Computing for the Future of the Planet

Andy Hopper

Computing is a <u>crucial</u> weapon in our armoury for ensuring the future of the planet.

Computing will play a key part in <u>optimising use of physical</u> <u>resources</u> and ultimately their <u>substitution by the digital world</u>.

Computing will be a tool for enabling <u>developing societies to</u> <u>improve their standard of living</u> without undue impact on the environment.

Computing for the Future of the Planet

- 1. Optimal Digital Infrastructure
- 2. Sense and Optimise
- 3. Predict and React
- 4. Digital Alternatives to Physical Activities

1 - Optimal Digital Infrastructure

- Redundancy doubles (energy) cost of datacenter
- Reduce redundancy by using new tools which monitor interdependency of components
- Decrease restart times of services (from ~4 hrs)

Utilisation of Servers

Consolidation

Load concentration

Migration

Use of Energy by Servers

Source: Data Center Efficiency in the Scalable Enterprise, Dell Power Solutions, Feb 2007

Energy Efficient Computing

A. Rice

- Adaptive datacentres
 - Improve fault recovery by automatically back tracking through computational blocks
 - Use machine readable descriptions of service agreements
 - Include energy optimisation not just fault tolerance as part of adaptation strategy
 - Run "closer to the wire"
- Scale energy use with useful work done at all levels
- Develop principles
 - Switch off if not in use
 - Don't send data if not wanted
 - Know sources of network traffic

Power and Load – Single Server

- Server consumes ~50% power when idle (power SPEC marks 2008)
- Energy efficiency is poor as server can be idle much of the time

Power and Load – Multiple Servers

- Machines not in use are switched off
- Tasks are moved between machines
- Some tasks can be delayed
- Shape of power scaling curve less important for larger clusters

Power and Load – Multiple Servers

- Load concentration gives 30-80% improvement but has specific application requirements
- XEN virtualisation comes close to energy proportional computing in the SAN context
 - Tasks move between two servers in 250msec down time and 60sec/1Gb Ethernet,10sec/10Gb Ethernet elapsed time

- Non-interactive jobs are delay tolerant
 - Data indexing, batch simulation, climate models

Fine Grain Power Analysis

Use of Energy by Discs

Anthony Hylick

Use of Remote Energy Sources

Sun

Siemens press picture

- Keep moving computing tasks to where energy is available
 - Cheaper to transmit data rather than energy
 - Use energy that cannot be used for another purpose
 - At what granularity should jobs be shipped?
 - Do we ship program, data, or both?

Wind Power Meteorology

visibleearth.nasa.gov

July

Wind Speed (meters/sec)

- What is the equivalent latency map?
- Where do we put the server farms?

The Overall Goal

- Optimal Digital Infrastructure
 - Components switched off if not doing useful work
 - Energy proportional computing and communications at all levels
 - Where possible use energy that would otherwise be lost (virtual battery)
- Components
 - Servers / Server Farms
 - Networks
 - Workstations
 - Terminals

 For the first time over-provisioning and technology improvements may not save the day!

2 - Sense and Optimise

- A sensor-based digital model of the planet
- "Googling" Earth!
- "Googling" Space-Time!
- How do we do it?
 - coverage
 - fidelity
 - scalability
 - performance
 - usefulness

World Model

Sensing

- World is already full of sensors but more is to come
- Publishing data

Storing

- Create a global repository
- What are the data and computational models?
- Consistency

Indexing

- Web pages
- Sensor data
- Shift from query-based to event-based ("where is" to "there is")

Interpreting

- Observation and reaction
- Classification
- Optimisation
- Prediction

Sensing Indoors

- Ultrawideband location system
- Measure pulse time-differences-of-arrival and angles-of-arrival

World Model Example

A real-world environment where people are wearing location tags

A 3D rendering of a "World Model" constructed and updated in real time using location and other systems

World Model Interpretation

R. Harle

- 2D linkage diagram of grid transitions
- Threshold updates using
 - maximum linkage time
 - minimum linkage length
- Various topological maps can be created

World Model Consistency

R. Harle

Sensing Athletes

Sensing Outdoors – Use of Vehicles

J. Davies, D. Cottingham, A. Beresford, B. Jones

Objective

- Take a road vehicle
- Embed power/processing
- Add sensors (lots!)
- Add storage (lots!)
- Add networks (lots!)
- Research platform

Future platforms

- Mobile "phone" as sensor?
- Federated open Global Repository?

