

Advanced Data Representation

Visualisation – Lecture 8

Taku Komura

Institute for Perception, Action & Behaviour School of Informatics

Data Representation : Recap

- Data is discrete
 - only know value at points
 - need to interpolate cells
- Dataset
 - Structure : Topology & Geometry
 - defined by cells; regular or irregular
 - Value
 - actual data itself
 - attribute data types : scalar, vector, tensor etc.

 \bigcirc

Overview

- Scalar Algorithms (last 2 lectures)
 - contouring & colour mapping
 - relied heavily on spatial interpolation in cells
- Today
 - co-ordinate systems
 - interpolation
 - search

Z

X

Global Co-ordinate Systems

- global coordinates ('World space')
 - defined in Cartesian **3D space (R**³**)**
 - discrete point p is an triplet, p = (x, y, z)
 - space we render objects in
- Local coordinates ('Object space')
 - defined in the object' Cartesian 3D space (IR3)

V

Global Co-ordinates : Transformations 1

- translation
 - defined as translation vector, vector $t = (t_x, t_y, t_z)'$
 - in x,y = position of dataset on image plane
 - in z = zoom (distance of dataset from image plane)
- rotation
 - dataset viewpoint / view angle
 - rotation around x, y and z axes
- scaling
 - in each axis direction $s=(s_x, s_y, s_z)'$

Global Co-ordinates : Transformations 2

- Rotation matrix $R = R_x(\theta_x)R_y(\theta_y)R_z(\theta_z)$
 - arbitrary angle order for x, y, z axis
 - generally use consistent system
 - Rotation parameters : { θ_x , θ_y , θ_z }

$$R_x(\theta_x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & -\sin(\theta_x) \\ 0 & \sin(\theta_x) & \cos(\theta_x) \end{bmatrix}$$
$$R_y(\theta_y) = \begin{bmatrix} \cos(\theta_y) & 0 & -\sin(\theta_y) \\ 0 & 1 & 0 \end{bmatrix}$$

Гл

$$sin(\theta_y) = 0 = cos(\theta_y)$$

• **3D transformation :** 9 degrees of freedom $R_z(\theta_z) = \begin{bmatrix} \cos(\theta_z) & -\sin(\theta_z) & 0\\ \sin(\theta_z) & \cos(\theta_z) & 0\\ 0 & 0 & 1 \end{bmatrix}$

- rotation (3); translation (3); scale (3)

Local Co-ordinate Systems

- Local co-ordinate system of the dataset
- Two main components
 - topological co-ordinates the id of the cell
 - dependant on dataset structure
 - Q: which cell within the dataset?
 - parametric co-ordinates location within the cell
 - internal to cell only
 - Q: which location within the cell?

Local Co-ordinate Systems

- **Topological** co-ordinates
 - identifies which cell in the dataset
 - i.e. within the structure of the dataset

- **Parametric** co-ordinates
 - location within the cell, within the dataset
 - parametric co-ordinates based on the topological dimension of the cell (e.g. 2D)

Parametric Co-ordinates

- Parameters r, t & s all in normalized range $\{0 \rightarrow 1\}$
 - topological dimension N requires N parameters

Parametric Co-ordinates - Why?

- Why do we need parametric co-ordinates?
- Why do we need to specify position inside a cell?

⇒ in visualization we require **interpolation** through cells

Interpolation

- Two types :
 - Attribute interpolation derive the attribute value for a position defined in parametric cell space
 - Geometric interpolation derive the global coordinates for a position in parametric cell space
 - local to global co-ordinate transformation

Interpolation : general form

- Performed in local coordinate system
 - internal to cell
 - a weighted average of the point values from the cell
 - weights in inverse proportion to distance from the points
 - nearer points more influence
 - further points less influence

$$d = \sum_{i=0}^{n-1} W_{i} d_i$$

d is the **attribute value** at the position d_i is the **attribute value** of the *i*th point

$$\left(p = \sum_{i=0}^{n-1} W_{i} p_{i}\right)$$

p is position value in **global coordinates** p_i is the **global position** of the *i*th point

n cell points W_i is the weight for the *i*th point

Interpolation weights

Requirements

 $-W_{i} = 1 \& W_{i} = 0$ when $p = p_{i}$ and i! = j

- when position is p_i all other weights must be 0 so that $d=d_i$

- interpolated value is no less than minimum $d_i = d_{min}$ and no greater than maximum $d_i = d_{max}$

- i.e. $\mathbf{d}_{\min} \leq \mathbf{d}_{i} \leq \mathbf{d}_{\max}$

• Weights bounded as follows:

$$\sum W_i = 1, \ 0 \le W_i \le 1$$

Interpolation example : 1D line

- Data values d₀ and d₁
 - **line parametrised** by r from position of d_0 to d_1
 - interpolate intermediate value of d on 1D line
 - influence of d_1 increases as r→1 and d_0 decreases (& vice versa)

Interpolation in 2D/3D

- 2D and 3D shapes have similar interpolation weights
 - N points, N weights
 - normalised to

