
http://www.ed.ac.uk/∼stark/reducibility.html

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Reducibility and >>-lifting for Computation Types

Ian Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Séminaire PPS
Mardi 17 mai

http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark/reducibility.html
http://www.ed.ac.uk/~stark

Overview

Summary

We present >>-lifting: an operational technique to define and prove
properties of terms of Moggi’s monadic computation types.

Demonstrate application to Girard-Tait reducibility, with a proof of strong
normalisation for the computational metalanguage.

Talk outline

The computational metalanguage λml

>>-lifting for reducibility =⇒ proof of strong normalisation

Robustness: extension to sum types and exceptions

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 1 / 17

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage λml

Moggi’s computational metalanguage λml : how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, input/output, state,
non-deterministic choice, jumps, . . .

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 2 / 17

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage λml

Moggi’s computational metalanguage λml : how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination TA = A⊥, exceptions TA = A+E, input/output
TA = µX.(A+O×X+XI), state TA = (S×A)S, non-deterministic

choice TA = P(A), jumps TA = RRA
, . . .

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 2 / 17

http://www.ed.ac.uk/~stark/reducibility.html

The computational metalanguage λml

Moggi’s computational metalanguage λml : how to capture effectful
computation within a pure typed lambda-calculus.

Computation types

For each type A of values there is a type TA of programs that
compute a value of type A

Sample computational effects:

Non-termination, exceptions, input/output, state,
non-deterministic choice, jumps, . . .

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 2 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Types and terms of λml

Types A,B ::= ι Ground values

| A → B Functions

| A× B Products

| TA Computations

Terms L,M,N,P ::= xA | λxA.M | MN

| 〈M,N〉 | fst(M) | snd(M)

| [M] | let xA ⇐M inN

Typing
M : A

[M] : TA

M : TA N : TB

let xA ⇐M inN : TB

Lift value to
computation

Compute M, bind result
to x, compute N

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 3 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Applications of λml

For example. . .

Denotational semantics: extend pure models uniformly to handle
computational effects.

Haskell: monads for mixing functional and effectful code,
programming interactions with the real world.

Compilers: MLj and SML.NET use a monadic intermediate language
to carry out type-preserving compilation.

Generic vs. concrete

Different applications may use λml generically (any T), or concretely
(fixed T for specific computational features).

We look at strong normalisation for generic λml .

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 4 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Reductions for λml

Standard βη for functions and products, and for computations:

T .β let x⇐ [N] in M −→ M[x := N]

T .η let x⇐M in [x] −→ M

T .assoc let y⇐ (let x⇐ L inM) in N

−→ let x⇐ L in (let y⇐M inN)

Theorem (To prove)

λml is strongly normalising: no term M ∈ λml has an infinite reduction
sequence M → M1 → · · ·

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 5 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility

Straightforward induction on term structure fails to prove strong
normalisation. Standard step: use an auxiliary reducibility predicate.

Define redA ⊆ A by induction on structure of type A.

Show useful properties of redA by induction on A; in particular that
all elements are strongly normalising: ∀M ∈ redA . M↓

Show all M are in redA, by induction on structure of term M.

Roughly, reducibility will be the logical predicate induced by SN at ground type

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 6 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for λβη

Standard reducibility for ground, function and product types:

Definition (Reducibility, begun)

redι = { M : ι | M↓ }

redA→B = { F : A → B | ∀M ∈ redA . FM ∈ redB }

redA×B = { P : A× B | fst(P) ∈ redA & snd(P) ∈ redB }

. . . but how to define this “semantic” predicate at TA, when T has no
fixed semantics?

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 7 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Structured continuations

A term abstraction (x)N is a computation term N with a
distinguished free variable x.

A typed continuation K is a finite list of term abstractions:

K ::= Id | K ◦ (x)N

Apply continuations to computations with nested let:

K : TA (TB and M : TA Id @ M = M

=⇒ K @ M : TB (K ◦ (x)N) @ M = K @ (let x⇐M inN)

Stack depth of K tracks the T .assoc commuting conversions.

Continuations reduce: K → K ′ iff ∀M . K @ M → K ′ @ M.

