

Visualisation of "Real" Objects & Environments

Visualisation – Lecture 15

Taku Komura

Institute for Perception, Action & Behaviour School of Informatics

EX

Example : object capture & visualisation

- Capture real world objects into a computer based representation
 - process and visualise them as 3D data

202.000000000 -221.0050048828 -170.1450042725 202.500000000 -220.5050048828 -169.8619995117 202.500000000 -221.0050048828 -169.7920074463 209.000000000 -296.5029907227 -165.5749969482

Raw 3D points from a range scanner

Motivation

- Analysis
 - structural
 - visual inspection

- Virtual Reality
 - games / movies
 - digital archiving of 3D objects

Capture Pipeline : 3D surfaces

- **Calibrate** position of **3D sensor** (camera / scanner)

 - finding out the location and orientation of the sensor/cameras
- **Recover distance measurements** from sensors (camera/scanner) to surfaces
 - Computing the depth of objects/environment surfaces from the sensors
- **Processing** of 3D data: registration, triangulation, rendering

3D Capture : Stereo Vision

Given two 2D images of an object, how can we reconstruct 3D awareness of it?"

Stereo Vision : 3 key stages

1) Feature Identification

identify image features in each image

2) Correspondence

Matching: find a set of feature correspondences (left image ⇔ right image)

3) Triangulation

triangulate from known camera positions

recover 3D depth information

Result : Stereo Vision

Input : Image x 2

Result : depth map representation

Result : novel view (point cloud representation)

[Matthies, Szeliski, Kanade'88]

- **Result** : depth map (2D structured grid)
 - knowledge of 3D depth and colour (from input) in each cell
- **Problems** : poor matches = poor 3D information

e.g. right hand side of example

Stereo Vision

- Passive technique
- Advantages
 - uses only image cameras : no expensive sensors
- Limitations
 - accurate prior calibration of cameras required
 - fails on textureless surfaces
 - lighting affects images (e.g. specular highlights)
 - Produces errors
 - results : often sparse incomplete surfaces

Commercial System : 3D face capture

- 2 x 6 mega-pixel digital SLR cameras
- Commercial 3D stereo software (http://www.di3d.com/)
 - Results : 6 mega-pixel depth map / VRML 3D surface mesh model

Example : 3D objects / closeups

http://www.di3d.com/

Stereo : Calibration Required

- Need to know accurate camera positions
 - Find out the location/orientation of the camera by checking how a fixed pattern appears in the image

3D capture : laser range scanning

- Active depth sensing using laser beam signal
 - direct, accurate 3D scene information
 - Measures time taken for a pulse of laser light to return to the scanner.
 - d = ct/2 c: speed of light, d : distance, t: time
 - Accurate over longer ranges.

– Acuity Research, max range 13m, accuracy \pm 2mm

- Cyra, max range 50-100m, accuracy \pm 6mm.

- Good for capturing environments.

3D capture : laser range scanning

Limitations

- -hidden surfaces
- -dark/shiny objects do not scan well
- -expensive hardware
- -The error grows as the distance is shorter

Laser Scanning Technologies - 2

- Triangulation based range sensor
 - distance measured via optical triangulation over a known baseline D
 - depth, z, measured as $z = f(\alpha, \beta, D)$
 - Very accurate
 - The capturing range is only meters

- Light beam : usually laser
 - hence "laser range scanning"
 - bright, single frequency
 - use optical filter to eliminate other light

3D Data Representation

- 3D Data Representation
 - **2D grid** of depth values (range image representation)
 - OR: 3D unstructured points (point cloud representation)

Example : Digital Michaelangelo

Stanford's *Digital Michaelangelo* Project – capture using 3D laser triangulation http://graphics.stanford.edu/projects/mich/

Taku Komura

2¹/₂D Limitation

- We have depth i.e. 3D knowledge
 - BUT only in one direction!
 - e.g.

- This is called 2 1/2D!
- Possible Solutions
 - capture from different directions and merge

2¹/₂D : Difficult Models to Scan

- Even with hand driven manoeuvrable scanner difficult to get complete scan
- Especially the concave area

Example : Environment Scanning

 Resulting point cloud limited to 2¹/₂D

Reflected laser power

Example : single viewpoint scan

Example : multi-viewpoint scan

- Some holes filled
 - more information
 - requires **registration** of one point cloud to the other

Example : Edinburgh Central Mosque

• Scanning : multiple positions with environment laser scanners

• **Data** : millions of points, noisy - processed to VRML mesh

FastScan : handheld laser scanner

3D Data Processing : Rendering

- Point clouds transformed to surfaces for rendering
 - surface triangulation
 - numerous methods:
 - commonly use Delaunay
 - or iso-surface based on distance
 - change in data representation
 - 3D unstructured points to surface mesh representation
 - addition of topology
 - irregular geometry and regular topology

Surface Detail : very fine

0.25mm scan resolution.

• How can we visualise this fine detail?

Rendering : Lighting Surface Detail

 Surface detail illuminated using diffuse (left) and specular (right) lighting

3D Model of Michaelangelo's Unfinished Statue of St. Matthew (Stanford).

Chisel marks can be seen – but can this be improved

Rendering : Lighting Surface Detail

- Requirement: visualise fine surface detail
 - here : interested in how work was carved, possibly what kind of chisel was used
 - need to visualise fine detail of chisel marks on surface
- Conventional Lighting Choices
 - **Diffuse :** lighting has smooth curve with surface normal
 - only see brightness change at steep angles to light source
 - Specular : steeper lighting gradient but only locally
 - Can only highlight some regions of the whole surface

Alternative : Accessibility Shading

Shade the surface according to the size of the largest sphere that can touch the surface (i.e. how accessible it is).

- Darkens inaccessible parts of model.

- Gives an objective view of the surface independent of choice of illumination angle (objective shading).

- Lights surface in proportion to local granularity of detail
 - ideal for visualisation of the surface details

Example : chisel analysis

Accessibility shading – clear detail

Specular shading – less clear detail

• From effective visualisation further historical conclusions on chisel type can be made – by bringing information out of data

Accessibility Shading

 accessibility shading can be used to render dust covered or tarnished surfaces

Visualising the Cuneiform Tablets

- Cuneiform clay tablets were inscribed in Mesopotamia millenia ago
- Visualizing cuneiform writing is important when
 - finding out what is written on the tablets.
 - reproducing the tablets in papers and books
- photographs are not easy to see

http://www.graphics.stanford.edu/projects/cuneiform

Surface Lighting Comparison

- Surface detail visualisation methods
 - example : Stanford cuneiform tablet example

photo

Scanned surface

Unwrapped and shown as a displacement map

Accessibility shading.

Summary

- Stereo Vision
 - dense stereo matching
 - high-resolution data from commercial systems
 - full body scanners
- Laser scanners
 - laser scanner technologies
 - data representation and limitations (2¹/₂D)
 - effectively lighting 3D surface detail