Reducibility and T1-lifting for Computation Types

lan Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

TLCA 2005, Nara, Japan
Friday 22 April 2005

http://www.ed.ac.uk/~stark/reducibility. html

http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark

Summary

We present TT-lifting: an operational technique to define and prove
properties of terms in Moggi's monadic computation types.

Demonstrate application to Girard-Tait reducibility, with a proof of strong
normalisation for the computational metalanguage.

Talk outline
@ The computational metalanguage A,,;
o TT-lifting for reducibility = proof of strong normalisation

@ Robustness: extension to sum types and exceptions

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage A,

Moggi's computational metalanguage A,;,;: how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, /O, state, non-deterministic
choice, jumps, ...

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of A,

Types ALB = |A—=B|AxB|TA
Terms LM NP == x| &AM | MN
| (M,N) | fst(M) | snd(M)
| M] | letx® =MinN
Tvoin M:A M:TA N:TB
yping M]-TA letxA = MinN : TB

Type constructor T acts as a categorical strong monad

TLCA 2005

Reducibility and T T-lifting for Computation Types

lan Stark (LFCS Edinburgh)

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of A,

Types ALB = t|A—=B|AxB]|TA
Terms LM NP == x| &AM | MN
| (M,N) | fst(M) | snd(M)
| M] | letx® =MinN
Tvoin M:A M:TA N:TB
yping M]-TA letxA = MinN : TB

Type constructor T acts as a categorical strong monad

TLCA 2005

Reducibility and T T-lifting for Computation Types

lan Stark (LFCS Edinburgh)

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of A,

Types ALB = t|A—=B|AxB]|TA
Terms LM NP == x| &AM | MN
| (M,N) | fst(M) | snd(M)
| M] | letx® =MinN
Tvoin M:A M:TA N:TB
yping M]-TA letxA = MinN : TB

Type constructor T acts as a categorical strong monad

TLCA 2005

Reducibility and T T-lifting for Computation Types

lan Stark (LFCS Edinburgh)

http://www.ed.ac.uk/~stark/reducibility.html

Applications of A,

For example. ..
@ Denotational semantics: extend pure models (domains, categories)
uniformly to handle computational effects.

@ Haskell: monads for mixing functional and effectful code,
programming interactions with the real world.

o Compilers: MLj and SML.NET use a monadic intermediate language
to carry out type-preserving compilation.

Generic vs. concrete

Different applications may use A,,; generically (any T), or concretely
(fixed T for specific computational features)

We look at strong normalisation for generic A,,;.

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Reductions for A,

Standard f3n for functions and products, and for computations:
T.B letx < [N]Jin M — M[x:= N]
Tmn letx =Min[x] — M

T.assoc lety < (letx<LinM)inN
—s letx < Lin(lety < MinN)

Theorem (To prove)

Amu IS strongly normalising: no term M € A,,;; has an infinite reduction
sequence M — My — - --

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility

Straightforward induction on term structure fails to prove strong
normalisation. Standard step: use an auxiliary reducibility predicate.

@ Define reda C A by induction on structure of type A.

@ Show useful properties of reda by induction on A; in particular that
all elements are strongly normalising: VM € reda . M|

@ Show all M are in reda, by induction on structure of term M.

Roughly, reducibility will be the logical predicate induced by SN at ground type

TLCA 2005

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for Ag,

Standard reducibility for ground, function and product types:

Definition (Reducibility, begun)

red. ={M : .| M]}
reda_g ={F: A —B|VYM € reda . FM € redg }

redaxg ={P: A x B|fst(P) € reda & snd(P) € redg }

... but how to define this “semantic” predicate at TA, when T has no
fixed semantics?

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Structured continuations

@ A term abstraction (x)N is a computation term N with a
distinguished free variable x.

@ A typed continuation K is a finite list of term abstractions:
K:=:=1d | Ko (x)N
@ Apply continuations to computations with nested let:

K:TA —-<TBand M: TA [deM =M
— K@M :TB (Ko (x)N)@M =K@ (letx <= MinN)

Stack depth of K tracks the T.assoc commuting conversions.

o Continuations reduce: K — K’ iff YM. K@M — K’ @ M.

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for computations

Definition (Reducibility, completed)

red. ={M : .| M]}
reda_,g ={F: A —B|VM € reda . FM € redg }
redaxg ={P: A x B|fst(P) € reda & snd(P) € redg }

redra ={M:TA |VK € red} . (K@M)]}

redy ={K:TA — TB | VN € reda . (K @[N])]}

Structured continuations help with the inductive proofs that [—] and let
preserve reducibility.

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Fundamental Theorem

If Ny € reda,,..., Ny € redp, and M : B then

M[x1 :=Ni, ..., xx :=Nxy] € redp .

(Proof by induction on the structure of term M)

Corollary

Each A,y term M : A is in reda, and hence strongly normalising

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Leap-frog

Jump over continuations to lift properties from values to computations:

General TT1-lifting

Predicate C A (KTM &, (K@M)])
d) ={K|KT[N]forallNed¢}
dTT={M|KTMforallKep'} CTA

Continuation K — “observation”
Lifting T T — “best observable approximation to ¢ on computations”

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Extension to A,,; + sums

Sum type A + B, with constructors inl(M), inr(N) and decomposition

caseLof (inl(x) = M |inr(y) = N): TC
S == ... | Ko{(x)M, (y)N)

redjy g ={S:(A+B) —~TC | YM € reda . (S@inl(M))]
& VN € redg . (SQ@inr(N))] }

reda g ={L:A+B|VS€redy g .(SCL)|}

Enough to show SN for A,,;; 4+ sums, including commuting conversions

Further: use frame stacks for leap-frog definitions of reducibility at sums,
products and function types, even in the plain lambda-calculus.

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Extension to A,,; + exceptions

Enhance let with exceptional syntax [Benton, Kennedy '01; also Erlang '05]

E € Exn M:TA N:TB Ei€ Exn P;:TB
raise(E) : TA tryx?* < MinNunless{E; — P1,...}: TB

Continuations with handlers

K = 1d | KO<(X)N,H> H:{E1>—>P1,}

red\ ={K | YN € reda . (K@ [N])|
& VE € Exn . (K@raise(E))] }

redra ={M|VK € red} . (K@M)]|}

Sufficient to prove strong normalisation for A,,; 4+ exceptions

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Related work

Various closure operators on predicates or relations:

@ TT-closure of [Pitts 2000, Abadi 2000] for defining an operational
analogue of admissibility

@ Saturation and saturated sets in reducibility proofs: for example,
[Girard 1987] for linear logic, [Parigot 1997] for An

@ Biorthogonality in operational models for recursive types [Melligs,
Vouillon 2004]

Evident similarities between leap-frog and continuation-passing style; also
. . . A
the continuation monad itself TA = R(R").

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

Summary and further work

o TT-lifting raises operational predicates in A,,; from A to TA:

dCA ¢ CAT ¢TI CTA
values continuations computations

"best observable
approximation to ¢"

o Continuations as frame stacks are good for proof by induction
@ Example: type-directed reducibility = strong normalisation of A,;
@ Extends to treat sums, exceptions

Basis for a normalisation by evaluation algorithm for A,,;; implementation

for the monadic intermediate language of the SML.NET compiler
[Lindley PhD 2005]

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

lan Stark (LFCS Edinbu Reducibility a ifting for Computation Types TLCA 2005

http://www.ed.ac.uk/~stark/reducibility.html

	Opening
	The Computational Metalanguage
	Reducibility and Strong Normalisation
	Extensions
	Closing

