedants Γ′ in use_hypotheses.

Failure of a conjunction of antecedants (the induction hypotheses) to match the residual
term causes backtracking which drives a search through the different combinations and
permutations of antecedants at choice point 3. The search terminates if a match is found.
If no combination of antecedants produces a match then use_hypotheses fails. This may
cause backtracking at point 2 to yield a different residual term. If that is not successful the
induction predicates may be processed in a different order (point 1) but this is unlikely to
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procedure induction_mutual(S,t,Pk);

procedure matches(p,t);
p1 ∧ . . . ∧ pu := p; t1 ∧ . . . ∧ tu := t;
I := {i ∈ [u] | pi has the form Pi(~xi)};
for i ∈ I do begin ~yi := frees(ti)− ~xi; Λi := λ~xi. ∀~yi. ti end;

φ := {Λi/Pi | i ∈ I};
if ∀i ∈ [u]. match((piφ)β,ti) then

begin

for i ∈ I do instantiate Pi to Λi;

return true
end

else return false
end procedure;

procedure use_hypotheses(Γ ⊃ t);
if (∃Γ′ ⊆ Γ. (Γ′ = {a1, . . . , au}) ∧ u > 0 ∧ matches(a1 ∧ . . . ∧ au,t))
then return
else fail

end procedure;

H := the hypotheses of S;
instantiate Pk to λx1 . . . xlk . ∀y1 . . . yu. F [x1, . . . , xlk , y1, . . . , yu];
while H 6= {} do

begin

P := any pred(h) (for h ∈ H) that has been instantiated;
Cases := {h ∈ H | pred(h) = P};
beta-reduce applications of instantiated induction predicates in Cases;
H := H − Cases;
Base := {h ∈ Cases | h is a base case};
Cycle := {h ∈ Cases | h is a cycle case and not a step case};
Step := {h ∈ Cases | h is a step case and not a cycle case};
StepAndCycle := {h ∈ Cases | h is both a step case and a cycle case};
for h ∈ Base do base_case(h);
for h ∈ Cycle do (base_case then use_hypotheses)(h);
for h ∈ Step do step_case(h);
for h ∈ StepAndCycle do (step_case then use_hypotheses)(h)

end

end procedure

Figure 1: The induction method for multi-predicate induction schemes
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help the proof because the cases for the originally chosen predicate must be processed even-
tually. Further backtracking might cause earlier instantiations of predicates to be undone
and a different choice to be made at point 3 for an earlier invocation of use_hypotheses,
but undoing instantiations may be difficult to implement.

Definition 4 The dependency graph G(S) of the scheme S is the graph with vertices
{Pi,0 | i ∈ [m]} and edges {(Pi,0, Pi,j) | i ∈ [m] ∧ j ∈ [ni]}.

Lemma 1 If G(S) is strongly connected (any vertex can be reached from any other vertex)
and the base_case and step_case submethods cannot complete a cycle case or step case
without using the induction hypotheses, then on each entry to the body of the while loop
in the induction_mutual procedure, there exists some h ∈ H such that pred(h) has been
instantiated.

Proof. On the first time in the body of the loop the result follows because Pk has been
explicitly instantiated in the code prior to the loop. On subsequent iterations the theorem
relies on the instantiation of predicates in the use_hypotheses submethod causing some
pred(h) (for h ∈ H) to become instantiated.

First, observe that if P is the current predicate being processed and there is an edge
(P,Q) in G(S) then Q will become instantiated on this iteration of the loop. From the
presence of the edge it follows that Q must be an antecedant in one of the cycle or step
cases. Under the assumption that base_case and step_case cannot complete a cycle case
or step case without using the induction hypotheses, use_hypotheses must be called on
at least one goal involving Q as a hypothesis and the Γ′ chosen will also involve Q. Hence
if Q is not already instantiated it will become so in matches.

So, for there to be hypotheses remaining but no instantiated predicate, the remaining
uninstantiated predicates could not have been reachable from any of the previously pro-
cessed predicates. But this contradicts the assumption that G(S) is strongly connected.

Theorem 2 (Termination) If G(S) is strongly connected and if the base_case and
step_case submethods terminate and cannot complete an inductive case without using
the induction hypotheses, the induction_mutual procedure terminates (or fails).

Proof. From Lemma 1, an instantiated predicate P exists and so Cases is non-empty.
Hence the cardinality of H strictly decreases each time round the while loop and so the
loop condition will eventually become false.

