Queen Mary / Imperial College Joint Theory Seminar 10 December 2003

Free-Algebra Models for the π -Calculus

Ian Stark

Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

The finite π -calculus has an explicit set-theoretic functor-category model that is known to be fully-abstract for bisimulation congruence [Fiore, Moggi, Sangiorgi]

We can characterise this as the free algebra for certain operations and equations in the setting of Power and Plotkin's enriched Lawvere theories.

This combines separate theories of nondeterminism, I/O and name creation in a modular fashion. As a bonus, we get a modal logic and a computational monad. The tricky part is that everything has to happen inside the functor category $Set^{\mathcal{I}}$.

Overview

- Equational theories for different features of computation.
- Enrichment over the functor category $Set^{\mathcal{I}}$.
- A theory of π .
- Free-algebra models; full abstraction; modal logic.

Nondeterministic computation

Operations

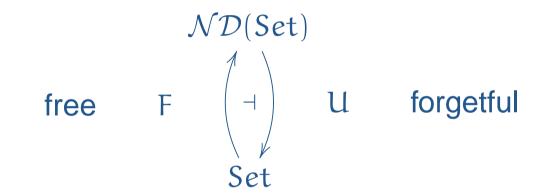
choice : $A^2 \longrightarrow A$ nil : $1 \longrightarrow A$

Equations

choice(P,Q) = choice(Q,P)choice(nil,P) = choice(P,P) = Pchoice(P,(choice(Q,R)) = choice(choice(P,Q),R)

Algebras for nondeterminism

For any Cartesian category C we can form the category $\mathcal{ND}(C)$ of models (A, choice, nil) for the theory. In particular, there is:



In fact $(U \circ F)$ is finite powerset and the adjunction is monadic: $\mathcal{ND}(Set)$ is isomorphic to the category of \mathcal{P}_{fin} -algebras. Computational monad for nondeterminism

$$\mathcal{ND}(Set)$$
free F $\begin{pmatrix} \neg \\ \neg \\ \end{pmatrix}$ U forgetful
Set

The composition $T = (U \circ F) = \mathcal{P}_{fin}$ is the computational monad for finite nondeterminism. Operations choice and nil then induce generic effects in the Kleisli category:

from choice:
$$A^2 \longrightarrow A^1$$
 we get $arb: 1 \longrightarrow T2$
nil: $A^0 \longrightarrow A^1$ dead: $1 \longrightarrow T0$

[Plotkin, Power: Algebraic Operations and Generic Effects]

I/O computation

Operations

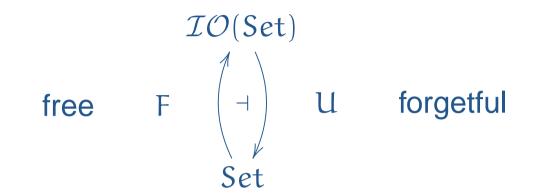
$$in: A^V \longrightarrow A$$
$$out: A \longrightarrow A^V$$

Equations

none

From any Cartesian C we form the category $\mathcal{IO}(C)$ of models (A, in, out) for I/O computation over C.

I/O adjunction and monad



The adjunction is monadic: $\mathcal{IO}(Set) \cong T-Alg$ for the resumptions monad, the computational monad for I/O:

$$\mathsf{T}(\mathsf{X}) = \mu \mathsf{Y}_{\boldsymbol{\cdot}}(\mathsf{X} + \mathsf{Y}^{\mathsf{V}} + \mathsf{Y} \times \mathsf{V}) \; .$$

The operations induce suitable effects in its Kleisli category:

from in:
$$A^{V} \longrightarrow A^{1}$$
 we get read: $1 \longrightarrow TV$
out: $A^{1} \longrightarrow A^{V}$ write: $V \longrightarrow T1$

Notions of computation determine monads

 $Operations + Equations \longrightarrow Free-algebra models$

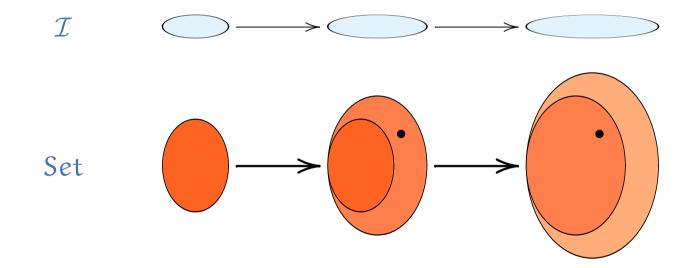
of computational features

 \rightarrow Monads + generic effects

- Characterise known computational monads and effects.
- Simple and flexible combination of theories.
- Enriched models and arities: countably infinite, posets, ωCpo.

