Free-Algebra Models for the π -Calculus

Ian Stark

Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

Summary

The finite π -calculus has an explicit set-theoretic functor-category model that is known to be fully-abstract for strong late bisimulation congruence [Fiore, Moggi, Sangiorgi]

We can characterise this as the initial free algebra for certain operations and equations in the setting of Power and Plotkin's enriched Lawvere theories.

This combines separate theories of nondeterminism, I/O and name creation in a modular fashion. As a bonus, we get a whole category of models, a modal logic and a computational monad. The tricky part is that everything has to happen inside the functor category $Set^{\mathcal{I}}$.

Overview

- Equational theories for different features of computation.
- Enrichment over the functor category $Set^{\mathcal{I}}$.
- A theory of π .
- Free-algebra models; full abstraction; modal logic.

Nondeterministic computation

Operations

choice : $A^2 \longrightarrow A$ nil : $1 \longrightarrow A$

Equations

choice(P,Q) = choice(Q,P)choice(nil,P) = choice(P,P) = Pchoice(P,(choice(Q,R)) = choice(choice(P,Q),R)

Algebras for nondeterminism

For any Cartesian category C we can form the category $\mathcal{ND}(C)$ of models (A, choice, nil) for the theory. In particular, there is:

In fact $(U \circ F)$ is finite powerset and the adjunction is monadic: $\mathcal{ND}(Set)$ is isomorphic to the category of \mathcal{P}_{fin} -algebras. Computational monad for nondeterminism

$$\mathcal{ND}(\mathsf{Set})$$
free F $\begin{pmatrix} \neg \\ \neg \\ \end{pmatrix}$ U forgetful
Set

The composition $T = (U \circ F) = \mathcal{P}_{fin}$ is the computational monad for finite nondeterminism. Operations choice and nil then induce generic effects in the Kleisli category:

from choice:
$$A^2 \longrightarrow A^1$$
 we get $arb: 1 \longrightarrow T2$
nil: $A^0 \longrightarrow A^1$ deadlock: $1 \longrightarrow T0$

[Plotkin, Power: Algebraic Operations and Generic Effects]

I/O computation

Operations

$$in: A^V \longrightarrow A$$
$$out: A \longrightarrow A^V$$

Equations

none

From any Cartesian C we form the category $\mathcal{IO}(C)$ of models (A, in, out) for I/O computation over C.

I/O adjunction and monad

The adjunction is monadic: $\mathcal{IO}(Set) \cong T-Alg$ for the resumptions monad, the computational monad for I/O:

$$\mathsf{T}(\mathsf{X}) = \mu \mathsf{Y}_{\cdot}(\mathsf{X} + \mathsf{Y}^{\mathsf{V}} + \mathsf{Y} \times \mathsf{V}) \; .$$

The operations induce suitable effects in its Kleisli category:

from in:
$$A^{V} \longrightarrow A^{1}$$
 we get read: $1 \longrightarrow TV$
out: $A^{1} \longrightarrow A^{V}$ write: $V \longrightarrow T1$

Notions of computation determine monads

 $\begin{array}{rcl} \mbox{Operations} + \mbox{Equations} & \longrightarrow & \mbox{Free-algebra models} \\ & & \mbox{of computational features} \\ & \longrightarrow & \mbox{Monads} + \mbox{generic effects} \end{array}$

- Characterise known computational monads and effects.
- Simple and flexible combination of theories.
- Enriched models and arities: countably infinite, posets, ωCpo.

The functor category $Set^{\mathcal{I}}$

To account for names, we work with structures that vary according to the names available.

An object $B \in Set^{\mathcal{I}}$ is a varying set: it specifies for any finite set of names *s* the set B(s) of values using names from *s*, together with information about how these values change with renaming. Structure within $Set^{\mathcal{I}}$

We use $Set^{\mathcal{I}}$ both as the arena for building name-aware algebras and monads, and as the source of arities for operations.

Relevant structure includes:

- Pairs $A \times B$ and function space $A \rightarrow B$;
- Separated pairs $A \otimes B$ and fresh function space $A \multimap B$;
- The object of names N;
- The shift endofunctor $\delta A = A(-+1)$, with $\delta A = N \multimap A$.

In particular, the object N serves as a varying arity.

