Free-Algebra Models for the π -Calculus

Ian Stark

Laboratory for Foundations of Computer Science School of Informatics The University of Edinburgh

Tuesday 7 June 2005

Summary

The finite π -calculus:

$$P ::= \overline{x}y.P \mid x(y).P \mid \nu x.P \mid P + Q \mid P \mid Q \mid 0$$

has an explicit set-theoretic model, fully-abstract for strong late bisimulation congruence. [Fiore, Moggi, Sangiorgi; Stark]

We characterise this as the minimal free algebra for certain operations and equations, in the setting of Power and Plotkin's enriched Lawvere theories.

Summary

The finite π -calculus:

$$P := \bar{x}y.P \mid x(y).P \mid \nu x.P \mid P + Q \mid P \mid Q \mid 0$$

has an explicit set-theoretic model, fully-abstract for strong late bisimulation congruence. [Fiore, Moggi, Sangiorgi; Stark]

We characterise this as the minimal free algebra for certain operations and equations, in the setting of Power and Plotkin's enriched Lawvere theories.

This combines separate theories of nondeterminism, I/O and name creation in a modular fashion. As a bonus, we get a whole category of models, a modal logic and a computational monad. The tricky part is that everything has to happen inside the functor category $Set^{\mathcal{I}}$.

Overview

- Equational theories for different features of computation
- ullet Using the functor category $Set^{\mathcal{I}}$
- A theory of π
- Free-algebra models and full abstraction

Notions of computation

Moggi: Computational monads for programming language features

- Nondeterminism $TX = \mathcal{P}_{fin}X$
- Mutable state $TX = (S \times X)^S$
- Interactive I/O $TX = \mu Y.(X + V \times Y + Y^{V})$
- Exceptions TX = X + E

Power and Plotkin:

Monad ← → Algebraic theory

Use correspondence to characterize each T as free model for appropriate "notion of computation"

Algebras for nondeterministic computation

An object of nondeterministic computation A in cartesian $\mathcal C$ needs \dots

Operations

choice:
$$A^2 \longrightarrow A$$

 $nil: 1 \longrightarrow A$

Equations

$$\begin{split} choice(\mathfrak{p},\mathfrak{q}) &= choice(\mathfrak{q},\mathfrak{p})\\ choice(\mathfrak{nil},\mathfrak{p}) &= choice(\mathfrak{p},\mathfrak{p}) = \mathfrak{p}\\ choice(\mathfrak{p},(choice(\mathfrak{q},r)) &= choice(choice(\mathfrak{p},\mathfrak{q}),r) \end{split}$$

... giving a category $\mathcal{ND}(\mathcal{C})$ of algebras (A, choice, nil)

Free algebras

Free \mathcal{ND} -algebras over sets give a computational monad:

$$\begin{array}{cccc} & \mathcal{ND}(Set) \\ & & & \\ \text{free} & & F & \begin{pmatrix} \neg & & \\ \neg & & & \\ & & & \\ & & Set & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Operations induce generic effects in the Kleisli category:

$$\left. \begin{array}{c} \text{choice} : A^2 \longrightarrow A^1 \\ \text{nil} : A^0 \longrightarrow A^1 \end{array} \right\} \quad \Longrightarrow \quad \left\{ \begin{array}{c} \text{arb} : 1 \longrightarrow \mathsf{T2} \\ \text{deadlock} : 1 \longrightarrow \mathsf{T0} \end{array} \right.$$

Notions of computation determine monads

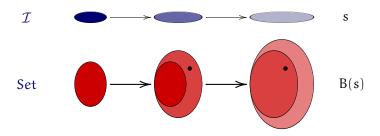
Power/Plotkin

$$\begin{array}{ccc} \text{Operations} + \text{Equations} & \longrightarrow & \text{Free-algebra models} \\ & & \text{of computational features} \\ & \longrightarrow & \text{Monads} + \text{generic effects} \end{array}$$

- Characterisation of known computational monads and effects
- Simple and flexible combination of theories
- ullet Enriched models and arities: countably infinite, posets, ωCpo

Varying sets

Functor category $\mathbf{Set}^{\mathcal{I}}:\mathbf{structures}$ that vary with the available names where $\mathcal{I}=\mathbf{finite}$ name sets and injections



Object $B \in Set^{\mathcal{I}}$ is a varying set: for finite name set s it gives a set B(s) of values using names from s, and says how they change with renaming.