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 8 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Reducibility for computations

Definition (Reducibility, completed)

redι = { M : ι | M↓ }

redA→B = { F : A → B | ∀M ∈ redA . FM ∈ redB }

redA×B = { P : A× B | fst(P) ∈ redA & snd(P) ∈ redB }

redTA = { M : TA | ∀K ∈ red>A . (K @ M)↓ }

red>A = { K : TA (TB | ∀N ∈ redA . (K @ [N])↓ }

Structured continuations — specifically |K| — are vital for inductive proofs
that let-terms preserve reducibility.

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 9 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Result

Fundamental Theorem

If N1 ∈ redA1 , . . . ,Nk ∈ redAk
and M : B then

M[x1 := N1, . . . , xk := Nk] ∈ redB .

(Proof by induction on the structure of term M)

Corollary

Each λml term M : A is in redA, and hence strongly normalising

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 10 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Leap-frog1

Jump over continuations to lift properties from values to computations:

General >>-lifting

Predicate φ ⊆ A (K > M
def⇐⇒ (K @ M)↓)

φ> = { K | K > [N] for all N ∈ φ }

φ>> = { M | K > M for all K ∈ φ> } ⊆ TA

Continuation K — “observation”
Lifting φ>> — “best observable approximation to φ on computations”

1Français saute-mouton
Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 11 / 17

http://www.ed.ac.uk/~stark/reducibility.html

λml + exceptions

Exceptional syntax [Benton, Kennedy ’01; also Erlang ’05]

An enhanced let that strictly extends the standard try . . . catch:

try x⇐M inNunless {E1 7→ P1, . . .}

Evaluate M, bind result to x and evaluate N; unless exception
raised in M, in which case engage handler H = {E1 7→ P1, . . .}.

Types and terms

E ∈ Exn

raise(E) : TA

M : TA N : TB Ei ∈ Exn Pi : TB

try xA ⇐M inNunless {E1 7→ P1, . . .} : TB

let x⇐M inN
def
= try x⇐M inNunless {}

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 12 / 17

http://www.ed.ac.uk/~stark/reducibility.html

>>-lifting with exceptions

Put a handler within each continuation frame:

K ::= Id | K ◦ 〈(x)N,H〉 H = {E1 7→ P1, . . .}

Id @ M = M

(K ◦ 〈(x)N,H〉) @ M = K @ (try x⇐M inNunlessH)

Reducibility with exceptions and handlers

...

red>A = { K : TA (TB | ∀N ∈ redA . (K @ [N])↓
& ∀E ∈ Exn . (K @ raise(E))↓ }

redTA = { M : TA | ∀K ∈ red>A . (K @ M)↓ }

Sufficient to prove strong normalisation for λml + exceptions

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 13 / 17

http://www.ed.ac.uk/~stark/reducibility.html

λml + sums

Types and terms

Sum type A + B, with constructors inl(M), inr(N) and destructor

case L of (inl(x)⇒M | inr(y)⇒N) : TC

Reductions

+.βl case inl(M)of (inl(x)⇒ P | inr(y)⇒Q) −→ P[x := M]

+.βr case inr(N)of (inl(x)⇒ P | inr(y)⇒Q) −→ Q[x := N]

+.η case L of (inl(x)⇒ inl(x) | inr(y)⇒ inr(y)) −→ L

+ .T

let z⇐ (case L of (inl(x)⇒M | inr(y)⇒N)) in P

−→ case L of (inl(x)⇒ (let z⇐M inP) | inr(y)⇒ (let z⇐NinP))

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 14 / 17

http://www.ed.ac.uk/~stark/reducibility.html

>>-lifting for sum types

Introduce continuations especially for sums:

S ::= K ◦ 〈(x)M, (y)N〉

(K ◦ 〈(x)M, (y)N〉) @ L = K @ (case L of (inl(x)⇒M | inr(y)⇒M))

Reducibility for sums

...

red>A+B = { S : (A + B) (TC | ∀M ∈ redA . (S @ inl(M))↓
& ∀N ∈ redB . (S @ inr(N))↓ }

redA+B = { L : A + B | ∀S ∈ red>A+B . (S @ L)↓ }

Enough to show strong normalisation for λml + sums

Further: use frame stacks for leap-frog definitions of reducibility at sums,
products and function types, as well as computations.

