
Types for Resource Control

Ian Stark

Laboratory for Foundations of Computer Science
The University of Edinburgh

Formal Methods for Components and Objects
CWI, Amsterdam, 24–26 October 2007

http://mobius.inria.fr

http://www.cordis.lu/fp6/home.html
http://www.cordis.lu/ist/home.html
http://www.inf.ed.ac.uk/~stark
http://mobius.inria.fr
http://mobius.inria.fr

Overview

Mobius: Mobility, Ubiquity and Security
Proof-carrying code for Java on mobile devices

FP6 Integrated Project developing novel technologies for trustworthy global
computing, using proof-carrying code to give users independent guarantees of the
safety and security of Java applications for mobile phones and PDAs.

Innovative trust management, with digital evidence of program behaviour.

Static enforcement, checking code before it starts.

Modularity, building trusted applications from trusted components.

Types for Resource Control

This talk is about one of the underlying technologies: type systems that capture
quantitative information about resource usage.

Work by Mobius partners in Madrid, INRIA, Munich, and Edinburgh.

Includes slides from David Aspinall, Patrick Maier and Martin Hofmann.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Varieties of resource

1 Machine resources — implicit properties of execution

heap space
execution time
stack height, call counting, . . .

2 Program resources — explicitly manipulated in code

use-once permissions
collection sizes, thread pools, . . .

3 External resources — exist outwith the JVM

billable events like text messages, phone calls
persistent database records, power consumption, . . .

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Controlling resources

Aim: quantitative analysis of resource usage.

Elsewhere: patterns of access, e.g. create, open, close.

Objectives:

Simple, type-based treatment of useful cases
Static analysis to predict behaviour
Certification for PCC

Benefits of resource control:

Obvious security relevance. Many security breaches amount to
violating resource control: exceeding allowed bounds or gaining
unauthorised access to resources.
Also useful beyond security: feasibility, scheduling, pricing.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Classical program analysis

Mobius work also includes approaches based on control flow graphs:

Permissions, externally

native methods assigned a permissions profile
static analysis of control flow graph, check no errors
INRIA Rennes: Besson, Jensen, Pichardie.
see: WITS/ETAPS ’07 invited talk by Thomas Jensen

Execution cost

assign costs to bytecode statements (e.g., time)
generate a set of cost equations on control flow graph
Madrid: Albert, Arenas, Genaim, Puebla, Zanardini.
see: ESOP ’07 paper by Madrid team

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

What is a type system?

A type system is a syntactically defined subset T of programs such that:

P ∈ T ⇒ Compile(P) |= φ

where Compile(P) is the object code corresponding to P and φ is some
desired property of its execution.

For example,

T = “well-typed Java programs”

φ = “methods always correctly invoked”

Slogan (Robin Milner): Well-typed programs do not go wrong.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Specialized type systems

Modern type systems guarantee more sophisticated and interesting
properties. For example:

Secure information flow.

Bounds on resource usage.

Absence of unwanted aliasing.

Legal use of dynamic deallocation.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Declarative presentations of type systems

An inductively defined typing judgement relates program phrases e to
types τ , given an assignment Γ of types to methods and variables.

Typing rules are mostly syntax-directed:
Γ ` x1 : int Γ ` x2 : int

Γ ` x1 + x2 : int
,

except for . . .

side conditions involving constraints (numerical, set-based);

method types declared up front;

existential metavariables, e.g. in subsumption rule:
e : τ τ ≤ τ ′

e : τ ′

Type soundness: valid typing implies desired semantic property.

Explaining power: simple formulation and declarative presentation.

Inference: generic algorithms available to suggest appropriate types.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Declarative presentations of type systems

An inductively defined typing judgement relates program phrases e to
types τ , given an assignment Γ of types to methods and variables.

Typing rules are mostly syntax-directed:
Γ ` x1 : int Γ ` x2 : int

Γ ` x1 + x2 : int
,

except for . . .

side conditions involving constraints (numerical, set-based);

method types declared up front;

existential metavariables, e.g. in subsumption rule:
e : τ τ ≤ τ ′

e : τ ′

Type soundness: valid typing implies desired semantic property.

