

Visualisation

UG4 / M.Sc. Course – 2008 Taku Komura

Institute for Perception, Action & Behaviour

Overview

- What is visualsation
- Visual Data Analysis
- Features of the visualisation problem
- Visualisation
 - Multi-dimensional
 - Interactive
 - Data transformation
 - Flow of data
- What we do in the course
 - Data representation,
 - Data conversion
 - Techniques to handle 3D data
- Relationship of Visualisation and computer graphics, computer vision
- Data source of visualisation

So what is visualisation?

- Application of interactive 3D computer graphics to the understanding data.
 - "visual data analysis"
 - interactive viewing, understanding and reasoning process
- Conversion of numbers → images
 - humans are generally poor at raw numerical data analysis
 - human visual reasoning allows robust analysis of visual stimuli
 - → convert numerical analysis into visual analysis

Simple Example : Maps

Ben Nevis – Scotland's Highest Mountain (1343m / 4409ft) Maps: © Crown copyright

Contours represent changes in height on a 2D map – so what is the shape of this famous mountain?

Simple Example : Maps

Ben Nevis Fly Through: http://www.ordnancesurvey.co.uk

Ben Nevis – visualisation of 3D satellite data http://earth.google.com

.... but with 3D graphics we can represent the shape of the mountain directly - we can improve the visualisation of this height data by viewing it in 3D

The traditional 'scientific' process - the *creation* of knowledge

Knowledge (Scientific papers, business strategy, a medical diagnosis etc).

Observations

(could be scientific, medical or business sales figures etc).

The visualisation process

- the effective creation of knowledge

Visual Data Analysis

- "presenting data in a convenient and efficient visual form for human visual analysis"
 - Combining multi-dimensional data into a single image so that it is easy to understand
 - Extracting important features and emphasising that
 - Extracting important surface data from volume data
 - Coloring it in various ways so that it is easy to understand

Example: Basic Presentation

- 2D Colour Photograph and corresponding depth information
 - human viewer left to correlate the data

Example : Visualisation

- 3D projection of combined data
 - data relationship = pixel location in 2D images
 - transformation = 3D projection

Example : Visualisation

- 3D projection of combined data
 - colour removed, 3D shape only
 - use of colour to show relative elevation of features

Example : this all comes from a volume data

- 3D visualisation of:
 - terrain (position x,y,z, type = colour)
 - temperature, wind speed (rear and orthogonal display)

Multi-dimensional Data

- data with 3 or more dimensions (ℜ^N, N >= 3)
- Convert the data into low dimensions so that people can acknowledge features

Interaction

- user driven process
- user does analysis
 - computer does visualisation
- Unlike numerical analysis of statistics the user does the analysis

Data transformation

 data is repeatedly created and modified to enhance meaning to the user 202.000000000 -221.0050048828 -170.1450042725 202.500000000 -220.5050048828 -169.8619995117 202.500000000 -221.0050048828 -169.7920074463 209.000000000 -296.5029907227 -165.5749969482

Raw 3D points from a range scanner

Triangulated 3D surface + associated depth colouring

Projected 3D point cloud

Flow of data

- visualising large scale time varying (temporal) data
 - e.g. weather, financial prices, air flow
 - use of animation in visualisation
 - visualisation of flow

What's in this course?

- Data representation
 - Surface data, volume data, point clouds, flows, vector fields
- Data conversion
 - Volume -> surface
 - Point clouds -> surface
 - Volume -> image
 - Flow data -> surface, image
- Techniques to handle 3D data
 - Practical problems of visualising and acquiring 3D data

Focus on 3D Graphics

- 3D graphics are our tool in visualisation
- We can
 - interactively change color attributes
 - view the results from various directions

Visualisation & Computer Vision

- Computer Vision (CV): computer analysis of visual information
 - automated visual reasoning
- Visualisation: computer presentation of that visual information
 - commonly part of the output process in the CV pipeline (especially 3D capture)
 - also used for evaluation in CV (i.e. to provide insight into CV process itself)

Visualisation is data-orientated

• 3 main sources of visualisation data:

- Scientific / Medical Visualisation

- visualising results of simulations, experiments or observations
- Frequently data is multi-dimensional

- Information Visualisation

- Visualisation of abstract, usually discrete data
- e.g financial data, web site hits etc.

Real-world Data

- 3D capture technologies are reaching maturity
- Application : Virtual Reality, Games

Example : Medical Imaging

- Computer imaging in medicine:
 - Computed Tomography (CT) imaging uses pencil thin X-ray beams
 - Magnetic Resonance Imaging (MRI) uses large magnetic fields

Chest CT section

Magnetic Resonance Image showing a vertical cross section through a human head.

Example : Medical Imaging

- Collect data as *slice planes* from patient
- Numbers from scanners
 - X-ray attenuation (CT)
 - Nuclear spin magnetization (MRI)
 - Large amounts of data
 - Difficult to interpret
 - fairly abstract physics based concepts (for a computer scientist or medical practitioner!)

2D images from CT data slices

3D surfaces from CT slices

- Many planar slices (2D) can be combined (in topological order) to form a 3D volume of data
 - i.e. stack of 2D images
- Volume can be processed and rendered to reveal complete anatomical structures

Course Syllabus

Data Representation

- Data geometry and topology
- Surface and volume representations
- Systems architecture for Visualisation
 - The Visualisation Pipeline

• Fundamental algorithms

- 2 & 3D Contouring, Colour-mapping
- Volume rendering

Advanced algorithms

- Flow visualisation
- Vector visualisation
- Tensor visualisation

• Information visualisation

- Networks and trees, documents

Real world objects

- Visualisation of real objects & environments
- Acquisition of 3D data

Course Outline

18 Lectures

- lecture notes on-line (http://www.inf.ed.ac.uk/teaching/courses/vis/)
- background reading (mainly on-line, also textbook)

2 Assessed Practicals

- 2 programming tasks
- Visualisation Toolkit VTK
- prior weekly practicals introducing VTK

Assessment

- 1.75 hour examination (70%)
- 2 practical assignments (15% each)
 - (variation between UG4 and M.Sc. requirements)

Textbooks

Non-essential

- majority of VTK information on-line (although in terse form)
- No single book covers all of the course
- Maybe of use:
 - Schroeder/Martin/Lorensen The Visualization Toolkit : An Object-Orientated Approach to 3D Graphics
 - 2nd or 3rd Edition. 3rd Edition ISBN 1-930934-12-2
 - Available in Library (JCMB). Limited availability in UK.
 Amazon marketplace £~20+
 - Schroeder/Martin/Lorensen The Visualization Toolkit User's Guide
 - Most recent edition ISBN 1-930934-13-0
 - Available in Library (JCMB). Limited availability in UK.
 - http://public.kitware.com/VTK/buy-books.php / http://www.amazon.com (expensive shipping)

VTK User's Gui

Summary

- What is visualsation
 - Visual Data Analysis
 - Features of the visualisation problem
 - Visualisation
 - Multi-dimensional
 - Interactive
 - Data transformation
 - Flow of data
 - What we do in the course
 - Data representation,
 - Data conversion
 - Techniques to handle 3D data
 - Relationship of Visualisation and computer graphics, computer vision
 - Data source of visualisation