Structure in $\mathsf{Set}^\mathcal{I}$

$Set^{\mathcal{I}}$ has two jobs:

- Arena for building name-aware algebras and monads
- Source of arities for operations

Relevant structure:

- Pairs $A \times B$ and function space $A \rightarrow B$
- Separated pairs $A \otimes B$ and fresh function space $A \multimap B$
- Object of names N
- Shift endofunctor $\delta A = A(\bot + 1)$, with $\delta A \cong N \multimap A$

In particular, object N serves as a varying arity.

Theory of π : operations

Nondeterministic computation

$$nil: 1 \longrightarrow A$$
 inactive process 0

choice:
$$A^2 \longrightarrow A$$
 process sum $P + Q$

Input/Output

out:
$$A \longrightarrow A^{N \times N}$$
 output prefix $\bar{x}y.P$

$$\text{in}: A^N \longrightarrow A^N \qquad \quad \text{input prefix} \quad \ x(y).P$$

$$tau: A \longrightarrow A$$
 silent prefix $\tau.P$

Dynamic name creation

new: $\delta A \longrightarrow A$ restriction $\nu x.P$

Theory of π : component equations

Nondeterministic computation

choice: commutative, associative and idempotent with unit nil

Input/Output

None

Dynamic name creation

$$new(x.p) = p$$

$$new(x.new(y.p)) = new(y.new(x.p))$$

Theory of π : combining equations

Commuting component theories

```
\begin{split} new(x.choice(p,q)) &= choice(new(x.p), new(x.q)) \\ new(z.out_{x,y}(p)) &= out_{x,y}(new(z.p)) & z \notin \{x,y\} \\ new(z.in_x(p_y)) &= in_x(new(z.p_y)) & z \notin \{x,y\} \\ new(z.tau(p)) &= tau(new(z.p)) \end{split}
```

Interaction between component theories

```
new(x.out_{x,y}(p)) = nil

new(x.in_x(p_y)) = nil
```

Models for the theory of π

- Category $\mathcal{PI}(\mathsf{Set}^{\mathcal{I}})$ of π -algebras $(A \in \mathsf{Set}^{\mathcal{I}}; \mathsf{in}, \mathsf{out}, \ldots, \mathsf{new})$
- ullet Process P with free names in s interpreted by $\llbracket P \rrbracket_A : N^s \longrightarrow A$
- Definition by induction over the structure of P, using operations of the theory (and the expansion law for parallel composition)

Theorem

Every such π -algebra interpretation respects strong late bisimulation congruence:

$$\mathbf{P} \approx \mathbf{Q} \quad \Longrightarrow \quad \llbracket \mathbf{P} \rrbracket_A = \llbracket \mathbf{Q} \rrbracket_A$$

Of course, this doesn't yet give us any actual π -algebras to work with

Free models for π

Each component theory has a standard monad:

$$\label{eq:posterior} \begin{split} &\text{Nondeterminism} & \mathcal{P}_{\text{fin}}(X) \\ &\text{Input/Output} & \mu Y. \left(X + (N \times N \times Y) + ()N \times Y^N) + Y \right) \\ &\text{Name creation} & & \text{Dyn}(X) = \int^k X(\underline{\ } + k) \end{split}$$

For the full theory of π :

$$\text{Pi}(X) = \mu Y. \mathcal{P}_{\text{fin}}\left(\text{Dyn}(X) + (N \times N \times Y) + (N \times \delta Y) + (N \times Y^N) + Y\right)$$

... which is not quite an interleaving of the component monads

Results

Theorem

The category of π -algebras is monadic over Set^{\mathcal{I}}:

Monad $T_{\pi} = (U \circ Pi)$ for concurrent name-passing programs:

 $arb: 1 \longrightarrow T2$ $send: N \times N \longrightarrow T1$

deadlock: $1 \longrightarrow T0$ receive: $N \longrightarrow TN$

 $skip: 1 \longrightarrow T1$ fresh: $1 \longrightarrow TN$

Results

We have the following:

• A category $\mathcal{PI}(\mathsf{Set}^{\mathcal{I}})$ of π -algebras, all sound models of π -calculus bisimulation:

$$P \approx Q \implies [P]_A = [Q]_A$$

• An explicit free-algebra construction $Pi: Set^{\mathcal{I}} \to \mathcal{PI}(Set^{\mathcal{I}})$ such that all Pi(X) are fully-abstract models of π :

$$P \approx Q \iff \llbracket P \rrbracket_{Pi(X)} = \llbracket Q \rrbracket_{Pi(X)}$$

 The initial free algebra Pi(0) is in fact the previously known fully-abstract model.

Parallel composition

Parallel composition of π -calculus processes is not algebraic, but still:

- All π -algebras can support (P|Q) externally by expansion.
- All free π -algebras have an internally-defined map

$$par_{X,Y} : Pi(X) \times Pi(Y) \longrightarrow Pi(X \times Y)$$
.

• Any multiplication $\mu: X \times X \to X$ then gives us

$$par_{\mu}: Pi(X) \times Pi(X) \longrightarrow Pi(X)$$
.

• For X = 0, this is standard parallel composition; for X = 1 we get the same with an extra success process \checkmark .

Modal logic

Any theory gives rise to a modal logic over its algebras, with possibility and necessity modalities for every operation.

$$\begin{split} P &\vDash \lozenge out_{x,y}(\varphi) \iff \exists Q. \ P \sim \overline{x}y.Q \ \land \ Q \vDash \varphi \\ P &\vDash \Box out_{x,y}(\varphi) \iff \forall Q. \ P \sim \overline{x}y.Q \implies Q \vDash \varphi \\ P &\vDash \lozenge choice(\varphi, \psi) \iff \exists Q, R. \ P \sim (Q + R) \ \land \ Q \vDash \varphi \ \land \ R \vDash \psi \end{split}$$

HML is definable:

$$\langle \bar{x}y \rangle \phi = \Diamond choice(\Diamond out_{x,y}(\phi), true)$$

We could also take other algebraic operations and define modalities. However, in no case is there a $(\varphi \mid \psi)$ modality.

Review

- $\hbox{ Operations} + \hbox{ equations with enriched arities} \\ \Longrightarrow \hbox{ algebraic models for features of computation}$
- ullet Modular theory for $\pi\text{-calculus},$ with $Set^{\mathcal{I}}$ for both arities and algebras:

$$\pi = (Nondeterminism + I/O + Name\ creation)\ /\ new \leftrightarrow i/o$$

- Explicit formulation of free algebras for this theory; all fully abstract for bisimulation congruence
- The induced computational monad is almost, but not quite, the combination of its three components.

What next?

- Use FM-Cpo for the full π -calculus
- Partial order arities for testing equivalences

[Hennessy]

- Modal logic from the theory of π
- Modify interpretation or equations for early/open/weak bisimulation
- Try Pi(X) for applied π
- Investigate algebraic par

(with effect fork: $1 \rightarrow T2$)

• Expose $Set^{\mathcal{I}}$ as the category of algebras for a theory of equality testing in $Set^{\mathcal{F}}$; and redo everything in the single cartesian closed structure of $Set^{\mathcal{F}}$. (\mathcal{F} finite sets and all maps)

Constructions in $\mathsf{Set}^\mathcal{I}$

Cartesian closed

$$(A \times B)(k) = A(k) \times B(k)$$
$$B^{A}(k) = [A(k + \bot), B(k + \bot)]$$

Monoidal closed

$$(A \otimes B)(k) = \int_{-\infty}^{k'+k'' \hookrightarrow k} A(k') \times B(k'')$$
$$(A \multimap B)(k) = [A(_), B(k+_)]$$

More constructions in $Set^{\mathcal{I}}$

Object of names, shift operator

$$\begin{split} N(k) &= k \\ \delta A(k) &= A(k+1) \end{split}$$

Connections

$$A \otimes B \longrightarrow A \times B$$
 $\delta A \cong N \multimap A$
 $(A \to B) \longrightarrow (A \multimap B)$ $\delta N \cong N + 1$

When A and B are pullback-preserving, the two maps are injective and surjective respectively.