Explaining power: simple formulation and declarative presentation.

Inference: generic algorithms available to suggest appropriate types.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Declarative presentations of type systems

An inductively defined typing judgement relates program phrases e to
types τ , given an assignment Γ of types to methods and variables.

Typing rules are mostly syntax-directed:
Γ ` x1 : int Γ ` x2 : int

Γ ` x1 + x2 : int
,

except for . . .

side conditions involving constraints (numerical, set-based);

method types declared up front;

existential metavariables, e.g. in subsumption rule:
e : τ τ ≤ τ ′

e : τ ′

Type soundness: valid typing implies desired semantic property.

Explaining power: simple formulation and declarative presentation.

Inference: generic algorithms available to suggest appropriate types.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Comparing types systmes with program analysis

Advantages of type systems:

Soundness separated from inference algorithms. No need to
understand inference algorithm to grasp meaning of type system.

Inherently interprocedural and modular.

Interaction with user, e.g. via type annotations.

Potential to connect to program logics.

Disadvantages of type systems:

Less experience than with program analysis.

More often ad-hoc due to lack of suitable approximation theory.

Sometimes typing rules become very complicated.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Simple type system for heap space

Types are natural numbers.

Assignment Σ of types to methods M. Assign types to expressions with
rules like:

` e : n n ≤ m

e : m
(weak)

` e1 : n1 ` e2 : n2

` let x=e1 in e2 : n1 + n2
(let)

` new C (x1, . . . , xn) : 1
(new)

Σ(M) = n

` M(x1, . . . , xn) : n
(invoke)

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Type inference

Checking correctness of a derivation is easy; finding one can be harder.

Assign a variable to each method.

Derive “skeleton” type derivation using weak only next to invoke.

Try to solve resulting constraints.

Output:

Typing is static evidence that program satisfies some resource bound

Security model: client may refuse to execute code that has no bound,
or whose bound is beyond device limits

Context:

Provably equivalent to graph-based analysis.

Can be extended to deallocation and input-dependent bounds.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Extending to deallocation

Typing judgement: Γ ` e : m → n.

Meaning: If freelist has size s ≥ m then evaluation of e will succeed and
leave freelist of size ≥ (n + s −m).

` e : m→n m′ ≥ m n′ ≤ n + m′ −m

e : m′→n′ (weak’)

` e1 : m→k ` e2 : k→n

` let x=e1 in e2 : m→n
(let’)

` new C (x1, . . . , xn) : 1→0
(new’)

Σ(M) = m→n

` M(x1, . . . , xn) : m→n
(invoke’)

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Certification with type systems

Applying this to PCC for trustworthy computing:

Typing derivations can be used directly as certificates. But: need to
believe or understand type soundness.

Likewise, successful runs of a program analysis, perhaps in condensed
form can be used as certificates. But: need to believe or understand
correctness of analysis.

Two better options:

Formally prove correctness of analysis / type system

Translate typing judgements into judgements of a formalised program
logic, translate typing derivations into proofs of those translations.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Translating heap space type system into program logic

For example, e : n becomes JeK : φn where φn is the specification

φn ≡
pre
post |h| ≤ |hold|+ n
inv |h| ≤ |hold|+ n

Here JeK is the bytecode corresponding to e and |hold|, |h| are the initial
and current heap respectively.

Typing derivations can be translated into program logic rule by rule. Each
typing rule can be translated (as an admissible rule) once and for all.

The Mobius Base Logic expresses assertions like this and provides proof
rules that allow modular translation of typing rules. Resources can be
tracked with ghost fields in the heap. [See Hofmann talk later]

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Translating heap space type system into program logic

For example, e : n becomes JeK : φn where φn is the specification

φn ≡
pre
post |h| ≤ |hold|+ n
inv |h| ≤ |hold|+ n

Here JeK is the bytecode corresponding to e and |hold|, |h| are the initial
and current heap respectively.