Theory of π : operations

Nondeterminism

nil: $1 \longrightarrow A$ choice: $A^2 \longrightarrow A$ inactive process 0process sum P + Q

I/O

out : $A \longrightarrow A^{N \times N}$ in : $A^N \longrightarrow A^N$ tau : $A \longrightarrow A$ output prefix $\bar{x}y.P$ input prefixx(y).Psilent prefix $\tau.P$

Dynamic name creation

 $new: \delta A \longrightarrow A$

restriction

vx.P

Theory of π : interlude

Each operation induces a corresponding effect:

send: $N \times N \longrightarrow T1$ deadlock: $1 \longrightarrow T0$ receive: $N \longrightarrow TN$ $arb: 1 \longrightarrow T2$ skip: $1 \longrightarrow T1$ fresh: $1 \longrightarrow TN$

Other possible operations:

- par is not algebraic (because $(P | Q); R \neq (P; R) | (Q; R)$)
- eq, neq : $A \longrightarrow A^{N \times N}$ definable from $N \times N \cong N \otimes N + N$
- bout : $\delta A \longrightarrow A^N$ can be defined from new and out

Theory of π : operations

Nondeterminism

nil: $1 \longrightarrow A$ choice: $A^2 \longrightarrow A$ inactive process 0process sum P + Q

I/O

out: $A \longrightarrow A^{N \times N}$ in: $A^N \longrightarrow A^N$ tau: $A \longrightarrow A$ output prefix $\bar{x}y.P$ input prefixx(y).Psilent prefix $\tau.P$

Dynamic name creation

 $new: \delta A \longrightarrow A$

restriction

vx.P

Theory of π : component equations

Nondeterminism

choice is associative, commutative and idempotent, with identity nil.

I/O

None.

Dynamic name creation

new(x.p) = pnew(x.new(y.p)) = new(y.new(x.p))

Theory of π : combining equations

Commuting

new(x.choice(p,q)) = choice(new(x.p), new(x.q)) $new(z.out_{x,y}(p)) = out_{x,y}(new(z.p)) \qquad z \notin \{x,y\}$ $new(z.in_x(p_y)) = in_x(new(z.p_y)) \qquad z \notin \{x,y\}$ new(z.tau(p)) = tau(new(z.p))

Interaction

 $new(x.out_{x,y}(p)) = nil$ $new(x.in_x(p_y)) = nil$

Models of the theory of π

The category $\mathcal{PI}(Set^{\mathcal{I}})$ of π -algebras has objects of the form $(A \in Set^{\mathcal{I}}; in, out, ..., new)$ satisfying the equations given.

In any π -algebra A, each finite π -calculus process P has interpretation $[P]_A$ defined by induction over the structure of P, using the operations of the theory (and the expansion law for parallel composition).

Thm: Every such π -algebra interpretation respects strong late bisimulation congruence:

$$\mathsf{P} \approx \mathsf{Q} \quad \Longrightarrow \quad [\![\mathsf{P}]\!]_{\mathsf{A}} = [\![\mathsf{Q}]\!]_{\mathsf{A}} \, .$$

Of course, this doesn't yet give us any actual π -algebras to work with.

Models of the theory of π

The category of π -algebras has a forgetful functor to $Set^{\mathcal{I}}$, taking each algebra to its underlying (varying) set:

Naturally, we now look for a free functor left adjoint to U, and its accompanying monad.

As it happens, using both closed structures at the same time means that general results engaged earlier don't immediately apply :-(

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

Weaving these together as monad transformers gives

 $\mu Y.\mathcal{P}_{fin}(Dyn(X + N \times N \times Y + N \times Y^{N} + Y))...$

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

Weaving these together as monad transformers gives

 $\mu Y.\mathcal{P}_{fin}(Dyn(X + N \times N \times Y + N \times Y^{N} + Y))$

... but the algebras for this do not satisfy the interaction equations between new and in/out.

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

The correct monad for the combined theory is

 $Pi(X) = \mu Y.\mathcal{P}_{fin}(Dyn(X) + N \times N \times Y + N \times \delta Y + N \times Y^{N} + Y)$

which adds bound output but otherwise does little with name creation.

Results

Thm: There is an adjunction making the category of π -algebras monadic over Set^{*I*}.

The composition $T_{\pi} = (U \circ Pi)$ is a computational monad for concurrent name-passing programs, with effects send, receive, arb, deadlock, skip and fresh.