If the procedure is to be used on a scheme and goal for which the conditions of Theorem 2
are not satisfied, the procedure can easily be modified to check thatH has strictly decreased
between successive iterations of the while loop and fail if it has not. Of course, this will
only make the whole procedure terminating if the submethods are terminating.

10



5 Mutual Recursion Over a Single Type

The induction_mutual method presented in Sect. 4 is not restricted to mutually recursive
functions where each function is defined over a different type. To see this, consider again
the even/odd example from Sect. 2. We use the following multi-predicate induction scheme:

∀P Q. (P (0) ∧ (∀n. Q(n) ⊃ P (suc(n))) ∧
Q(0) ∧ (∀n. P (n) ⊃ Q(suc(n)))) ⊃

(∀n. P (n)) ∧ (∀n. Q(n))

The proof of the property ∀n. even(n) ⊃ ¬odd(n) proceeds as follows.

Base Case P (0). This case proceeds as usual by symbolic evaluation:

even(0) ⊃ ¬odd(0)
true ⊃ ¬false

true

Cycle Case ∀n. Q(n) ⊃ P (suc(n)).

Q(n) `? even(suc(n)) ⊃ ¬odd(suc(n))

Q(n) `? odd(n) ⊃ ¬even(n)

Instantiate Q to λn. odd(n) ⊃ ¬even(n).

Base Case Q(0). By symbolic evaluation.

Cycle Case ∀n. P (n) ⊃ Q(suc(n)).

even(n) ⊃ ¬odd(n) `? odd(suc(n)) ⊃ ¬even(suc(n))

even(n) ⊃ ¬odd(n) `? even(n) ⊃ ¬odd(n)

Using the multi-predicate induction scheme, the example behaves as if even and odd
were defined over distinct (mutually recursive) types:

datatype nume = 0e | suce of numo and numo = 0o | suco of nume

Viewing the example in this way is natural, for if it were not appropriate to make some
distinction between the entities over which the mutually recursive functions are defined,
then mutually recursive functions would not have been used. A single function would have
been used instead.
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6 A More Complex Example

We now consider an example presented by Kapur and Subramaniam [KS96] and credited
by them to Bidoit and Garland. It concerns the equivalence of two forms of expression
evaluation. The definitions of the functions involved are as follows (where the free variables
are implicitly universally quantified):

exp(nat(x), y, z) = nat(x)

(x = y) ⊃ exp(id(x), y, z) = exhelp(z)

¬(x = y) ⊃ exp(id(x), y, z) = id(x)

exp(plus(x, y), z, w) = plus(exp(x, z, w), exp(y, z, w))

exp(apply(x, y, z), z1, w) = exp(exp(x, y, z), z1, w)

exhelp(nat(x)) = nat(x)

exhelp(id(x)) = id(x)

exhelp(plus(x, y)) = plus(exhelp(x), exhelp(y))

exhelp(apply(x, y, z)) = exp(x, y, z)

lookup(x, start) = 0

lookup(x, update(y, z, w)) = cond((x = y), z, lookup(x, w))

eval(nat(x), w) = x

eval(id(x), w) = lookup(x, w)

eval(plus(x, y), w) = eval(x, w) + eval(y, w)

eval(apply(x, y, z), w) = eval(x, update(y, eval(z, w), w))

For an explanation see Kapur and Subramaniam’s paper. We use the following multi-
predicate induction scheme:

∀P Q. ((∀x z. P (nat(x), z)) ∧ (∀x z. Q(z) ⊃ P (id(x), z)) ∧
(∀x y w. P (x, w) ∧ P (y, w) ⊃ P (plus(x, y), w)) ∧
(∀x y z w. P (exp(x, y, z), w) ∧ P (x, z) ⊃ P (apply(x, y, z), w)) ∧
(∀x. Q(nat(x))) ∧ (∀x. Q(id(x))) ∧
(∀x y. Q(x) ∧Q(y) ⊃ Q(plus(x, y))) ∧
(∀x y z. P (x, z) ⊃ Q(apply(x, y, z)))) ⊃

(∀x z. P (x, z)) ∧ (∀z. Q(z))