Typing derivations can be translated into program logic rule by rule. Each
typing rule can be translated (as an admissible rule) once and for all.

The Mobius Base Logic expresses assertions like this and provides proof
rules that allow modular translation of typing rules. Resources can be
tracked with ghost fields in the heap. [See Hofmann talk later]

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Security Model

Starting assumption: at any point some set of permissions is available.

Certain operations may:

grant a permission; increases the permission set

request a permission; this

either checks presence — classical access control,
or checks presence and consumes an instance — e.g. billable events

A program is safe if for every execution trace the requested permissions are
present (i.e. no checks fail).

Consumption of use-once resources is naturally modelled using multisets of
permissions, so each permission has a multiplicity. Including multiplicity
∞ subsumes the classical case.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Security Model

Starting assumption: at any point some set of permissions is available.

Certain operations may:

grant a permission; increases the permission set

request a permission; this

either checks presence — classical access control,
or checks presence and consumes an instance — e.g. billable events

A program is safe if for every execution trace the requested permissions are
present (i.e. no checks fail).

Consumption of use-once resources is naturally modelled using multisets of
permissions, so each permission has a multiplicity. Including multiplicity
∞ subsumes the classical case.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Security Model

Starting assumption: at any point some set of permissions is available.

Certain operations may:

grant a permission; increases the permission set

request a permission; this

either checks presence — classical access control,
or checks presence and consumes an instance — e.g. billable events

A program is safe if for every execution trace the requested permissions are
present (i.e. no checks fail).

Consumption of use-once resources is naturally modelled using multisets of
permissions, so each permission has a multiplicity. Including multiplicity
∞ subsumes the classical case.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Example: SMS in MIDP

Text messaging (SMS) by Java phone applications (MIDP, MIDlets).
Widely used for basic connectivity. But: Cost concerns and draconian
security policies.

Bulk messaing MIDlet code

msg.edit();
grp = addr book.sel grp(); // user selects recipients
for (addr in grp) {
num = addr.get mobile();
msg.send(num); // user re-confirms each recipient

}

Hard to detect statically that re-confirmation is unnecessary:

Selection and sending may happen in different threads
User should confirm phone number rather than address book entry

Intrusive security even introduces new social engineering attacks

Also: multi-stage protocols; unattended actions; . . .

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

API for Resource Managers

Idea: reify permission sets into code to allow explicit accounting.

New API for resource managers, with three classes:

Resource — abstract class for resources; subclasses immutable
Multiset — for manipulating permission sets
ResourceManager — encapsulation of granted permission set

Standard operations instrumented with resource consumption.

Separates granting resources from using them

Supports block booking: requesting several resources at the same
time, in advance.

API needs careful design: resource manager should be tamper-proof
and new information flows limited.

Compared with leaving permissions implicit:

Pros: visible to programmer, flexible static/dynamic policies.
Cons: additional checks, complexity, platform library extension

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

API for Resource Managers

Idea: reify permission sets into code to allow explicit accounting.

New API for resource managers, with three classes:

Resource — abstract class for resources; subclasses immutable
Multiset — for manipulating permission sets
ResourceManager — encapsulation of granted permission set

Standard operations instrumented with resource consumption.

Separates granting resources from using them

Supports block booking: requesting several resources at the same
time, in advance.

API needs careful design: resource manager should be tamper-proof
and new information flows limited.

Compared with leaving permissions implicit:

Pros: visible to programmer, flexible static/dynamic policies.
Cons: additional checks, complexity, platform library extension

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

API for Resource Managers

Idea: reify permission sets into code to allow explicit accounting.

New API for resource managers, with three classes:

Resource — abstract class for resources; subclasses immutable
Multiset — for manipulating permission sets
ResourceManager — encapsulation of granted permission set

Standard operations instrumented with resource consumption.

Separates granting resources from using them

Supports block booking: requesting several resources at the same
time, in advance.

