
http://www.ed.ac.uk/∼stark/reducibility.html

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Reducibility and >>-lifting for Computation Types

Ian Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

TLCA 2005, Nara, Japan
Friday 22 April 2005

http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark

Overview

Summary

We present >>-lifting: an operational technique to define and prove
properties of terms in Moggi’s monadic computation types.

Demonstrate application to Girard-Tait reducibility, with a proof of strong
normalisation for the computational metalanguage.

Talk outline

The computational metalanguage λml

>>-lifting for reducibility =⇒ proof of strong normalisation

Robustness: extension to sum types and exceptions

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 15

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage λml

Moggi’s computational metalanguage λml : how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, I/O, state, non-deterministic
choice, jumps, . . .

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 14

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of λml

Types A,B ::= ι | A → B | A× B | TA

Terms L,M,N,P ::= xA | λxA.M | MN

| 〈M,N〉 | fst(M) | snd(M)

| [M] | let xA ⇐M inN

Typing
M : A

[M] : TA

M : TA N : TB

let xA ⇐M inN : TB

Type constructor T acts as a categorical strong monad

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 13

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of λml

Types A,B ::= ι | A → B | A× B | TA

Terms L,M,N,P ::= xA | λxA.M | MN

| 〈M,N〉 | fst(M) | snd(M)

| [M] | let xA ⇐M inN

Typing
M : A

[M] : TA

M : TA N : TB

let xA ⇐M inN : TB

Type constructor T acts as a categorical strong monad

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 13

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of λml

Types A,B ::= ι | A → B | A× B | TA

Terms L,M,N,P ::= xA | λxA.M | MN

| 〈M,N〉 | fst(M) | snd(M)

| [M] | let xA ⇐M inN

Typing
M : A

[M] : TA

M : TA N : TB

let xA ⇐M inN : TB

Type constructor T acts as a categorical strong monad

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 13

http://www.ed.ac.uk/~stark/reducibility.html

Applications of λml

For example. . .

Denotational semantics: extend pure models (domains, categories)
uniformly to handle computational effects.

Haskell: monads for mixing functional and effectful code,
programming interactions with the real world.

Compilers: MLj and SML.NET use a monadic intermediate language
to carry out type-preserving compilation.

Generic vs. concrete

Different applications may use λml generically (any T), or concretely
(fixed T for specific computational features)

We look at strong normalisation for generic λml .

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 12

http://www.ed.ac.uk/~stark/reducibility.html

Reductions for λml

Standard βη for functions and products, and for computations:

T .β let x⇐ [N] in M −→ M[x := N]

T .η let x⇐M in [x] −→ M

T .assoc let y⇐ (let x⇐ L inM) in N

−→ let x⇐ L in (let y⇐M inN)

Theorem (To prove)

λml is strongly normalising: no term M ∈ λml has an infinite reduction
sequence M → M1 → · · ·

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 11

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility

Straightforward induction on term structure fails to prove strong
normalisation. Standard step: use an auxiliary reducibility predicate.

Define redA ⊆ A by induction on structure of type A.

Show useful properties of redA by induction on A; in particular that
all elements are strongly normalising: ∀M ∈ redA . M↓

Show all M are in redA, by induction on structure of term M.

Roughly, reducibility will be the logical predicate induced by SN at ground type

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 10

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for λβη

Standard reducibility for ground, function and product types:

Definition (Reducibility, begun)

redι = { M : ι | M↓ }

redA→B = { F : A → B | ∀M ∈ redA . FM ∈ redB }

redA×B = { P : A× B | fst(P) ∈ redA & snd(P) ∈ redB }

. . . but how to define this “semantic” predicate at TA, when T has no
fixed semantics?

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 9

http://www.ed.ac.uk/~stark/reducibility.html

Structured continuations

A term abstraction (x)N is a computation term N with a
distinguished free variable x.

A typed continuation K is a finite list of term abstractions:

K ::= Id | K ◦ (x)N

Apply continuations to computations with nested let:

K : TA (TB and M : TA Id @ M = M

=⇒ K @ M : TB (K ◦ (x)N) @ M = K @ (let x⇐M inN)

Stack depth of K tracks the T .assoc commuting conversions.

Continuations reduce: K → K ′ iff ∀M . K @ M → K ′ @ M.