The functor category $Set^{\mathcal{I}}$

To account for names, we work with structures that vary according to the names available.



An object $B \in Set^{\mathcal{I}}$ is a varying set: it specifies for any finite set of names *s* the set B(s) of values using names from *s*, together with information about how these values change with renaming. Structure within $Set^{\mathcal{I}}$

We use $Set^{\mathcal{I}}$ both as the arena for building name-aware algebras and monads, and as the source of arities for operations.

Relevant structure includes:

- Pairs $A \times B$ and function space $A \rightarrow B$;
- Separated pairs $A \otimes B$ and fresh function space $A \multimap B$;
- The object of names N;
- The shift endofunctor $\delta A = A(-+1)$, with $\delta A = N \multimap A$.

In particular, the object N serves as a varying arity.

Theory of π : operations

Nondeterminism

nil: $1 \longrightarrow A$ choice: $A^2 \longrightarrow A$ inactive process 0process sum P + Q

I/O

out: $A \longrightarrow A^{N \times N}$ output prefix $\bar{x}y.P$ $in: A^N \longrightarrow A^N$ input prefixx(y).P $tau: A \longrightarrow A$ silent prefix $\tau.P$

Dynamic name creation

 $\mathsf{new}: \delta \mathsf{A} \longrightarrow \mathsf{A}$

restriction

Theory of π : interlude

Each operation induces a corresponding effect:

send: $N \times N \longrightarrow T1$ dead: $1 \longrightarrow T0$ $recv: N \longrightarrow TN$ $arb: 1 \longrightarrow T2$ $skip: 1 \longrightarrow T1$ $gensym: 1 \longrightarrow TN$

Other possible operations:

- par is not algebraic (because $(P | Q); R \neq (P; R) | (Q; R)$)
- eq, neq : $A \longrightarrow A^{N \times N}$ definable from $N \times N \cong N \otimes N + N$
- bout : $\delta A \longrightarrow A^N$ can be defined from new and out

Theory of π : operations

Nondeterminism

nil: $1 \longrightarrow A$ choice: $A^2 \longrightarrow A$ inactive process 0process sum P + Q

I/O

out: $A \longrightarrow A^{N \times N}$ output prefix $\bar{x}y.P$ $in: A^N \longrightarrow A^N$ input prefixx(y).P $tau: A \longrightarrow A$ silent prefix $\tau.P$

Dynamic name creation

 $\mathsf{new}:\delta A\longrightarrow A$

restriction

Theory of π : component equations

Nondeterminism

choice is associative, commutative and idempotent, with identity nil.

I/O

None.

Dynamic name creation

new(x.P) = Pnew(x.new(y.P)) = new(y.new(x.P))

Theory of π : combining equations

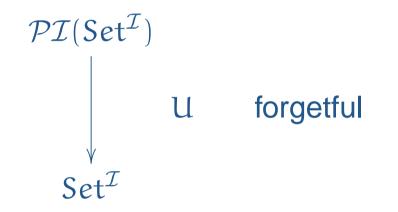
Commuting

$$\begin{split} new(x.choice(P,Q)) &= choice(new(x.P), new(x.Q)) \\ new(z.out_{x,y}(P)) &= out_{x,y}(new(z.P)) \qquad z \notin \{x,y\} \\ new(z.in_x(\lambda y.P)) &= in_x(\lambda y.new(z.P)) \qquad z \notin \{x,y\} \\ new(z.tau(P)) &= tau(new(z.P)) \end{split}$$

Interaction

 $new(x.out_{x,y}(P)) = nil$ $new(x.in_x(\lambda y.P)) = nil$ Models of the theory of π

The category $\mathcal{PI}(Set^{\mathcal{I}})$ of π models has objects of the form $(A \in Set^{\mathcal{I}}; in, out, ..., new)$ satisfying the equations given.