API needs careful design: resource manager should be tamper-proof
and new information flows limited.

Compared with leaving permissions implicit:

Pros: visible to programmer, flexible static/dynamic policies.
Cons: additional checks, complexity, platform library extension

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

API for Resource Managers

Idea: reify permission sets into code to allow explicit accounting.

New API for resource managers, with three classes:

Resource — abstract class for resources; subclasses immutable
Multiset — for manipulating permission sets
ResourceManager — encapsulation of granted permission set

Standard operations instrumented with resource consumption.

Separates granting resources from using them

Supports block booking: requesting several resources at the same
time, in advance.

API needs careful design: resource manager should be tamper-proof
and new information flows limited.

Compared with leaving permissions implicit:

Pros: visible to programmer, flexible static/dynamic policies.
Cons: additional checks, complexity, platform library extension

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Using resource managers

MIDlet with resource manager

msg.edit(); // user edits message
nums = addr book.sel nums(); // user selects recipients
Multiset r = new Multiset();
for (num in nums) { // gather resources
r.add(Resource.from string(num));

}
ResMgr m = new ResMgr();
r = m.enable(r); // user grants resources
if (r.is empty()) {
for (num in nums) { // send loop, pass mgr
msg.send rm(m, num);

}
}

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Type system for resource management

Use a type system to analyze statically the use of external resources.

Work with simple procedural language (bytecode-level), featuring:

resource type res with constructors, equality
multiset type mset with union, intersection, . . .
abstract type mgr with copying prohibited

Statements in SSA form:

s :: =skip | assert x1 in x2 | y : = e | s1; s2 |
if x then s1 else s2 fi | p(x1, . . . , xm|y1, . . . , yn)

Procedure parameters partitioned by input/output mode.

All mgr-variables must be used exactly once (linear).

assert checks x1 ⊆ x2, raises error otherwise

Built-in procedures for manipulating managers, etc.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Built-in procedures

empty(|m : mgr)
Set m to the empty multiset.

enable(r1 : mset|m : mgr, r2 : mset)
Ask user/policy to grant resources r1.
Place granted resources in m, denied resources in r2.

split(m : mgr, r : mset|m1 : mgr,m2 : mgr)
Split off from m all resources contained in r .
Place split off resources in m2, remaining resources in m1.

join(m1 : mgr,m2 : mgr|m : mgr)
Set m to the sum of resources in m1 and m2.

consume(m : mgr|)
No-op (required due to strict linearity).

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Bulk messaging (1)

Main procedure

bulk send(msg:string, nums:string[] |) {
r,r’:mset;
m,m’:mgr;
b:bool;

res from nums(nums | r);
enable(r | m, r’);
b := r’ = ∅;
if b
then msg send(msg, nums, m | m’);

assert m’ in r’;
consume(m’ |)

else consume(m |)
fi

}

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Bulk Messaging (2)

Send loop — body

msg send’(msg:string, nums:string[], m:mgr, i:int | m’:mgr) {
b:bool;
num:string;
i’:int;
m’’:mgr;

b := i < #nums;
if b
then num := nums[i];

send rm(msg, num, m | m’’);
i’ := i+1;
msg send’(msg, nums, m’’, i’ | m’)

else move(m | m’)
fi

}

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Bulk Messaging (3)

Instrumented send procedure

send rm(msg:string, num:string, m:mgr | m’:mgr) {
r:mset;
m’’:mgr;

r := {|from string(num):1|};
split(m, r | m’, m’’);
assert r in m’’;
send(msg, num |);
consume(m’’ |)

}

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Effect types

Could still just use runtime checks, and get block booking (Aspinall et al.
REM ’07).

But static types prevent runtime errors, give programmer feedback, can be
independently checked, etc.

Use effect type Φ → Ψ where pre-post constraints Φ and Ψ are quantified
FO formulae over expressions.

Type judgement

Γ ` s : Φ → Ψ says that for all runs of s from state α with α |= Φ:

the error will not be raised, and

if the execution terminates in a state β then β |= Φ ∧ Ψ.

