Reducibility and 17-lifting for Computation Types

lan Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

Séminaire PPS
Mardi 17 mai

http://www.ed.ac.uk/ ~stark/reducibility. html

http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark

Summary

We present TT-lifting: an operational technique to define and prove
properties of terms of Moggi's monadic computation types.

Demonstrate application to Girard-Tait reducibility, with a proof of strong
normalisation for the computational metalanguage.

Talk outline
@ The computational metalanguage A,;
o TT-lifting for reducibility = proof of strong normalisation

@ Robustness: extension to sum types and exceptions

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage A,

Moggi's computational metalanguage A,,,;: how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, input/output, state,
non-deterministic choice, jumps, ...

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage A,

Moggi's computational metalanguage A,,,;: how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination TA = A |, exceptions TA = A+E, input/output
TA = pX (A+0xX+X1), state TA = (SxA)°, non-deterministic
choice TA = P(A), jumps TA = RR™

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage A,

Moggi's computational metalanguage A,,,;: how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, input/output, state,
non-deterministic choice, jumps, ...

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of A,

Types AB = 1 Ground values
| A—B Functions
| AxB Products
| TA Computations
Terms LMNP == xA | A M | MN

| (M,N) | fst(M) | snd(M)
| M] | letx® =MinN

Tvoi M:A M:TA N:TB
in _—
yPing M]:TA letxA < MinN: TB
Lift value to Compute M, bind result
computation to x, compute N

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Applications of A,

For example. . .
@ Denotational semantics: extend pure models uniformly to handle
computational effects.

@ Haskell: monads for mixing functional and effectful code,
programming interactions with the real world.

o Compilers: MLj and SML.NET use a monadic intermediate language
to carry out type-preserving compilation.

Generic vs. concrete

Different applications may use A,,; generically (any T), or concretely
(fixed T for specific computational features).

We look at strong normalisation for generic A,,;.

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 4 /17

http://www.ed.ac.uk/~stark/reducibility.html

Reductions for A,

Standard f3n for functions and products, and for computations:
T.B letx < [N]JinM — M][x :=N]
Tmn letx = Min[x] — M

T.assoc lety < (letx < LinM)inN
—s letx < Lin(lety <« MinN)

Theorem (To prove)

Amu IS strongly normalising: no term M € A,,,;; has an infinite reduction
sequence M — My — - --

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility

Straightforward induction on term structure fails to prove strong
normalisation. Standard step: use an auxiliary reducibility predicate.

@ Define reda C A by induction on structure of type A.

@ Show useful properties of reda by induction on A; in particular that
all elements are strongly normalising: VM € reda . M|

@ Show all M are in reda, by induction on structure of term M.

Roughly, reducibility will be the logical predicate induced by SN at ground type

Séminaire PPS

lan Stark Reducibility and T T-lifting for Computation Types

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for Ag,

Standard reducibility for ground, function and product types:

Definition (Reducibility, begun)

red, ={M :L| M|}
reda_,g ={F: A —B|VM € reda . FM € redp }

redaxg ={P: A x B | fst(P) € redp & snd(P) € redg }

... but how to define this “semantic” predicate at TA, when T has no
fixed semantics?

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Structured continuations

@ A term abstraction (x)N is a computation term N with a
distinguished free variable x.

@ A typed continuation K is a finite list of term abstractions:
K:=1d | Ko (x)N
@ Apply continuations to computations with nested let:

K: TA—-<TBand M: TA [deM =M
— KO@M:TB (Ko (x)N)@M =K@ (letx <= MinN)

Stack depth of K tracks the T.assoc commuting conversions.

e Continuations reduce: K — K’ iff YM . K@M — K’ @ M.

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for computations

Definition (Reducibility, completed)

red, ={M :L|M]}
reda_,g ={F: A —B|VM € reda . FM € redp }
redaxg ={P: A x B|fst(P) € reda & snd(P) € redg }

redra ={M:TA | VK € red} . (K@M)]}

redy ={K:TA — TB|WN € reda . (K@[N])]}

Structured continuations — specifically |K| — are vital for inductive proofs
that let-terms preserve reducibility.

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Fundamental Theorem

If Ny € reda,,..., Ny € reda, and M : B then

M[x; :=Ni, ..., xx :=Ny] € redp .

(Proof by induction on the structure of term M)

Corollary

Each A,y term M : A is in reda, and hence strongly normalising

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 10 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Leap-frog!

Jump over continuations to lift properties from values to computations:

General T71-lifting

Predicate ¢ C A KTM &L (kem)])
dT ={K|KT[N]forall Ne ¢}
d'T={M|KTMforallKed'} CTA

Continuation K — “observation”
Lifting ' T — “best observable approximation to ¢ on computations”

'Francais saute-mouton

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Ami + exceptions

Exceptional syntax [Benton, Kennedy '01; also Erlang '05]

An enhanced let that strictly extends the standard try...catch:

tryx < MinNunless{E; — Pq,...}

Evaluate M, bind result to x and evaluate N; unless exception
raised in M, in which case engage handler H ={E; — Pq,...}.