This scheme is interesting because of the nested recursion in the exp function as well as for
having two induction predicates. The nested recursion gives rise to the P (exp(x, y, z), w)
term in the antecedant of the induction case for P (apply(x, y, z), w). For a discussion of
why this antecedant is present and how the scheme can be shown to be sound, see the work
of Slind [Sli97, Sect. 4.3]. The scheme can be generated automatically from the definitions
as described in Sect. 7.
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The conjecture to be proved is:

∀u v t s. eval(exp(u, v, t), s) = eval(u, update(v, eval(t, s), s))

The proof uses the above induction scheme with P matched to the conjecture and u and
t matched to its arguments (x and z respectively). Using the definitions of the functions
the P (nat(x), z) case is almost trivial. The Q(z) ⊃ P (id(x), z) case is the most important
because it derives a value for Q:

Q(z) `? ∀v s. eval(exp(id(x), v, z), s) = eval(id(x), update(v, eval(z, s), s))

Q(z) `? ∀v s. eval(exp(id(x), v, z), s) = lookup(x, update(v, eval(z, s), s))

Q(z) `? ∀v s. eval(exp(id(x), v, z), s) = cond((x = v), eval(z, s), lookup(x, s))

The conditional rules for exp(id(x), v, z) motivate a case-split. In the case x = v the goal
becomes:

Q(z) `? ∀s. eval(exhelp(z), s) = eval(z, s)

Since no further rewriting is possible, the induction_mutual method would at this point
attempt to instantiate the hypothesis in order to satisfy the goal. Thus, Q becomes in-
stantiated to λz. ∀s. eval(exhelp(z), s) = eval(z, s). In the ¬(x = v) case the conclusion
reduces to ∀s. lookup(x, s) = lookup(x, s) which is true by reflexivity. The induction
hypothesis is not required. The fact that only one case requires the hypothesis is rather
convenient and in general would not be so. In general, for n cases, new variables Q1, . . . , Qn

would have to be introduced in place of Q and then Q would be instantiated to a term
formed from the instances of the Qi’s (ignoring any uninstantiated ones).

The fourth case is also interesting because of the nested recursion but since that is
not the subject of this paper the details are omitted. In fact, on paper the proof is
straightforward but is unusual in that the induction hypotheses have to be used in sequence;
they cannot be used simultaneously. All the other cases are straightforward.

7 Generating Multi-Predicate Schemes

It can be seen from the examples in Sects. 5 and 6 that the induction scheme should
not simply follow the recursion of the type(s) but rather it should follow the recursion of
the mutually recursive functions involved in the conjecture. There should be one induction
predicate for each of the mutually recursive functions. An outline of a procedure to generate
such a scheme from constructor-style function definitions follows.

1. Find the functions f1, . . . , fn defined by the mutually recursive definition.

2. Form corresponding induction predicates (variables) P1, . . . , Pn such that for fi of
type t1 × . . .× tk → t, Pi has type t1 × . . .× tk → bool.
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3. For each clause in the definition compute a case for the induction scheme. Assuming a
clause has the general form ∀v1 . . . vm. . . . ⊃ (l = r), the conclusion c of the induction
case is formed from l by replacing the f at its head with the corresponding P . Then
find every application of one of the f ’s in r, including those nested inside arguments
of other applications. These applications (with the f replaced by the corresponding
P ) form the hypotheses {h1, . . . , hj} of the induction case. If j = 0 the induction
case is ∀v1 . . . vm. c, otherwise it is ∀v1 . . . vm. h1 ∧ . . . ∧ hj ⊃ c.

4. Some of the induction cases generated in Step 3 may have the same conclusion (up to
renaming of the v’s). Such cases should be merged by renaming the v’s and merging
the hypotheses.

5. For each Pi form a term ∀x1 . . . xk. Pi(x1, . . . , xk) where the x’s have unique names
and the types of Pi’s arguments.

6. Form a conjunction H of the cases generated in Step 4 and another conjunction C
of the terms created in Step 5. The induction scheme is then ∀P1 . . . Pn. H ⊃ C.

For the example in Sect. 6 this algorithm will generate a scheme in which P has three
arguments rather than two. A more sophisticated algorithm could eliminate the extra
argument because it plays no role in the induction. Its presence does not interfere with
the proof. See also Walther’s work on generating induction schemes [Wal92].

It is possible to formally derive a multi-predicate induction scheme from the definitions
of mutually recursive functions, as Slind shows in his PhD thesis [Sli99]. The soundness
of the induction scheme follows from the termination of the functions. For an approach to
showing termination, see for example the work of Giesl [Gie97].