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 15 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Related work

Various closure operators on predicates or relations:

>>-closure of [Pitts 2000, Abadi 2000] for defining an operational
analogue of admissibility

Saturation and saturated sets in reducibility proofs: for example,
[Girard 1987] for linear logic, [Parigot 1997] for λµ

Biorthogonality in operational models for recursive types [Melliès,

Vouillon 2004]

Other precursors:

Proof techniques for dynamically-allocated store [Pitts, Stark 1998]

Evident similarities between leap-frog and continuation-passing style;
also the continuation monad itself TA = R(RA) [qv. Filinski 1994]

Normalisation for λml by translation into λ + sums [Benton et al., 1998]

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 16 / 17

http://www.ed.ac.uk/~stark/operfl.html
http://www.ed.ac.uk/~stark/reducibility.html

Summary

>>-lifting raises operational predicates in λml from A to TA:

φ ⊆ A

values
φ> ⊆ A>

continuations
φ>> ⊆ TA

computations

”best observable
approximation to φ”

Continuations as frame stacks are good for proof by induction

Example: type-directed reducibility =⇒ strong normalisation of λml

Extends to treat sums, exceptions

Basis for a normalisation by evaluation algorithm for λml ; implementation
for the monadic intermediate language of the SML.NET compiler

[Lindley PhD 2005]
Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 17 / 17

http://www.ed.ac.uk/~stark/reducibility.html

λml in type-preserving compilation

MLj and SML.NET

These compilers use a monadic intermediate language to manage the
translation from a higher-order functional language (ML) into an
imperative object-oriented bytecode (JVM/.NET).

Typed ML source code

Complex MIL

Simplified MIL

Verifiable bytecode

Monadic Intermediate Language

MIL is λml extended with datatypes,
exceptions, effects, etc.

This type-preserving compilation
takes types right through to guide
optimisation and help generate
verifiable code.

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 18 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Strong normalisation by translation

Map types and terms of λml into plain lambda-calculus

φ : λml → λβη

φ(0) = 0 φ(x) = x

φ(TA) = φ(A) φ(MN) = φ(M)φ(N)

φ(A → B) = φ(A) → φ(B) φ(λx.M) = λx.φ(M)

φ([M]) = φ(M)

φ(let x⇐M inN) = (λx.φ(N))φ(M)

Interpret T as the identity type constructor, with no computational effects

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 19 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Reductions translated

Standard λβη rewrites go through unchanged; while for computations:

φ(T .β) (λx.N)M −→ N[M/x]

φ(T .η) (λx.x)M −→ M

φ(T .assoc) (λx.P)((λy.N)M) −→ (λy.(λx.P)N))M y /∈ fv(P)

The last rule is a strict extension of λβη, although it is consistent and a
known “administrative” reduction from work on continuation-passing style.

Theorem (SN by translation)

λassoc is strongly normalising, and hence so is λml .

Proof is combinatorial: a manipulation of rewrite sequences to show that
SN(λβη) =⇒ SN(λassoc).

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 20 / 17

http://www.ed.ac.uk/~stark/reducibility.html

Basic properties of reducibility

The standard useful properties of reducibility:

Theorem (Reducibility)

For every λml term M of type A, the following hold:

(i) If M ∈ redA, then M is strongly normalising.

(ii) If M ∈ redA and M → M ′, then M ′ ∈ redA.

(iii) If M is neutral, and whenever M → M ′ then M ′ ∈ redA, then
M ∈ redA.

(iv) If M is neutral and normal (has no reductions) then M ∈ redA.

Proof by induction over types. A term is neutral if it is of the form x,
MN, fst(M) or snd(M).

Ian Stark Reducibility and >>-lifting for Computation Types Séminaire PPS 21 / 17

http://www.ed.ac.uk/~stark/reducibility.html

	Opening
	The Computational Metalanguage λml
	Reducibility and Strong Normalisation
	Extensions
	Closing