Judgement is relative to a program Prog and an effect environment Eff .

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Effect types

Could still just use runtime checks, and get block booking (Aspinall et al.
REM ’07).

But static types prevent runtime errors, give programmer feedback, can be
independently checked, etc.

Use effect type Φ → Ψ where pre-post constraints Φ and Ψ are quantified
FO formulae over expressions.

Type judgement

Γ ` s : Φ → Ψ says that for all runs of s from state α with α |= Φ:

the error will not be raised, and

if the execution terminates in a state β then β |= Φ ∧ Ψ.

Judgement is relative to a program Prog and an effect environment Eff .

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Typing rules

skip

Γ ` skip : > → >

assertion

Γ ` assert x1 in x2 : (x1 ⊆ x2) → >

assignment

Γ ` y : = e : > → (y = e)

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Effect types for built-in procedures

empty(|m : mgr)

Eff (empty) = > → (m = ∅)

enable(r1 : mset|m : mgr, r2 : mset)

Eff (enable) = > → (r1 = m] r2)

split(m : mgr, r : mset|m1 : mgr,m2 : mgr)

Eff (split) = > → (m2 = m ∩ r) ∧ (m = m1]m2)

join(m1 : mgr,m2 : mgr|m : mgr)

Eff (join) = > → (m = m1]m2)

consume(m : mgr|)
Eff (consume) = > → >

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

More typing rules

procedure call

Prog(p) = p(x1 : σ1, . . . , xm : σm|y1 : τ1, . . . , yn : τn)[{. . . }]
Eff (p) = Φ → Ψ Φ′ = Φ(x ′

i /xi) Ψ′ = Ψ(x ′
i , y

′
i /xi , yi)

Γ ` p(x ′
1, . . . , x

′
m|y ′

1, . . . , y
′
n) : Φ′ → Ψ′

sequential composition

Γ ` s1 : Φ → Ψ1 Γ ` s2 : Φ ∧ Ψ1 → Ψ2

Γ ` s1; s2 : Φ → Ψ1 ∧ Ψ2

conditional branching

Γ ` s1 : z ∧ Φ → Ψ Γ ` s2 : ¬z ∧ Φ → Ψ

Γ ` if z then s1 else s2 fi : Φ → Ψ

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

weakening

Γ ` s : Φ → Ψ
Φ′ |= Φ

(Φ ⇒ Ψ) |= (Φ′ ⇒ Ψ′)

Γ ` s : Φ′ → Ψ′

procedure body

Prog(p) = p(x1 : σ1, . . . , xm : σm|y1 : τ1, . . . , yn : τn){z1 : ρ1, . . . , zl : ρl ; s}
Γ = x1 : σ1, . . . , xm : σm, y1 : τ1, . . . , yn : τn, z1 : ρ1, . . . , zl : ρl

Eff (p) = Φ → Ψ
Γ ` s : Φ → Ψ

Eff ` p

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Type soundness

Big-step semantics α ` s B β

there is an execution of statement s starting in state α and
terminating in state β.

Soundness Theorem

If

Eff ` p for all procedures in the program

Γ ` s : Φ → Ψ, and

α ` s B β

then α 6= ∧ α |= Φ implies β 6= ∧ β |= Φ ∧ Ψ.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Type soundness

Big-step semantics α ` s B β

there is an execution of statement s starting in state α and
terminating in state β.

Soundness Theorem

If

Eff ` p for all procedures in the program

Γ ` s : Φ → Ψ, and

α ` s B β

then α 6= ∧ α |= Φ implies β 6= ∧ β |= Φ ∧ Ψ.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Erasing resource managers

Erasure operation: mgr◦ = unit, (assert x1 in x2)
◦ = skip.

After erasure, enable retains user/policy interaction:

Prog◦(enable) = enable(r1 : mset|m : unit, r2 : mset)
Eff ◦(enable) = > → (r2 ⊆ r1).

