
Reasoning with Names

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Reasoning with Names – 7 February 2003 – p.1/20

Overview of talk

• Examples of names and naming in computer science

• Mathematical models for names: nu-calculus, SetI

• Metalogics and mechanised reasoning: HOAS, Theory
of Contexts

• FM-sets, FreshML and nominal logic: Na.φ(x, a)

Reasoning with Names – 7 February 2003 – p.2/20

What’s in a name?

The idea of a name arises repeatedly across computer
science, as an abstract piece of data that carries identity
but little else. Typically, names can be compared with each
other, and there is an unlimited supply of fresh names, but
that is all.

Names are useful, convenient, and often very comfortable
to reason about informally, but turn out to be tremendously
slippery in formal reasoning.

Reasoning with Names – 7 February 2003 – p.3/20

Some uses for names in CS

• Programming: local variables; procedure parameters;
λx.M; α-conversion.

• Logic: quantifiers ∀x.φ, ∃y.P.

• Objects: identity; references; pointers.

• Security: nonces; privacy; authentication.

• Communication: channels, TCP/IP sockets, thread
IDs, π-calculus (νx)P.

• Distributed systems: locations, namespaces.

Reasoning with Names – 7 February 2003 – p.4/20

Object identity in Java

private static String capital (String country) {

if (country == "Scotland") return "Edinburgh";

else if (country == "France") return "Paris";

else return "unknown"; }

...

String country = "Scotland";

System.out.println("The capital of "+country+

" is "+capital(country));

// Prints "The capital of Scotland is Edinburgh"

Reasoning with Names – 7 February 2003 – p.5/20

Object identity in Java

private static String capital (String country) {

if (country == "Scotland") return "Edinburgh";

else if (country == "France") return "Paris";

else return "unknown"; }

...

String country = "Scotland";

System.out.println("The capital of "+country+

" is "+capital(country));

Reasoning with Names – 7 February 2003 – p.6/20

Object identity in Java

private static String capital (String country) {

if (country == "Scotland") return "Edinburgh";

else if (country == "France") return "Paris";

else return "unknown"; }

...

String country = in.readline();

System.out.println("The capital of "+country+

" is "+capital(country));

Reasoning with Names – 7 February 2003 – p.7/20

Object identity in Java

private static String capital (String country) {

if (country == "Scotland") return "Edinburgh";

else if (country == "France") return "Paris";

else return "unknown"; }

...

String country = in.readline();

System.out.println("The capital of "+country+

" is "+capital(country));

// Prints "The capital of Scotland is unknown"

Reasoning with Names – 7 February 2003 – p.8/20

Everything is an object, unfortunately

A string literal like "Scotland" in Java is really

new String(...).intern()

executed at class load time (yuk).

The temptation is just to give up and assume that all is lost;
but there remain useful equivalences like:

String a = "Scotland";

String b = "France";
≈

String b = "France";

String a = "Scotland";

Reasoning with Names – 7 February 2003 – p.9/20

What’s the difficulty?

Concrete implementation of names requires care, but is
generally manageable: integers, addresses, some choice
of globally unique ID.

Informal reasoning is also fairly natural: be aware of
aliasing, keep names distinct, and everything will be OK.

Yet to make this formal, or to mechanise reasoning about
names, turns out to be surprisingly hard.

Reasoning with Names – 7 February 2003 – p.10/20

Names and functions

Often the problem is not names themselves, but capturing
how they interact with other features. For example, the
nu-calculus combines a λ-calculus of higher-order
functions with names.

λx.x identity function

νn.M term M using fresh name n

if x = n thenMelseM ′ compare names

Reasoning with Names – 7 February 2003 – p.11/20

Nu-calculus examples

The nu-calculus has an operational semantics and a notion
‘≈’ of observational equivalence between terms.

νn.νm.(n = m) ≈ false

(λx.x = x)(νn.n) ≈ true

λf.νn.(fn) 6≈ νn.λf.(fn) : (name → bool) → bool

νn.(λx.x = n) ≈ λx.false : name → bool

Reasoning with Names – 7 February 2003 – p.12/20

Models for names

We can add names to models by indexing structures. For
example B ∈ SetI has for any set of names s the set B(s)

of values using names from s.