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 8

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for computations

Definition (Reducibility, completed)

redι = { M : ι | M↓ }

redA→B = { F : A → B | ∀M ∈ redA . FM ∈ redB }

redA×B = { P : A× B | fst(P) ∈ redA & snd(P) ∈ redB }

redTA = { M : TA | ∀K ∈ red>A . (K @ M)↓ }

red>A = { K : TA (TB | ∀N ∈ redA . (K @ [N])↓ }

Structured continuations help with the inductive proofs that [−] and let

preserve reducibility.

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 7

http://www.ed.ac.uk/~stark/reducibility.html

Result

Fundamental Theorem

If N1 ∈ redA1 , . . . ,Nk ∈ redAk
and M : B then

M[x1 := N1, . . . , xk := Nk] ∈ redB .

(Proof by induction on the structure of term M)

Corollary

Each λml term M : A is in redA, and hence strongly normalising

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 6

http://www.ed.ac.uk/~stark/reducibility.html

Leap-frog

Jump over continuations to lift properties from values to computations:

General >>-lifting

Predicate φ ⊆ A (K > M
def⇐⇒ (K @ M)↓)

φ> = { K | K > [N] for all N ∈ φ }

φ>> = { M | K > M for all K ∈ φ> } ⊆ TA

Continuation K — “observation”
Lifting φ>> — “best observable approximation to φ on computations”

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 5

http://www.ed.ac.uk/~stark/reducibility.html

Extension to λml + sums

Sum type A + B, with constructors inl(M), inr(N) and decomposition

case L of (inl(x)⇒M | inr(y)⇒N) : TC

Sum continuations

S ::= . . . | K ◦ 〈(x)M, (y)N〉

red>A+B = { S : (A + B) (TC | ∀M ∈ redA . (S @ inl(M))↓
& ∀N ∈ redB . (S @ inr(N))↓ }

redA+B = { L : A + B | ∀S ∈ red>A+B . (S @ L)↓ }

Enough to show SN for λml + sums, including commuting conversions

Further: use frame stacks for leap-frog definitions of reducibility at sums,
products and function types, even in the plain lambda-calculus.

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 4

http://www.ed.ac.uk/~stark/reducibility.html

Extension to λml + exceptions

Enhance let with exceptional syntax [Benton, Kennedy ’01; also Erlang ’05]

E ∈ Exn

raise(E) : TA

M : TA N : TB Ei ∈ Exn Pi : TB

try xA ⇐M inN unless {E1 7→ P1, . . .} : TB

Continuations with handlers

K ::= Id | K ◦ 〈(x)N,H〉 H = {E1 7→ P1, . . .}

red>A = { K | ∀N ∈ redA . (K @ [N])↓
& ∀E ∈ Exn . (K @ raise(E))↓ }

redTA = { M | ∀K ∈ red>A . (K @ M)↓ }

Sufficient to prove strong normalisation for λml + exceptions

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 3

http://www.ed.ac.uk/~stark/reducibility.html

Related work

Various closure operators on predicates or relations:

>>-closure of [Pitts 2000, Abadi 2000] for defining an operational
analogue of admissibility

Saturation and saturated sets in reducibility proofs: for example,
[Girard 1987] for linear logic, [Parigot 1997] for λµ

Biorthogonality in operational models for recursive types [Melliès,

Vouillon 2004]

Evident similarities between leap-frog and continuation-passing style; also
the continuation monad itself TA = R(RA).

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 2

http://www.ed.ac.uk/~stark/reducibility.html

Summary and further work

>>-lifting raises operational predicates in λml from A to TA:

φ ⊆ A

values
φ> ⊆ A>

continuations
φ>> ⊆ TA

computations

”best observable
approximation to φ”

Continuations as frame stacks are good for proof by induction

Example: type-directed reducibility =⇒ strong normalisation of λml

Extends to treat sums, exceptions

Basis for a normalisation by evaluation algorithm for λml ; implementation
for the monadic intermediate language of the SML.NET compiler

[Lindley PhD 2005]
Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 1

http://www.ed.ac.uk/~stark/reducibility.html

Ian Stark (LFCS Edinburgh) Reducibility and >>-lifting for Computation Types TLCA 2005 0

http://www.ed.ac.uk/~stark/reducibility.html

	Opening
	The Computational Metalanguage
	Reducibility and Strong Normalisation
	Extensions
	Closing