8 Related Work

The method presented here for induction using multi-predicate schemes is in some respects
similar to so-called middle-out reasoning [Hes91]. The proof of the original conjecture
proceeds simultaneously with finding suitable instances for the induction predicates, with
each assisting the other. The formulas used to instantiate the predicates can be seen as
intermediate lemmas or as extra conjuncts that generalise the original conjecture. Like
middle-out reasoning, the method uses meta-variables to stand for some initially unknown
term structure.

Kapur and Subramaniam describe a technique for automating induction over mutually
recursive functions using cover sets [KS96]. Their approach is to unroll the mutual recursion
to obtain a cover set that captures the recursive dependencies. For example, for mutually
recursive functions f and g, recursive calls to g in the body of f are expanded using the
rules for g so that calls to f appear in the body instead. If g has no recursive calls to itself
then it is eliminated completely. It is not clear from Kapur and Subramaniam’s paper
how their algorithm generalises to more than two mutually recursive functions or that it
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works in general for two functions that are each defined in terms of both functions. The
multi-predicate approach can handle both of these situations.

Kapur and Subramaniam discuss the relationship of their work to handling of mutual
recursion in Nqthm and Spike. They discuss the need for the user to provide hints or
intermediate lemmas in both systems. In our work, these intermediate lemmas are precisely
the formulas to which the induction predicates become instantiated, i.e., they are generated
automatically. The intermediate lemma required by Spike for the example described in
Sect. 6 is precisely the formula to which the Q induction predicate is instantiated. Thus,
the induction_mutual method is computing lemmas that had to be supplied manually
in Nqthm and Spike. In Kapur and Subramaniam’s approach these lemmas are bypassed
by unrolling the recursion. It might be argued that extra information is being supplied
manually in my approach via the more exotic induction scheme but, as has been shown in
Sect. 7, the scheme can be generated automatically from the function definitions.

Liu and Chang [LC87] deal with mutual recursion by generating strong induction
schemes, i.e., ones in which the property is assumed to hold for a chain of smaller val-
ues rather than just the next smallest. The hypotheses for the smaller values are captured
by defining auxiliary recursive functions. These functions follow the recursion pattern of
the mutually recursive functions about which the property is to be proved but with pred-
icates in place of the original expressions. For example, the following function would be
generated from the fringes function of Sect. 3:

f(nil) = true f(t::ts) = P (t) ∧ f(ts)

where P is the induction predicate. By this means, all the necessary hypotheses for the
proof are obtained. Liu and Chang present an algorithm for generating the auxiliary
functions. It is similar to the procedure described in Sect. 7. Their paper is mainly about
generating the schemes, saying little about how they are used in proofs, and is in an untyped
destructor-style setting, but their work appears to transfer to typed and constructor-style
settings. Finally, they claim that strong induction hypotheses should be used for mutual
recursion but, as has been shown in this paper, multi-predicate weak schemes also work.

9 Implementation and Results

The induction_mutual method of Sect. 4 has been implemented in the Clam proof
planner [BvHHS90]. For step cases (using the terminology of Definition 3) the rippling
method [BSvH+93] is used to guide the proof. Rippling takes place with respect to the
hypotheses that correspond to the native induction predicate (Definition 2). For non-step
cases symbolic evaluation and simplification are used. Currently, the instantiation of in-
duction predicates works for cases in which either symbolic evaluation or “rippling out” are
used. Another form of rippling, called “rippling in”, guides the proof to a point at which
a universally quantified variable in the hypothesis can be instantiated in a non-trivial way.
This form of rippling is typically required where one of the functions has an “accumulator”
argument. It is not yet catered for by the induction_mutual method.
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Table 1: Results for Clam implementation

Conjecture Source
1 ∀n. even(n) ⊃ ¬odd(n) Sect. 5
2 ∀n. even(n) ∨ even(suc(n))
3 ∀t. f latten tree(t) = fringe(t) Sect. 3
4 ∀t. f latten tree(reverse tree(t)) = reverse(flatten tree(t))
5 ∀x y. fringes(app(x, y)) = app(fringes(x), fringes(y))
6 ∀t. fringe(reverse tree(t)) = reverse(fringe(t))
7 ∀s. s = foo(s) Reference [LC87]

It is important that the goal is fully reduced before the induction_mutual method is
applied. If not, there is a tendency for the induction hypotheses and conclusion to mis-
match. For example, the even/odd conjecture in Sects. 2 and 5 could have been expressed
as:

∀n. even(n) ⊃ ¬even(suc(n))

If this is not reduced initially, then in the final case the goal is:

even(n) ⊃ ¬even(suc(n)) `? odd(suc(n)) ⊃ ¬even(suc(n))

This requires delicate control over rewriting if the hypothesis is to be used successfully,
but if the goal is fully reduced before applying induction this problem does not arise; the
definitions of the functions can be used freely.