Erasure Theorem

Resource managers can be safely erased from well-typed programs: if

Eff ` p for all procedures in the program Prog ,

Γ ` s : Φ → Ψ, and

α 6= ∧ α |= Φ

then for all states β, α ` s B β ⇔ α◦ ` s◦ B β◦.

Corollary

Resource managers cannot be used as covert channels.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Erasing resource managers

Erasure operation: mgr◦ = unit, (assert x1 in x2)
◦ = skip.

After erasure, enable retains user/policy interaction:

Prog◦(enable) = enable(r1 : mset|m : unit, r2 : mset)
Eff ◦(enable) = > → (r2 ⊆ r1).

Erasure Theorem

Resource managers can be safely erased from well-typed programs: if

Eff ` p for all procedures in the program Prog ,

Γ ` s : Φ → Ψ, and

α 6= ∧ α |= Φ

then for all states β, α ` s B β ⇔ α◦ ` s◦ B β◦.

Corollary

Resource managers cannot be used as covert channels.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Erasing resource managers

Erasure operation: mgr◦ = unit, (assert x1 in x2)
◦ = skip.

After erasure, enable retains user/policy interaction:

Prog◦(enable) = enable(r1 : mset|m : unit, r2 : mset)
Eff ◦(enable) = > → (r2 ⊆ r1).

Erasure Theorem

Resource managers can be safely erased from well-typed programs: if

Eff ` p for all procedures in the program Prog ,

Γ ` s : Φ → Ψ, and

α 6= ∧ α |= Φ

then for all states β, α ` s B β ⇔ α◦ ` s◦ B β◦.

Corollary

Resource managers cannot be used as covert channels.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Outline

1 Resource control

2 Type systems

3 Heap space analysis

4 Permission analysis

5 Summary

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Summary

Specialized type systems can provide quantitative analysis of resource
usage; with static checks suitable for proof-carrying code.

Several kinds of resource: machine intrinsic; explicit in code; external.

Type-based analysis: modular, declarative, certifying.

Certification approaches: base logic proofs; admissible embedding of
type systems; formalize correctness of analysis.

Meta properties like erasure for resource managers: certified code
may safely skip runtime checks.

Particular resources: heap space, permissions, text message block
booking.

Continuing work in Mobius includes: improving analyses and automation;
handling more Java and Java bytecode; implementing certification;
combining the approaches of logic, types, abstract interpretation and
program analysis as sources of digital evidence for program behaviour.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

References

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Cost analysis of Java bytecode.
Proc. ESOP 2007, LNCS 4421. Springer-Verlag, 2007.

D. Aspinall, P. Maier, and I. Stark.
Monitoring external resources in Java MIDP.
Proc. REM 2007: Run Time Enforcement for Mobile and Distributed
Systems, ENTCS. Elsevier, 2007.

L. Beringer and Martin Hofmann.
A bytecode logic for JML and types.
Proc. APLAS 2006, LNCS 4279. Springer-Verlag, 2006.

F. Besson, G. Dufay, and T. Jensen.
A formal model of access control for mobile interactive devices.
Proc. ESORICS 2006, LNCS 4189. Springer-Verlag, 2006.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

Acknowledgements

Mobius: Mobility, Ubiquity and Security

Mobius is funded from 2005–2009 as project IST-015905 under the Global
Computing II proactive initiative of the Future and Emerging Technologies
objective in the Information Society Technologies priority of the European
Commission’s 6th Framework programme.

Disclaimer: This document reflects only the author’s views and the
European Community is not liable for any use that may be made of the
information contained therein.

Ian Stark — Types for Resource Control FMCO ’07 — CWI Amsterdam 2007-10-24

http://cordis.europa.eu/ist/fet/gc.htm
http://cordis.europa.eu/ist/fet/gc.htm
http://www.cordis.lu/ist/fethome.htm
http://www.cordis.lu/ist/home.html
http://www.cordis.lu/fp6/home.html

	Resource control
	Type systems
	Heap space analysis
	Permission analysis
	Summary