• SetI – nu-calculus

• SetI , CpoI , ProfI – π-calculus

• SetS – Idealized Algol

• SetV – Abstract syntax with binders

The Schanuel topos is a subcategory of SetI equivalent to
sets with a permutation action.

Reasoning with Names – 7 February 2003 – p.13/20

Reasoning about names

A sound and adequate model gives a valid reasoning
method, but it can be hard work. Other methods include:

• Logical relations between name sets or state sets
e.g. proving correctness of a memoisation operator.

• Separation logic for heaps and pointers; φ ∗ψ, φ−∗ψ

e.g. in-place list reversal, graph marking.

• Bunched implications for all kinds of resources
e.g. φ ∗ψ, φ∧ψ, ∀newx.φ(x).

This leads us to look for metalogics that provide support for
reasoning about names and binding.

Reasoning with Names – 7 February 2003 – p.14/20

Working with binders

datatype Term = var of Name x

| app of Term ∗ Term (MN)

| lam of ? λx.M

We seek to fill in the ‘?’ so as to give:

• uniform behaviour under α-conversion;

• recursively defined functions on Term;

• proof by induction over the structure of Term.

“In this situation the common practice of human provers is
to say one thing and do another ”

Reasoning with Names – 7 February 2003 – p.15/20

Approaches to formalising binding

• de Bruijn indices.

• ? = Name ∗ Term.

Reprove α-conversion for each object logic.

• ? = Term → Term.

• ? = Name → Term.

Issues with recursion, induction and AC!

• Fraenkel-Mostowski set theory.

Requires reworking everything, but once only.

Reasoning with Names – 7 February 2003 – p.16/20

FM set theory

Originally devised to prove the independence of the Axiom
of Choice from other axioms of ZF with atoms (ZFA).

Given an infinite set of atoms A, we take sets X with an
action of perm(A) such that all x ∈ X have finite support :

supp(x) =
⋂

{w | ∀π ∈ perm(A) . π|w = idw ⇒ π · x = x }

All constructions on FM sets are equivariant.

A new abstraction set former [A]X provides an inductive
type to fill our gap: ? = [Name]Term.

Reasoning with Names – 7 February 2003 – p.17/20

www.freshml.orgFresh ML

“... a new language derived from Standard ML which
provides superior facilities for writing software systems
which manipulate syntax involving binding operations.”

val identity = let fresh x:Var in Fn(<x>(Var x)) end

fun subst (x, e, Var y) = if x#y then Var y else e

| subst (x, e, Fn(<y>e1)) = Fn(<y>(subst(x, e, e1)))

| subst (x, e, App(e1,e2)) =

App(subst(x, e, e1), subst(x, e, e2))

Reasoning with Names – 7 February 2003 – p.18/20

Nominal logic

A first-order theory of FM sets. Axioms cover the action of
swaps (ab) and properties of freshness a # x like:

a # x∧ a ′ # x =⇒ (aa ′) · x = x

leading to the freshness quantifier :

Na.φ ∆
⇐⇒ ∃a.(a # ~x) ∧ φ ⇐⇒ ∀a.(a # ~x) ⇒ φ

We can then, for example, state η-conversion as

∀t:Term . Na:Var . t = lam(a, app(t, var(a))) .

Reasoning with Names – 7 February 2003 – p.19/20

Some open areas

• Higher-order nominal logic; FM type theory.

• Induction, recursion and choice axioms in HOAS.

• Bringing more powerful techniques like logical relations
into the metalogic.

• Practical experience in applying these metalogics to all
of the name uses given right back at the beginning...

Reasoning with Names – 7 February 2003 – p.20/20

	Overview of talk
	What's in a name?
	Some uses for names in CS
	Object identity in Java
	Object identity in Java
	Object identity in Java
	Object identity in Java
	Everything is an object, unfortunately
	What's the difficulty?
	Names and functions
	Nu-calculus examples
	Models for names
	Reasoning about names
	Working with binders
	Approaches to formalising binding
	FM set theory
	Fresh ML
	Nominal logic
	Some open areas