Interpolation : general polygon

 $c_i = |p_i - x|$

Weighting functions are inversely proportional to distance squared.

c_i = distance from polygon point p_i

Interpolation : problem polygon

Problem: This vertex has too strong an influence in the red region

Solution: Split into simpler shapes

ill-formed polygon

 poor interpolation results based on point distance due to narrow concavity

Simplices

- Shapes (in IR^N) can be decomposed into simpler shapes simplices
 - 2D triangles
 - 3D tetrahedra

- ND convex region of N+1 independent points
- **Principle :** implement visualisation algorithms for simplices
 - all other types can also be handled too
 - by simple reduction to simplices

Interpolation : via simplices

Solution : reduce to simplices (in 2D triangles)

- problem point no longer has interpolation influence in red region
- change in topology

(can be used for other Vis. tech. too)

Interpolation : general principle

 Interpolate the value attribute data over a cell by weighted sum of attribute data at discrete cell points

Co-ordinate Transformations 1

- Geometric interpolation
 - local to global co-ordinate transformation via interpolation
 - Sometimes, we only know the local location of the mobile and the global location of the points
 - Mobile network : the distance from the stations and the location of the stations
 - Method:
 - sum the interpolation weight multiplied by the global positions of the cell points
 - p = position of point in global coordinates
 - $-P_{i}$ = position of vertex
 - $-W_{i}$ is weighting function for vertex i at position p

$$p = \sum_{i=0}^{n-1} w_i p_i$$

Co-ordinate Transformations 2

- Inverse global to local interpolation
 - Q: what is the interpolated value at p = (x,y,z)?
 - A: computationally expensive

- 2 stages
 - search : find cell containing globally specified point p
 - parametric solution : to resolve point position p inside cell
 - simple for linear weighting functions exact solution
 - for non-linear require iterative solution (expensive)

Computing Derivatives 1

- Why ? : interested in gradient of attribute data
 - rate of change of attribute data at arbitrary location in cell
 - e.g. stresses and strains from displacements direction of greatest temperature gradient

Computing Derivatives 1

- Differentiate interpolation functions in global coordinates
 - Compute derivatives in local parametric coordinates
 Transform to global Cartesian space using chain rule
 2D:

 $\frac{\delta}{\delta x}$

δ

 δy

δ

 δz

Computing Derivatives 2

- If local space is not Cartesian (we are assuming it is!) dx/dr will vary with position in the cell
 - must re-evaluate for each point

 $\frac{\delta y}{\delta r}$

 $\frac{\delta x}{\delta s} \quad \frac{\delta y}{\delta s} \quad \frac{\delta z}{\delta s}$

δt

 $\delta y \delta z$

 δr

 δx

δ

 $\frac{\delta r}{\delta r}$

δ

 $\frac{\delta}{\delta s}$

δ

 δt

=

 δz

δr

δ

 $\frac{\delta}{\delta y}$

δ

 δz

- Generalise to 3D for parameters (r,s,t)
 - 3x3 matrix J = **Jacobian**

 relates parametric (local) derivatives to global co-ordinate derivatives

- invert J to find global derivatives

δt

Cell Search

- For a given dataset
 - Q: which cell contains point p = (x,y,z)?
 - point location query

- **Naive approach** exhaustive search *O*(*n*) for n cells
- ⇒improvement possible

Cell Search - Why?

- interaction : picking a cell on the screen
- nearest-neighbours : need values of neighbouring cells/points
- 2D Cells line intersection
 - perform line-plane intersection
 - find cell / perform parametric interpolation to get value/position in cell
- 3D Cells line intersection
 - perform line-plane intersection with faces of cell
 - difficult with non-planar faces (e.g. hexahedron)

Cell Search – structured data

- Regular Topology
 - topological co-ordinates are sequential
- Can specify region of interest using range of indices

• Operations much simplified

Cell search – structured points

- $i = floor((x_p x_0)/(x_1 x_0))$ $j = floor((y_p - y_0)/(y_1 - y_0))$
- $r = frac((x_p x_0)/(x_1 x_0))$ s = frac((y_p - y_0)/(y_1 - y_0))

Searching

- easy to find cell containing point
- *floor* gives topological coordinate, *fraction* gives parametric coordinates.
- constant time O(1)

Unstructured Data : Examples

- Say you are given a list of cities and their positions
- You might need to know which city is close to which
- How do you search for such cities? How much is the cost?
- Think about a dictionary in random order
 - Requires O(n) time to search for each word

Cell search – unstructured points

- Difficult to perform fast search on unstructured data
 - solution: introduce artificial structure
 - i.e. search structure / introduce new topology

Cell search – unstructured points

- Spatial searching data structures
 - principle : put points in ordered bins then find correct bin
 - > using hash functions
 - octrees : tree of recursively defined bounding boxes
 - kd-trees : extension of binary tree principle to k dimensions
 - construction O(n log n); search query O(log n)

Summary

- Co-ordinate Systems
 - global co-ordinates / parametric cell co-ordinates

Interpolation

- in parametric cell space

Derivatives

- in parametric cell space

Search

- point location queries in structured / unstructured data