Concept

Reality

CO₂ in Cambridge

Law concentration

High concentration

Mapping the Spectrum

D. Cottingham

Measured 3G signal strength

Red is poor reception
Blue is excellent
Orange circles are base stations

- Results sent to the Global Repository
 - What are the standards for exchanging data?
 - How is the data marked up?
 - How does this generalise for all data?

Sensor Data Processing

- Section of Madingley Road, Cambridge
 - 1,002 input points, multi-valued at any location
 - 22 output points, single-valued function

Generating a Road Map of Cambridge

J. Davies

- GPS traces from vehicles sent to Global Repository
- Location data converted into a directed graph of the road network

2D histogram of cells

3x3 cell blur filter

Threshold

Extract outlines

Compute centrelines

Compute directions

Finished map

Sensing – Humans as Sensors

www.openstreetmap.org

- Openstreet map is an example of human sensing
 - Pubs, post boxes, potholes, etc
- Reward for content creation?
- Enticing and wealth creating for developing world?

Cape Town

Kampala

Thermal Maps

www.seeit.co.uk/haringey/Map.cfm

- London Borough of Haringey used aerial survey to generate thermal images
- Should this be a real-time global service like GPS?
- What applications would be written if data was free?

Personal Energy Meters

- Collect information about individual energy consumption (direct and indirect)
- Present itemised breakdown
 - travel, heating, water usage, transportation of food, etc
- Use World Model
 - upload own energy use to help digital optimisation
 - download energy profile of devices and goods
- Lots of lovely computing problems!
 - measurement, indexing, caching, event-delivery, prediction, use of social networking, security, privacy, correctness, etc

Regulation/Incentives/Ethics/Privacy

www.raeng.org.uk/policy/reports/pdf/dilemmas_of_privacy_and_surveillance_report.pdf

- Generating data, changing individual behaviour
- Engineering
 - design out dangers
 - prepare for failure
- Dilemmas
 - of value, privacy, stakeholders, governance, etc
 - who to trust?
- Which surveillance scenario?
 - big brother, big mess, the citizens themselves
 - reciprocity: watching the watchers

3 - Predict and React

Information Collection / Distribution

www.mysociety.org

Travel times by Train (+1hr Taxi) from Cambridge

Travel times Train vs Car from Cambridge

A transport network from scratch?

- Counting cars, taxis motorbikes, cycles
- Run without traffic lights?

Large Scale Models

Multi-model Averages and Assessed Ranges for Surface Warming

Global "Scientific" Computing

• Requirements

- Accurate and correct model
- Algorithm separated from implementation, verified code
- Shared data, up to date data
- Deadline driven computation (part of a control loop)
- Scaleable computer power

4 - Digital Alternatives

Kitzes, J., Wackernagel, M., Loh, J., Peller, A., Goldfinger, S., Cheng, D., Tea, K. 2008 Shrink and share: humanity's present and future Ecological Footprint. Philosophical Transactions of the Royal Society 363, 467–475. (DOI 10.1098/rstb.2007.2164.)

Physical to Digital

Guardian Unlimited

- Move bits rather than people or products
 - iTunes, Tesco Online, etc
- Good news or bad news?

Shift to Cyberspace?

- Can we construct a digital world in which we can conduct our lives?
 - on a ultra-cheap open platform
 - using miniscule power
 - fed with sensor data from the real-world
 - accessible to every human
- Scaling up virtual worlds is a challenge
- Key to wealth creation in developing world?

South African Township

- No power services to buildings
- Mobile phones are common
- Top-ups in units of 1 SMS
- A meal is an SMS or two

Computing for the Future of the Planet

www.engineeringchallenges.org

- Lists, dimensions, and quantifies computing problems
- Targets the world outside (and inside) computing
- A vision and an architecture
- Contemplates the unbounded upside of computing!

Engineers set 'grand challenges' to enhance life

14 targets

- Make solar energy affordable
- · Get energy from fusion
- Develop carbon sequestration methods
- Manage the nitrogen cycle
- Expand access to clean water
- Restore and improve urban infrastructure
- Advance health Informatics
- Make better medicines
- Reverse-engineer the brain
- Prevent nuclear terror
- Secure cyberspace
- Enhance virtual reality
- Advance personalised learning
- Engineer tools for scientific discovery

