Reducibility and T1-lifting for Computation Types

lan Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

TLCA 2005, Nara, Japan
Friday 22 April 2005

http://www.ed.ac.uk/~stark/reducibility. html


http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark

Summary

We present TT-lifting: an operational technique to define and prove
properties of terms in Moggi's monadic computation types.

Demonstrate application to Girard-Tait reducibility, with a proof of strong
normalisation for the computational metalanguage.

Talk outline
@ The computational metalanguage A,,;
o TT-lifting for reducibility = proof of strong normalisation

@ Robustness: extension to sum types and exceptions
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The computational metalanguage A,

Moggi's computational metalanguage A,;,;: how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, /O, state, non-deterministic
choice, jumps, ...
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Types and terms of A,

Types ALB = |A—=B|AxB|TA
Terms LM NP == x| &AM | MN
| (M,N) | fst(M) | snd(M)
| M] | letx® =MinN
Tvoin M:A M:TA N:TB
yping M]-TA letxA = MinN : TB

Type constructor T acts as a categorical strong monad
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Applications of A,

For example. ..
@ Denotational semantics: extend pure models (domains, categories)
uniformly to handle computational effects.

@ Haskell: monads for mixing functional and effectful code,
programming interactions with the real world.

o Compilers: MLj and SML.NET use a monadic intermediate language
to carry out type-preserving compilation.

Generic vs. concrete

Different applications may use A,,; generically (any T), or concretely
(fixed T for specific computational features)

We look at strong normalisation for generic A,,;.
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Reductions for A,

Standard f3n for functions and products, and for computations:
T.B letx < [N]Jin M — M[x:= N]
Tmn letx =Min[x] — M

T.assoc lety < (letx<LinM)inN
—s letx < Lin(lety < MinN)

Theorem (To prove)

Amu IS strongly normalising: no term M € A,,;; has an infinite reduction
sequence M — My — - --

lan Stark (LFCS Edinburgh) Reducibility and T T-lifting for Computation Types TLCA 2005


http://www.ed.ac.uk/~stark/reducibility.html

Reducibility

Straightforward induction on term structure fails to prove strong
normalisation. Standard step: use an auxiliary reducibility predicate.

@ Define reda C A by induction on structure of type A.

@ Show useful properties of reda by induction on A; in particular that
all elements are strongly normalising: VM € reda . M|

@ Show all M are in reda, by induction on structure of term M.

Roughly, reducibility will be the logical predicate induced by SN at ground type

TLCA 2005
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Reducibility for Ag,

Standard reducibility for ground, function and product types:

Definition (Reducibility, begun)

red. ={M : .| M]}
reda_g ={F: A —B|VYM € reda . FM € redg }

redaxg ={P: A x B|fst(P) € reda & snd(P) € redg }

... but how to define this “semantic” predicate at TA, when T has no
fixed semantics?
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Structured continuations

@ A term abstraction (x)N is a computation term N with a
distinguished free variable x.

@ A typed continuation K is a finite list of term abstractions:
K:=:=1d | Ko (x)N
@ Apply continuations to computations with nested let:

K:TA —-<TBand M: TA [deM =M
— K@M :TB (Ko (x)N)@M =K@ (letx <= MinN)

Stack depth of K tracks the T.assoc commuting conversions.

o Continuations reduce: K — K’ iff YM. K@M — K’ @ M.
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Reducibility for computations

Definition (Reducibility, completed)

red. ={M : .| M]}
reda_,g ={F: A —B|VM € reda . FM € redg }
redaxg ={P: A x B|fst(P) € reda & snd(P) € redg }

redra ={M:TA |VK € red} . (K@M)]}

redy ={K:TA — TB | VN € reda . (K @[N])]}

Structured continuations help with the inductive proofs that [—] and let
preserve reducibility.
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Fundamental Theorem

If Ny € reda,,..., Ny € redp, and M : B then

M[x1 :=Ni, ..., xx :=Nxy] € redp .

(Proof by induction on the structure of term M)

Corollary

Each A,y term M : A is in reda, and hence strongly normalising
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Leap-frog

Jump over continuations to lift properties from values to computations:

General TT1-lifting

Predicate  C A (KTM &, (K@M)])
d) ={K|KT[N]forallNed¢}
dTT={M|KTMforallKep'} CTA

Continuation K — “observation”
Lifting T T  — “best observable approximation to ¢ on computations”
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Extension to A,,; + sums

Sum type A + B, with constructors inl(M), inr(N) and decomposition

caseLof (inl(x) = M |inr(y) = N): TC
S == ... | Ko{(x)M, (y)N)

redjy g ={S:(A+B) —~TC | YM € reda . (S@inl(M))]
& VN € redg . (SQ@inr(N))] }

reda g ={L:A+B|VS€redy g .(SCL)|}

Enough to show SN for A,,;; 4+ sums, including commuting conversions

Further: use frame stacks for leap-frog definitions of reducibility at sums,
products and function types, even in the plain lambda-calculus.
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Extension to A,,; + exceptions

Enhance let with exceptional syntax [Benton, Kennedy '01; also Erlang '05]

E € Exn M:TA N:TB Ei€ Exn P;:TB
raise(E) : TA tryx?* < MinNunless{E; — P1,...}: TB

Continuations with handlers

K = 1d | KO<(X)N,H> H:{E1>—>P1,}

red\ ={K | YN € reda . (K@ [N])|
& VE € Exn . (K@raise(E))] }

redra ={M|VK € red} . (K@M)]|}

Sufficient to prove strong normalisation for A,,; 4+ exceptions
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Related work

Various closure operators on predicates or relations:

@ TT-closure of [Pitts 2000, Abadi 2000] for defining an operational
analogue of admissibility

@ Saturation and saturated sets in reducibility proofs: for example,
[Girard 1987] for linear logic, [Parigot 1997] for An

@ Biorthogonality in operational models for recursive types [Melligs,
Vouillon 2004]

Evident similarities between leap-frog and continuation-passing style; also
. . . A
the continuation monad itself TA = R(R").
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Summary and further work

o TT-lifting raises operational predicates in A,,; from A to TA:

dCA ¢ CAT ¢TI CTA
values continuations computations

"best observable
approximation to ¢"

o Continuations as frame stacks are good for proof by induction
@ Example: type-directed reducibility = strong normalisation of A,;
@ Extends to treat sums, exceptions

Basis for a normalisation by evaluation algorithm for A,,;; implementation

for the monadic intermediate language of the SML.NET compiler
[Lindley PhD 2005]
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