The procedure for generating schemes in Sect. 7 has been implemented in an object-
level theorem prover, from where the scheme is passed to the (meta-level) proof planner
automatically.

The induction_mutual method was developed using the examples in Sects. 3 and 5.
The implementation in Clam has been used to automatically plan proofs for both of the
development examples and the other formulas listed in Table 1.

The function reverse tree reverses the order of the leaf nodes and is defined in a similar
way to flatten tree using map. Since reverse tree is not mutually recursive, Example 4
does not involve mutually recursive functions but a multi-predicate scheme is still used
because the tree type is nested recursive. The proof requires lemmas for the distributivity
of map, reverse, and flatten over app, and the lemma app(x, nil) = x. In addition,
Example 5 requires the associativity of app, and Example 6 requires Example 5 as a
lemma. The function foo, taken from [LC87], manipulates Lisp-like expressions and is
mutually recursive with a function foolist.

The example in Sect. 6 has not yet been fully automated due to the nested recursive
function call. This kind of nested recursion is currently outside of the scope of Clam.
However, the proof method does get as far as synthesizing the instantiation for the second
induction predicate, and all but one (the fourth) of the cases of the induction have been
automated.
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Since the proof method maintains second-order variables (the uninstantiated induction
predicates) for part of the proof, the implementation language of Clam, namely Prolog, is
not ideally suited. The second-order variables have to be coded as first-order variables and
beta-reduction must be handled explicitly. A more appropriate platform for the method
would be λClam [RSG98] which is implemented in the higher-order logic programming
language λProlog. λClam was not used because, when implementation began, some aspects
of it were not sufficiently mature to support this research.

10 Conclusions and Future Work

This paper has shown how induction theorems (schemes) with multiple induction predicates
can be used to prove properties of mutually recursive functions in a natural way. A proof
method for using such schemes has been proposed and illustrated on several examples. The
method has been implemented and tested in the Clam proof planner. The implemented
method makes use of Clam’s infrastructure but it is essentially independent of the details
of Clam, and hence could be re-used in other systems.

The induction schemes have one predicate for each of the mutually recursive functions.
This avoids the need for techniques such as unwinding the functions into a single function
(which tends to cause a quadratic increase in size and is not always possible anyway). One
induction predicate is matched against the initial goal and the instantiations for the other
predicates are synthesized as part of the proof method. An important point is that the
induction scheme follows the recursion pattern of the functions rather than of the types
over which they are defined (though these do coincide in many cases).

A strength of the method is that it is able to speculate intermediate lemmas that
in some other approaches have to be provided by the user. This speculation of lemmas
corresponds to synthesizing values for the initially uninstantiated induction predicates. As
can be seen from the examples, this is often quite straightforward. However, there are
examples where in order to get into a position in which a predicate can be instantiated, an
implicative (i.e., non-equality preserving) step has to be used. Such a step generalises the
goal and can result in the predicate being instantiated to a formula that is not a theorem.
This seems to be a particular problem when the case involves more than one occurrence of
the predicate in the antecedants, e.g.:

∀x y. Q(x) ∧Q(y) ⊃ P (C(x, y))

A possible solution might be to only partially instantiate Q when the hypotheses are used
(by introducing new higher-order meta-variables to stand for unknown term structure) and
use the base cases to fill in the gaps. This would require some modification to the proof
method and would be quite intricate unless higher-order unification was built in to the
implementation language.

Another item for future work is to investigate examples where there are more than two
induction predicates. In such examples, there may be cases of the form

∀x y. Q(x) ∧R(y) ⊃ P (C(x, y))

17



where it may not be clear how the two predicates Q and R should be instantiated. Also, if
there is more than one mutually recursive function involved in a conjecture it may be nec-
essary to combine induction schemes as is done, for example, by Boyer and Moore [BM79],
Liu and Chang [LC87], and by Walther [Wal93].
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