Types and terms

E € Exn M:TA N:TB Ei€ Exn P;{:TB
raise(E) : TA tryxA* <M inNunless{E; — Py,...}: TB

letx < MinN . tryx < MinNunless{}

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 12 /17

http://www.ed.ac.uk/~stark/reducibility.html

TT1-lifting with exceptions

Put a handler within each continuation frame:

K == 1Id | Ko ((x)N,H) H={E;— Pq,...}

I[deM =M
(Ko ((x)N,H)) @M =K@ (try x < M in Nunless H)

Reducibility with exceptions and handlers

redy ={K:TA — TB | VN € reda . (K@[N])|
& VE € Exn . (KQ@raise(E))] }

redra ={M:TA|VK € red} . (K@M)|}

Sufficient to prove strong normalisation for A,,; 4+ exceptions

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

}\ml + sums

Types and terms

Sum type A + B, with constructors inl(M), inr(N) and destructor

caseLof (inl(x) = M |inr(y) = N): TC

Reductions

+.B1 caseinl(M) of (inl(x) = P |inr(y) = Q) — Px :=M]
+.Br caseinr(N) of (inl(x) = P|inr(y) = Q) — Q[x :=N]
+m caseL of (inl(x) = inl(x) | inr(y) = inr(y)) — L

+.T

letz < (caseLof (inl(x) = M |inr(y) = N))inP
— caseLof (inl(x) = (letz<= MinP) |inr(y) = (letz <= NinP))

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 14 /17

http://www.ed.ac.uk/~stark/reducibility.html

TT1-lifting for sum types

Introduce continuations especially for sums:

S = Ko ((x)M, (y)N)
(Ko ((x)M, (y)N)) @L =K @ (caseLof (inl(x) = M |inr(y) = M))

Reducibility for sums

redjy g ={S:(A+B) —~TC | YM € reda . (S@inl(M))|
& VYN € redg . (SQ@inr(N))]| }

reda+p ={L:A+B|VS€red\ p.(SCL)|}

Enough to show strong normalisation for A,,; + sums

Further: use frame stacks for leap-frog definitions of reducibility at sums,
products and function types, as well as computations.

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Related work

Various closure operators on predicates or relations:

@ TT-closure of [Pitts 2000, Abadi 2000] for defining an operational
analogue of admissibility

@ Saturation and saturated sets in reducibility proofs: for example,
[Girard 1987] for linear logic, [Parigot 1997] for Ap

@ Biorthogonality in operational models for recursive types [Mellies,
Vouillon 2004]

Other precursors:
@ Proof techniques for dynamically-allocated store [Pitts, Stark 1998]

o Evident similarities between leap-frog and continuation-passing style;
also the continuation monad itself TA = R(R™) [qu. Filinski 1994]

@ Normalisation for A,;; by translation into A + sums [Benton et al., 1998]

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 16 / 17

http://www.ed.ac.uk/~stark/operfl.html
http://www.ed.ac.uk/~stark/reducibility.html

o TT-lifting raises operational predicates in A,,; from A to TA:

dCA ¢ CAT ¢TI CTA
values continuations computations

"best observable
approximation to ¢"

o Continuations as frame stacks are good for proof by induction
@ Example: type-directed reducibility = strong normalisation of A,;
@ Extends to treat sums, exceptions

Basis for a normalisation by evaluation algorithm for A,,;; implementation

for the monadic intermediate language of the SML.NET compiler
[Lindley PhD 2005]

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

A in type-preserving compilation

MLj and SML.NET

These compilers use a monadic intermediate language to manage the
translation from a higher-order functional language (ML) into an
imperative object-oriented bytecode (JVM/.NET).

Typed ML source code n .
| Monadic Intermediate Language

Complex MIL MIL is A,,; extended with datatypes,
! exceptions, effects, etc.

‘ This type-preserving compilation

v
Simplified MIL takes types right through to guide
optimisation and help generate
Verifiable bytecode verifiable code.

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

Strong normalisation by translation

Map types and terms of A,,; into plain lambda-calculus

$(0) =0 d(x) =x
O(TA) = $(A) $(MN) = d(M)d(N)
$(A — B) = $(A) — ¢(B) ¢(Ax.M) = Ax.¢(M)
¢(M]) = d(M)
d(letx <= MinN) = (Ax.¢(N))d(M)

Interpret T as the identity type constructor, with no computational effects

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 19 /17

http://www.ed.ac.uk/~stark/reducibility.html

Reductions translated

Standard Agy, rewrites go through unchanged; while for computations:

d(T.B) (Ax.N)M — N[M/x]
¢(Tn) Axx)M — M
®(T.assoc) (Ax.P)((AyNIM) — (Ay.(Ax.P)N))M y ¢ fv(P)

The last rule is a strict extension of Ag,;,, although it is consistent and a
known “administrative” reduction from work on continuation-passing style.

Theorem (SN by translation)

Aassoc 1S strongly normalising, and hence so is A,;.

Proof is combinatorial: a manipulation of rewrite sequences to show that
SN(}\BT}) - SN(}\assoc)-

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS 20 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Basic properties of reducibility

The standard useful properties of reducibility:

Theorem (Reducibility)

For every A,,;; term M of type A, the following hold:
(i) If M € reda, then M is strongly normalising.
(i) If M € reda and M — M, then M’ € redx .

(iii) If M is neutral, and whenever M — M then M € reda, then
M € reda.

(iv) If M is neutral and normal (has no reductions) then M € reda .

Proof by induction over types. A term is neutral if it is of the form x,
MN, fst(M) or snd(M).

lan Stark Reducibility and T T-lifting for Computation Types Séminaire PPS

http://www.ed.ac.uk/~stark/reducibility.html

	Opening
	The Computational Metalanguage λml
	Reducibility and Strong Normalisation
	Extensions
	Closing