Results

We have the following:

• A category $\mathcal{PI}(\mathsf{Set}^{\mathcal{I}})$ of π -algebras, all sound models of π -calculus bisimulation.

 $\mathsf{P} \approx \mathsf{Q} \quad \Longrightarrow \quad [\![\mathsf{P}]\!]_{\mathsf{A}} = [\![\mathsf{Q}]\!]_{\mathsf{A}}$

• An explicit free-algebra construction $Pi: Set^{\mathcal{I}} \to \mathcal{PI}(Set^{\mathcal{I}})$ such that all Pi(X) are fully-abstract models of π .

$$P \approx Q \quad \Longleftrightarrow \quad \llbracket P \rrbracket_{Pi(X)} = \llbracket Q \rrbracket_{Pi(X)}$$

• The initial free algebra Pi(0) is in fact the previously known fully-abstract model.

Parallel composition

Parallel composition of π -calculus processes is not algebraic, but we can nevertheless handle it in the following ways:

- All π -algebras can support (P | Q) externally by expansion.
- All free π -algebras have an internally-defined map

 $par_{X,Y} : Pi(X) \times Pi(Y) \longrightarrow Pi(X \times Y)$.

• Any multiplication $\mu:X\times X\to X$ then gives us

 $par_{\mu}: Pi(X) \times Pi(X) \longrightarrow Pi(X)$.

For X = 0, this is standard parallel composition; for X = 1 we get the same with an extra success process √.

Modal logic

Any theory gives rise to a modal logic over its algebras, with possibility and necessity modalities for every operation.

 $P \vDash \Diamond out_{x,y}(\phi) \iff \exists Q. \ P \sim \bar{x}y.Q \land Q \vDash \phi$ $P \vDash \Box out_{x,y}(\phi) \iff \forall Q. \ P \sim \bar{x}y.Q \Rightarrow Q \vDash \phi$ $P \vDash \Diamond choice(\phi, \psi) \iff \exists Q, R. \ P \sim Q + R \land Q \vDash \phi \land R \vDash \psi$

HML is definable:

 $\langle \bar{x}y \rangle \varphi = \Diamond choice(\Diamond out_{x,y}(\varphi), true)$

We could also take other algebraic operations and define modalities. However, in no case is there a $(\phi | \psi)$ modality.

Review

Operations and equations with enriched arities can give algebraic models for features of computation.

Taking Set^{\mathcal{I}} for both arities and algebras, we can give a modular theory for the π -calculus:

 $\pi = (\text{Nondeterminism} + I/O + \text{Name creation}) / new \leftrightarrow i/o$

We have an explicit formulation of free algebras for this theory; all of these are fully abstract for bisimulation congruence.

The induced computational monad is almost, but not quite, the combination of its three components.

What next?

- Use $Cpo^{\mathcal{I}}$ for the full π -calculus. (OK, FM-Cpo)
- Partial order arities for testing equivalences. [Hennessy]
- Modify equations for early/open/weak bisimulation.
- Try Pi(X) for applied π .
- Investigate algebraic par.

(with effect fork : $1 \rightarrow T2$?)

• Build a proper theory of arities over two closed structures.

OR

• Exhibit $Set^{\mathcal{I}}$ as the category of algebras for a theory of equality testing in $Set^{\mathcal{F}}$, and then redo everything in the single Cartesian closed structure of $Set^{\mathcal{F}}$.

Constructions in $Set^{\mathcal{I}}$

Cartesian closed

$$(A \times B)(k) = A(k) \times B(k)$$
$$B^{A}(k) = [A(k + _), B(k + _)]$$

Monoidal closed

$$(A \otimes B)(k) = \int^{k'+k'' \hookrightarrow k} A(k') \times B(k'')$$
$$(A \multimap B)(k) = [A(_), B(k+_)]$$

<u>More constructions in $Set^{\mathcal{I}}$ </u>

Object of names, shift operator

N(k) = k $\delta A(k) = A(k+1)$

Connections

 $A \otimes B \longrightarrow A \times B \qquad \qquad \delta A \cong N \multimap A$ $(A \longrightarrow B) \longrightarrow (A \multimap B) \qquad \qquad \delta N \cong N + 1$

When A and B are pullback-preserving, the two maps are injective and surjective respectively.