Naturally, we now look for a free model left adjoint to U, and its accompanying monad.

As it happens, using both closed structures at the same time means that general results don't immediately apply.

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

Weaving these together as monad transformers gives

 $\mu Y. \mathcal{P}_{fin}(Dyn(X + N \times N \times Y + N \times Y^{N} + Y)) \dots$

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

Weaving these together as monad transformers gives

 $\mu Y.\mathcal{P}_{fin}(Dyn(X + N \times N \times Y + N \times Y^{N} + Y))$

... but the algebras for this do not satisfy the interaction equations between new and in/out.

Free models for π

Each component theory has a standard monad:

Nondeterminism $\mathcal{P}_{fin}(X)$ I/O $\mu Y.(X + N \times N \times Y + N \times Y^N + Y)$ Name creation $Dyn(X) = \int^k X(-+k)$

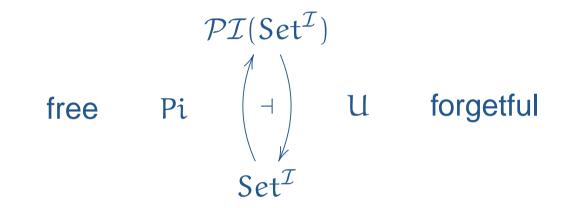
The correct monad for the combined theory is

 $Pi(X) = \mu Y.\mathcal{P}_{fin}(Dyn(X) + N \times N \times Y + N \times \delta Y + N \times Y^{N} + Y)$

which adds bound output but otherwise does little with name creation.

Results

There is an adjunction making the category of π models monadic over $Set^{\mathcal{I}}$.



Pi(0) is the known fully abstract model of the finite π -calculus.

Modal logic

Each theory gives rise to a modal logic over its algebras, with possibility and necessity modalities for every operation.

$$P \vDash \Diamond out_{x,y}(\phi) \iff \exists Q. \ P \sim \bar{x}y.Q \land Q \vDash \phi$$
$$P \vDash \Box out_{x,y}(\phi) \iff \forall Q. \ P \sim \bar{x}y.Q \Rightarrow Q \vDash \phi$$
$$P \vDash \Diamond choice(\phi, \psi) \iff \exists Q, R. \ P \sim Q + R \land Q \vDash \phi \land R \vDash \psi$$

HML is definable:

$$\langle \bar{x}y \rangle \phi = \Diamond choice(\Diamond out_{x,y}(\phi), true)$$

We could also take other algebraic operations and define modalities. However, in no case is there a $\phi \mid \psi$ modality.

Review

Operations and equations with enriched arities can give algebraic models for features of computation.

Taking $Set^{\mathcal{I}}$ for both arities and algebras, we can give a modular theory for the π -calculus:

 $\pi = (\text{Nondeterminism} + I/O + \text{Name creation}) / new \leftrightarrow i/o$

The free algebra over 0 is fully abstract for bisimilarity.

The induced computational monad is almost, but not quite, the combination of its three components.

What next?

- Use ω Cpo for the full π -calculus.
- Use partial order arities to constrain choice to the upper or lower powerdomain. [Hennessy]

• Build a proper theory of arities over two closed structures.

OR

• Exhibit $Set^{\mathcal{I}}$ as the category of algebras for a theory of equality testing in $Set^{\mathcal{F}}$, and then redo everything in the single Cartesian closed structure of $Set^{\mathcal{F}}$.

<u>Constructions in Set^{\mathcal{I}}</u>

Cartesian closed

 $(A \times B)(k) = A(k) \times B(k)$ $B^{A}(k) = [A(k + _), B(k + _)]$

Monoidal closed

$$(A \otimes B)(k) = \int^{k'+k'' \hookrightarrow k} A(k') \times B(k'')$$
$$(A \multimap B)(k) = [A(_), B(k + _)]$$

<u>More constructions in $Set^{\mathcal{I}}$ </u>

Object of names, shift operator

N(k) = k $\delta A(k) = A(k+1)$

Connections

$$A \otimes B \longrightarrow A \times B$$
$$(A \longrightarrow B) \longrightarrow (A \multimap B)$$
$$\delta A = N \multimap A$$